Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (155)

Search Parameters:
Keywords = outflow energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 15457 KB  
Article
The Impact of the Continental Environment on Boundary Layer Evolution for Landfalling Tropical Cyclones
by Gabriel J. Williams
J 2025, 8(3), 31; https://doi.org/10.3390/j8030031 - 28 Aug 2025
Viewed by 218
Abstract
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the [...] Read more.
Although numerous observational and theoretical studies have examined the mean and turbulent structure of the tropical cyclone boundary layer (TCBL) over the open ocean, there have been comparatively fewer studies that have examined the kinematic and thermal structure of the TCBL across the land–ocean interface. This study examines the impact of different continental environments on the thermodynamic evolution of the TCBL during the landfall transition using high-resolution, full-physics numerical simulations. During landfall, the changes in the wind field within the TCBL due to the development of the internal boundary layer (IBL), combined with the formation of a surface cold pool, generates a pronounced thermal asymmetry in the boundary layer. As a result, the maximum thermodynamic boundary layer height occurs in the rear-right quadrant of the storm relative to its motion. In addition, azimuthal and vertical advection by the mean flow lead to enhanced turbulent kinetic energy (TKE) in front of the vortex (enhancing dissipative heating immediately onshore) and onshore precipitation to the left of the storm track (stabilizing the environment). The strength and depth of thermal asymmetry in the boundary layer depend on the contrast in temperature and moisture between the continental and storm environments. Dry air intrusion enhances cold pool formation and stabilizes the onshore boundary layer, reducing mechanical mixing and accelerating the decay of the vortex. The temperature contrast between the continental and storm environments establishes a coastal baroclinic zone, producing stronger baroclinicity and inflow on the left of the track and weaker baroclinicity on the right. The resulting gradient imbalance in the front-right quadrant triggers radial outflow through a gradient adjustment process that redistributes momentum and mass to restore dynamical balance. Therefore, the surface thermodynamic conditions over land play a critical role in shaping the evolution of the TCBL during landfall, with the strongest asymmetries in thermodynamic boundary layer height emerging when there are large thermal contrasts between the hurricane and the continental environment. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

22 pages, 374 KB  
Article
Powerful Radio Sources as Probes of Black Hole Physics
by Ruth A. Daly
Universe 2025, 11(8), 267; https://doi.org/10.3390/universe11080267 - 14 Aug 2025
Viewed by 176
Abstract
Powerful jetted radio sources for which the luminosity in directed kinetic energy has been empirically determined, independent of assumptions, are considered. The total outflow lifetime of each source determined in the context of detailed cosmological studies was found to depend only upon the [...] Read more.
Powerful jetted radio sources for which the luminosity in directed kinetic energy has been empirically determined, independent of assumptions, are considered. The total outflow lifetime of each source determined in the context of detailed cosmological studies was found to depend only upon the luminosity in directed kinetic energy (L). The distributions of L, total outflow lifetime, and total outflow energy each have a broad range of values, as do the supermassive black hole masses. The total outflow energy relative to the black hole mass is a small number with a small dispersion. Three explanations of these remarkable results are considered. This could indicate (1) the efficiencies with which black hole irreducible mass is increased and spin mass energy is extracted during the outflow event, (2) that the merger of two supermassive black holes occurs over a timescale commensurate with the independently determined outflow lifetime and that these mergers lead to the production of the low-frequency gravitational wave background, or (3) that feedback shuts off black hole accretion due to energy injected into the ambient medium. Full article
Show Figures

Figure 1

11 pages, 3500 KB  
Article
Wind and Eruptive Mass Loss near the Eddington Limit
by Stan Owocki
Galaxies 2025, 13(4), 91; https://doi.org/10.3390/galaxies13040091 - 13 Aug 2025
Viewed by 342
Abstract
Luminous, hot, massive stars can lose mass both through quasi-steady winds driven by line-scattering of the star’s continuum luminosity, and through transient eruptions identified as Luminous Blue Variables (LBVs). This paper compares and contrasts the processes involved in steady vs. eruptive mass loss, [...] Read more.
Luminous, hot, massive stars can lose mass both through quasi-steady winds driven by line-scattering of the star’s continuum luminosity, and through transient eruptions identified as Luminous Blue Variables (LBVs). This paper compares and contrasts the processes involved in steady vs. eruptive mass loss, with an emphasis on their dependence on the star’s proximity to the classical Eddington limit. For winds, I examine the role of the iron opacity bump in initiating a quasi-continuum-driven outflow, which can induce atmospheric turbulence in O-stars, an envelope inflation cycle in LBVs, or enhanced wind mass loss in WR stars. In contrast, the giant eruptions of eruptive LBVs like η Carinae require a sudden addition of energy to the stellar envelope, like that which can occur from stellar mergers. The positive net energy imparted to a substantial fraction (>10%) of the stellar mass leads to sudden ejection that closely follows an analytic exponential similarity solution. Moreover, the rapid rotation and enhanced luminosity of the post-merger star drive a super-Eddington wind. Due to equatorial gravity darkening, this wind is stronger over the poles, sculpting a bipolar structure in the ejected mass, consistent with observations of η Carinae’s Homunculus nebula. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

14 pages, 3487 KB  
Article
Analysis of the Effectiveness of the Energy-Efficient Gravity Filtration Process in Terms of Its Application as the Third Stage of Wastewater Treatment
by Kazimierz Szymański, Jacek Piekarski, Tomasz Dąbrowski, Krzysztof Piaskowski, Renata Świderska-Dąbrowska and Katarzyna Ignatowicz
Energies 2025, 18(16), 4213; https://doi.org/10.3390/en18164213 - 8 Aug 2025
Viewed by 327
Abstract
The energy self-sufficiency of wastewater treatment plants has become an essential aspect of sustainable water and energy resource management. On the other hand, due to the expansion of urban conglomerations and agricultural activities, as well as more frequent and erratic meteorological phenomena (e.g., [...] Read more.
The energy self-sufficiency of wastewater treatment plants has become an essential aspect of sustainable water and energy resource management. On the other hand, due to the expansion of urban conglomerations and agricultural activities, as well as more frequent and erratic meteorological phenomena (e.g., droughts), the majority of EU nations are confronted with water scarcity and the deterioration of water quality. As a consequence, EU member states pledged to implement “tertiary treatment” in all municipal wastewater treatment facilities by the end of 2040. This publication presents an analysis of the efficiency of an energy-efficient gravity cloth disk filter used for treating municipal wastewater in a treatment plant located in a tourist resort in Poland, operating under variable hydraulic loading conditions. Gravity cloth disk filters appear to be the least energy-consuming. The energy consumption of disk filters was 13 Wh/m3 in 2024. The filter ensures the leveling of disturbances in the operation of earlier treatment stages, particularly in terms of retaining total suspended solids (TSSs). The achieved efficiency of TSS removal was 45%. The TSS value in the outflow from the filter did not exceed the limit value from the permit (35 mg/L). When operated correctly, additional filtration and disinfection may become essential components of a wastewater treatment plant, enabling the achievement of wastewater quality that supports water recovery for technological and agricultural purposes, particularly in small, non-industrial areas. They should also consume less energy than other advanced technologies used in the third and fourth stages of wastewater treatment. Full article
Show Figures

Figure 1

25 pages, 5001 KB  
Article
Impact of Regional Characteristics on Energy Consumption and Decarbonization in Residential and Transportation Sectors in Japan’s Hilly and Mountainous Areas
by Xiyue Hao and Daisuke Narumi
Sustainability 2025, 17(14), 6606; https://doi.org/10.3390/su17146606 - 19 Jul 2025
Viewed by 541
Abstract
In Japan’s hilly and mountainous areas, which cover over 60% of the national land area, issues such as population outflow, aging, and regional decline are intensifying. This study explored sustainable decarbonization pathways by examining two representative regions (Maniwa City and Hidakagawa Town), while [...] Read more.
In Japan’s hilly and mountainous areas, which cover over 60% of the national land area, issues such as population outflow, aging, and regional decline are intensifying. This study explored sustainable decarbonization pathways by examining two representative regions (Maniwa City and Hidakagawa Town), while accounting for diverse regional characteristics. A bottom-up approach was adopted to calculate energy consumption and CO2 emissions within residential and transportation sectors. Six future scenarios were developed to evaluate emission trends and countermeasure effectiveness in different regions. The key findings are as follows: (1) in the study areas, complex regional issues have resulted in relatively high current levels of CO2 emissions in these sectors, and conditions may worsen without intervention; (2) if the current trends continue, per-capita CO2 emissions in both regions are projected to decrease by only around 40% by 2050 compared to 2020 levels; (3) under enhanced countermeasure scenarios, CO2 emissions could be reduced by >99%, indicating that regional decarbonization is achievable. This study provides reliable information for designing localized sustainability strategies in small-scale, under-researched areas, while highlighting the need for region-specific countermeasures. Furthermore, the findings contribute to the realization of multiple Sustainable Development Goals (SDGs), particularly goals 7, 11, and 13. Full article
(This article belongs to the Section Development Goals towards Sustainability)
Show Figures

Figure 1

22 pages, 31542 KB  
Article
Pyrroloquinoline Quinone (PQQ) Attenuates Hydrogen Peroxide-Induced Injury Through the Enhancement of Mitochondrial Function in Human Trabecular Meshwork Cells
by Sabrina Petricca, Antonio Matrone, Daria Capece, Irene Flati, Vincenzo Flati, Enrico Ricevuto, Giuseppe Celenza, Nicola Franceschini, Mirco Mastrangelo, Cristina Pellegrini, Loredana Cristiano, Giuseppe Familiari, Benedetta Cinque, Giovanna Di Emidio, Carla Tatone and Roberto Iorio
Int. J. Mol. Sci. 2025, 26(14), 6938; https://doi.org/10.3390/ijms26146938 - 19 Jul 2025
Viewed by 1793
Abstract
Mitochondrial metabolism in the trabecular meshwork (TM) plays a critical role in maintaining intraocular pressure homeostasis by supporting the energy-demanding processes involved in aqueous humour outflow. In primary open-angle glaucoma, oxidative stress impairs mitochondrial function, leading to TM dysfunction. Therefore, understanding and targeting [...] Read more.
Mitochondrial metabolism in the trabecular meshwork (TM) plays a critical role in maintaining intraocular pressure homeostasis by supporting the energy-demanding processes involved in aqueous humour outflow. In primary open-angle glaucoma, oxidative stress impairs mitochondrial function, leading to TM dysfunction. Therefore, understanding and targeting mitochondrial health in TM cells could offer a novel therapeutic strategy. Pyrroloquinoline quinone (PQQ) is a redox cofactor with antioxidant and mitochondrial-enhancing properties. However, its effects on human TM (HTM) cells remain largely unexplored. This study examined PQQ cytoprotective effects against H2O2-induced oxidative stress in HTM cells. Seahorse analyses revealed that PQQ alone improves mitochondrial respiration and ATP production. Moreover, PQQ mitigates H2O2-induced cellular damage and preserves mitochondrial function by normalising proton leak and increasing ATP levels. Furthermore, TEM and confocal microscopy showed that PQQ can partially alleviate structural damage, restoring mitochondrial network morphology, thereby leading to reduced cell death. Although these protective effects seem not to be mediated by changes in mitochondrial content or activation of the SIRT1/PGC1-α pathway, they may involve modulation of SIRT3, a key factor of mitochondrial metabolism and homeostasis. Overall, these results suggest that PQQ may represent a promising candidate for restoring mitochondrial function and reversing oxidative damage in HTM cells. Full article
(This article belongs to the Special Issue Mitochondrial Functions and Dynamics)
Show Figures

Figure 1

15 pages, 521 KB  
Article
A Binary Discounting Method for Economic Evaluation of Hydrogen Projects: Applicability Study Based on Levelized Cost of Hydrogen (LCOH)
by Sergey Galevskiy and Haidong Qian
Energies 2025, 18(14), 3839; https://doi.org/10.3390/en18143839 - 19 Jul 2025
Viewed by 506
Abstract
Hydrogen is increasingly recognized as a key element of the transition to a low-carbon energy system, leading to a growing interest in accurate and sustainable assessment of its economic viability. Levelized Cost of Hydrogen (LCOH) is one of the most widely used metrics [...] Read more.
Hydrogen is increasingly recognized as a key element of the transition to a low-carbon energy system, leading to a growing interest in accurate and sustainable assessment of its economic viability. Levelized Cost of Hydrogen (LCOH) is one of the most widely used metrics for comparing hydrogen production technologies and informing investment decisions. However, traditional LCOH calculation methods apply a single discount rate to all cash flows without distinguishing between the risks associated with outflows and inflows. This approach may yield a systematic overestimation of costs, especially in capital-intensive projects. In this study, we adapt a binary cash flow discounting model, previously proposed in the finance literature, for hydrogen energy systems. The model employs two distinct discount rates, one for costs and one for revenues, with a rate structure based on the required return and the risk-free rate, thereby ensuring that arbitrage conditions are not present. Our approach allows the range of possible LCOH values to be determined, eliminating the methodological errors inherent in traditional formulas. A numerical analysis is performed to assess the impact of a change in the general rate of return on the final LCOH value. The method is tested on five typical hydrogen production technologies with fixed productivity and cost parameters. The results show that the traditional approach consistently overestimates costs, whereas the binary model provides a more balanced and risk-adjusted representation of costs, particularly for projects with high capital expenditures. These findings may be useful for investors, policymakers, and researchers developing tools to support and evaluate hydrogen energy projects. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

29 pages, 8743 KB  
Article
Coupled Simulation of the Water–Food–Energy–Ecology System Under Extreme Drought Events: A Case Study of Beijing–Tianjin–Hebei, China
by Huanyu Chang, Naren Fang, Yongqiang Cao, Jiaqi Yao and Zhen Hong
Water 2025, 17(14), 2103; https://doi.org/10.3390/w17142103 - 15 Jul 2025
Viewed by 526
Abstract
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated [...] Read more.
The Beijing–Tianjin–Hebei (BTH) region is one of China’s most water-scarce yet economically vital areas, facing increasing challenges due to climate change and intensive human activities. This study develops an integrated Water–Food–Energy–Ecology (WFEE) simulation and regulation model to assess the system’s stability under coordinated development scenarios and extreme climate stress. A 500-year precipitation series was reconstructed using historical drought and flood records combined with wavelet analysis and machine learning models (Random Forest and Support Vector Regression). Results show that during the reconstructed historical megadrought (1633–1647), with average precipitation anomalies reaching −20% to −27%, leading to a regional water shortage rate of 16.9%, food self-sufficiency as low as 44.7%, and a critical reduction in ecological river discharge. Under future recommended scenario with enhanced water conservation, reclaimed water reuse, and expanded inter-basin transfers, the region could maintain a water shortage rate of 2.6%, achieve 69.3% food self-sufficiency, and support ecological water demand. However, long-term water resource degradation could still reduce food self-sufficiency to 62.9% and ecological outflows by 20%. The findings provide insights into adaptive water management, highlight the vulnerability of highly coupled systems to prolonged droughts, and support regional policy decisions on resilience-oriented water infrastructure planning. Full article
(This article belongs to the Special Issue Advanced Perspectives on the Water–Energy–Food Nexus)
Show Figures

Figure 1

12 pages, 8504 KB  
Article
Altered Lactylation Myocardial Tissue May Contribute to a More Severe Energy-Deprived State of the Tissue and Left Ventricular Outflow Tract Obstruction in HOCM
by Ruoxuan Li, Jing Wang, Jia Zhao, Jiao Liu, Yuze Qin, Yue Wang, Yiming Yuan, Nan Kang, Lu Yao, Fan Yang, Ke Feng, Lanlan Zhang, Shengjun Ta, Bo Wang and Liwen Liu
Bioengineering 2025, 12(4), 379; https://doi.org/10.3390/bioengineering12040379 - 3 Apr 2025
Viewed by 1041
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiovascular disease. In general, obstructive hypertrophic cardiomyopathy (HOCM) is more closely related to severe clinical symptoms and adverse clinical outcomes. Therefore, it is necessary to explore the possible causes of HOCM, which may help physicians [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiovascular disease. In general, obstructive hypertrophic cardiomyopathy (HOCM) is more closely related to severe clinical symptoms and adverse clinical outcomes. Therefore, it is necessary to explore the possible causes of HOCM, which may help physicians better understand the disease and effectively control and manage the progression of the disease. In recent years, the discovery of lactylation has provided scholars with a new direction to explore the occurrence of diseases. In cardiovascular diseases, this post-translational modification can exacerbate cardiac dysfunction, and it can also promote the cardiac repair process after myocardial infarction. In this study, we used the myocardial tissue of mice carrying the Myh7 V878A gene mutation site for protein lactylation detection. Through a further analysis of the enriched pathways using KEGG enrichment, GO enrichment, and Wiki Pathways enrichment, we found that the enriched pathways with lactylation modifications in the HOCM mice mainly included the fatty acid oxidation pathway, the tricarboxylic acid cycle pathway, the adrenergic signaling pathway in cardiomyocytes, and the cardiomyocyte hypertrophy pathway. Among the above pathways, significant changes in lactylation occurred in proteins including Acads, Acaa2, Mdh2, Myl2, and Myl3. We used the COIP experiment to verify the omics results and the ELISA assay to verify the function of the enzymes. We found that a decrease in lactylation modifications also led to a decrease in enzyme function. The abnormalities of these proteins not only lead to abnormalities in energy metabolism in the myocardial tissue of HOCM but also may affect myocardial contractility, resulting in the impaired contractile function of HOCM. The results of this study lay a preliminary theoretical foundation for further exploring the pathogenesis of HOCM. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

22 pages, 7004 KB  
Article
Insights into the Hydraulic Characteristics of Critical A-Jumps for Energy Dissipator Design
by Lei Jiang, Yao Deng, Yangrong Liu, Lindong Fang and Xiafei Guan
Water 2025, 17(7), 960; https://doi.org/10.3390/w17070960 - 25 Mar 2025
Viewed by 1139
Abstract
Hydraulic jumps are widely used to dissipate excess energy in civil, ocean, and hydro-power engineering, particularly in high dams with large reservoirs. Different inflow and tailwater conditions lead to the occurrence of various types of hydraulic jumps. Among them, A-jumps are often preferred [...] Read more.
Hydraulic jumps are widely used to dissipate excess energy in civil, ocean, and hydro-power engineering, particularly in high dams with large reservoirs. Different inflow and tailwater conditions lead to the occurrence of various types of hydraulic jumps. Among them, A-jumps are often preferred for stilling basin design, due to their high energy dissipation efficiency and favorable outflow patterns. This study numerically investigated the hydraulic characteristics of 75 critical A-jumps by adjusting tailwater levels, considering varying inflow conditions (flow depth, velocity, discharge, and Froude number) and stilling basin parameters (negative step height and incident angle), covering key parameter ranges from existing practical applications in high dam projects. Based on theoretical analysis and numerical simulations, estimation methods are proposed for the key hydraulic parameters of A-jumps, including the sequent depth ratio, roller length, reattachment length, and energy dissipation rate. A correction for the sequent depth ratio, incorporating the influence of the incident angle, is proposed for the first time. These estimation methods offer valuable insights for designing and optimizing negative step stilling basins in various practical engineering scenarios. To validate their applicability, a case study was conducted, showcasing the superior energy dissipation and stable outflow performance of the designed stilling basin, with the basin length shortened by 1.8% and the near-bottom velocity reduced by 42.4%, based on the proposed estimations, compared to the classical stilling basin. Full article
Show Figures

Figure 1

8 pages, 2005 KB  
Proceeding Paper
Numerical Analysis of Potential Energy Recovery via a Thermoelectric Generator (TEG) for the Next-Generation Hybrid-Electric Regional Aircraft
by Safa Sabet, Werner Gumprich, Michael Moeller, Andrés Felgueroso, Iván González Nieves, Miguel Díaz and Simone Mancin
Eng. Proc. 2025, 90(1), 64; https://doi.org/10.3390/engproc2025090064 - 18 Mar 2025
Viewed by 372
Abstract
The thermal management of next-generation hybrid electric regional aircrafts poses critical challenges due to extreme heat loads, which could reach more than 2 MW and must be dissipated. This rejected heat can be used in a passive system such as Thermoelectric Generators (TEGs), [...] Read more.
The thermal management of next-generation hybrid electric regional aircrafts poses critical challenges due to extreme heat loads, which could reach more than 2 MW and must be dissipated. This rejected heat can be used in a passive system such as Thermoelectric Generators (TEGs), which can directly convert thermal energy into electrical energy. This work is carried out in the framework of the EU Clean Aviation-funded project TheMa4HERA and it numerically explores the possibility of integrating thermoelectric (TE) technology in the next generation of regional aircrafts. Two case studies are considered: energy recovery from the outflow valve originally used to control the pressure of the cabin and the integration of TEG modules in skin heat exchangers used to partially dissipate heat coming from the fuel cells and/or from the power electronics. The results will permit us to understand the feasibility of implementing TEG technology into these specific conditions in terms of overall power generation. The findings indicate that while TEG integration in the outflow valve offers limited power density, the skin heat exchanger shows significantly higher potential for effective energy recovery. Full article
Show Figures

Figure 1

14 pages, 5922 KB  
Article
Kinetics of Ion Exchange in Magnesium Sulfate Leaching of Rare Earths and Aluminum from Ionic Rare Earth Ores
by Mingbing Hu, Yajian Shao and Guoliang Chen
Minerals 2025, 15(3), 290; https://doi.org/10.3390/min15030290 - 12 Mar 2025
Cited by 1 | Viewed by 853
Abstract
Magnesium sulfate leaching of ionic rare earth ores is generally characterized by a smooth outflow curve, a long leaching time, and a high impurity content in the leach liquor. To reveal the leaching law of rare earth cations and impurity aluminum ions in [...] Read more.
Magnesium sulfate leaching of ionic rare earth ores is generally characterized by a smooth outflow curve, a long leaching time, and a high impurity content in the leach liquor. To reveal the leaching law of rare earth cations and impurity aluminum ions in the leaching process of ionic rare earth ores in magnesium sulfate, equilibrium leaching and leaching kinetics experiments were carried out using ore samples of five particle sizes (<0.10, 0.10–0.25, 0.25–0.50, 0.50–1.00, and >1.00 mm). Furthermore, prediction models of equilibrium constants and rate constants were constructed based on ion-exchange theory. The results show that the equilibrium constants of the rare earth and aluminum ion-exchange reactions decrease gradually with the increase in the magnesium ion concentration, the decrease in the temperature, and the increase in the surface area of the particles. Moreover, the equilibrium constant prediction models of rare earth and aluminum with magnesium sulfate were constructed using data fitting. From the leaching kinetics experiment, there is a significant relationship between the reaction rate constant of ion exchange and the surface area of the particles: the larger the particle size, the smaller the reaction rate constant. Based on the kinetic test data and the Arrhenius equation, the frequency factors and activation energies of the ion-exchange reactions were inversely analyzed through the Chemistry Reaction Module of COMSOL. The reaction activation energy for rare earth and aluminum leaching is 10,743 J/mol and 10,987 J/mol, respectively. The rate constant prediction model was obtained by fitting the analyzed rate constant data. The rare earth and aluminum leaching results for the full-grade ores are in high agreement with the predictions of the constructed model, which verifies the validity of the proposed model. This study can provide theoretical support for the improvement of the leaching efficiency of rare earths and the optimization of the magnesium sulfate leaching process. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

13 pages, 4528 KB  
Review
Hot Stars in Stellar Populations of Galaxies
by Claus Leitherer
Galaxies 2025, 13(2), 20; https://doi.org/10.3390/galaxies13020020 - 7 Mar 2025
Viewed by 1066
Abstract
Star-forming galaxies are hosts of dominant populations of recently formed, hot, massive stars, which give rise to conspicuous stellar spectral features and provide the ionizing fluxes. Strong outflows of these stars shape their properties. These winds affect the evolution and the output of [...] Read more.
Star-forming galaxies are hosts of dominant populations of recently formed, hot, massive stars, which give rise to conspicuous stellar spectral features and provide the ionizing fluxes. Strong outflows of these stars shape their properties. These winds affect the evolution and the output of ionizing radiation, as well as the energy and momentum input in the interstellar medium and the chemical enrichment. Many properties of massive stars become even more extreme at a low metallicity. Owing to the pioneering observations of young, metal-poor stellar populations, both locally with HST and large ground-based facilities and at high redshift with JWST, we are at a key moment to assess our understanding of hot massive stars in these galaxies. Stellar population synthesis is a key tool. I will demonstrate how population models of hot, massive stars help to address some issues at the forefront of current research. The recent advent of new evolutionary and atmosphere models of massive stars probing new parameter space allows us to characterize the properties of nearby and distant populations. Full article
(This article belongs to the Special Issue Circumstellar Matter in Hot Star Systems)
Show Figures

Figure 1

15 pages, 6512 KB  
Article
Wind Field Characteristics of the 13 June 2014 Downburst Event in Beijing Based on Meteorological Tower Records
by Shi Zhang, Yibo Wang, Zengzhi Qian, Kexin Guo, Xiaoda Xu, Daxing Zhou and Qing Cao
Atmosphere 2025, 16(1), 27; https://doi.org/10.3390/atmos16010027 - 29 Dec 2024
Viewed by 827
Abstract
Understanding the characteristics of downburst wind fields is crucial for studying structural resistance to downbursts. Based on measured data from the 325 m meteorological tower in Beijing, this paper investigates the spatiotemporal evolution of mean and fluctuating winds during a non-stationary downburst. Key [...] Read more.
Understanding the characteristics of downburst wind fields is crucial for studying structural resistance to downbursts. Based on measured data from the 325 m meteorological tower in Beijing, this paper investigates the spatiotemporal evolution of mean and fluctuating winds during a non-stationary downburst. Key wind field parameters such as the mean wind speed, turbulence intensity, turbulence integral length scale, probability density function, power spectral density, evolutionary power spectral density, and gust factor are statistically analyzed. The results show that the wind speed of downburst undergoes rapid changes, with wind direction significantly influenced by outflow vortices at low altitudes and relatively stable at higher altitudes. When the event happens, the temperature decreases sharply. The mean wind speeds and turbulence integral length scale of the downburst exhibit pronounced “nose-shaped” profile characteristics at the moment when peak wind speed occurs. The turbulence intensity at lower altitudes predominantly exceeds that at higher altitudes. The probability density distribution function of the reduced fluctuating wind speed matches the standard Gaussian distribution curve. The fluctuating wind speeds of the downburst exhibit significant non-stationary characteristics, with their energy mainly distributing in the period of rapid change of wind speed in the time domain and concentrating in the vicinity of 0–0.1 Hz in the frequency domain. The gust factor reaches its maximum at the moment when the peak wind speed occurs. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

17 pages, 3523 KB  
Article
Solar Energy in Buildings: Feasibility Analysis of Integrated and Conventional Photovoltaic Panels
by Francisco Javier Becerra-González, José Gerardo Vera-Dimas, Luis Cisneros-Villalobos and Alina Martínez-Oropeza
Energies 2024, 17(24), 6367; https://doi.org/10.3390/en17246367 - 18 Dec 2024
Cited by 1 | Viewed by 1380
Abstract
The feasibility study is crucial for decision-making in the investment stage of photovoltaic systems projects. A cost–benefit analysis for a project should not be evaluated solely in terms of money in-flows and outflows; it is important to consider other characteristics such as climate, [...] Read more.
The feasibility study is crucial for decision-making in the investment stage of photovoltaic systems projects. A cost–benefit analysis for a project should not be evaluated solely in terms of money in-flows and outflows; it is important to consider other characteristics such as climate, solar irradiation, and the hours of sunshine in different spaces, as well as the electricity rates of the electricity supply company. Therefore, analyzing and simulating the performance conditions, both technical and economic, of photovoltaic systems is key. The objective of this study was to analyze the investment models in two types of photovoltaic systems: one integrated into the construction and the other conventional in a building in the Mexican Republic, considering ideal conditions, thus evaluating the energy efficiency in cities, as they consume around two-thirds of the world’s energy and are responsible for 70% of global greenhouse gas emissions. The methodological proposal was to select a location, determine the predominant type of climate and collect data on solar radiation, the electricity supplier rates, the profitability for a cost–benefit analysis, and the inflation rates to determine the viability of a project that comprehensively covers the variables for decision-making. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

Back to TopTop