A Binary Discounting Method for Economic Evaluation of Hydrogen Projects: Applicability Study Based on Levelized Cost of Hydrogen (LCOH)
Abstract
1. Introduction
2. Materials and Methods
2.1. Traditional Definition of LCOH
2.2. Binary Discount Model
2.3. Calculation Methodology and Data Sources
- —annual volume of hydrogen (kg);
- η—specific energy consumption (kWh/kg);
- h—the number of operating hours per year.
- In year 0, only capital expenditures are counted ;
- In years 1 through 20, the values of operating costs and output are repeated annually;
- The calculations do not take into account residual values and tax effects.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maksimov, L.; Ishkov, A.G.; Pimenov, A.A.; Romanov, K.V.; Mikhailov, A.M.; Koloshkin, E.A.; Maksimov, A.L. Physico-Chemical Aspects and Carbon Footprint of Hydrogen Production from Water and Hydrocarbons (EDN HWCPDC). J. Min. Inst. 2024, 265, 87–94. [Google Scholar]
- Ji, M.; Wang, J. Review and Comparison of Various Hydrogen Production Methods Based on Costs and Life Cycle Impact Assessment Indicators. Int. J. Hydrogen Energy 2021, 46, 38612–38635. [Google Scholar] [CrossRef]
- Sheveleva, N.A. Development and Validation of an Approach to the Environmental and Economic Assessment of Decarbonization Projects in the Oil and Gas Sector(EDN GAOTZW). J. Min. Inst. 2024, 270, 1038–1055. [Google Scholar]
- Semenova, T.; Martínez Santoyo, J.Y. Determining Priority Areas for the Technological Development of Oil Companies in Mexico. Resources 2025, 14, 18. [Google Scholar] [CrossRef]
- Cherepovitsyn, A.; Mekerova, I.; Nevolin, A. Analysis of the Palladium Market: A Strategic Aspect of Sustainable Development. Mining 2025, 5, 39. [Google Scholar] [CrossRef]
- Vivanco-Martín, B.; Iranzo, A. Analysis of the European Strategy for Hydrogen: A Comprehensive Review. Energies 2023, 16, 3866. [Google Scholar] [CrossRef]
- Curcio, E. Hydrogen Production Costs: Analyzing LCOH, LCOE, and Market Implications. Soc. Sci. Res. Netw. Electron. J. 2025. [Google Scholar] [CrossRef]
- Ustyugov, D.L.; Noa Segura, E.L.; Ryakhovsky, M.S. Influence of Rainfall Infiltration on Groundwater Recharge in Hydrogeological Region La Yana, Cuba. Gorn. Zhurnal 2024, 2024, 97–102. [Google Scholar] [CrossRef]
- Xiang, P.; Jiang, K.; Wang, J.; He, C.; Chen, S.; Jiang, W. Evaluation of LCOH of Conventional Technology, Energy Storage Coupled Solar PV Electrolysis, and HTGR in China. Appl. Energy 2024, 353, 122086. [Google Scholar] [CrossRef]
- Fan, J.L.; Yu, P.; Li, K.; Xu, M.; Zhang, X. A Levelized Cost of Hydrogen (LCOH) Comparison of Coal-to-Hydrogen with CCS and Water Electrolysis Powered by Renewable Energy in China. Energy 2022, 242, 123003. [Google Scholar] [CrossRef]
- Ishimoto, Y.; Wulf, C.; Schonhoff, A.; Kuckshinrichs, W. Life Cycle Costing Approaches of Fuel Cell and Hydrogen Systems: A Literature Review. Int. J. Hydrogen Energy 2024, 54, 361–374. [Google Scholar] [CrossRef]
- Ilyushin, Y.V.; Boronko, E.A. Analysis of Energy Sustainability and Problems of Technological Process of Primary Aluminum Production. Energies 2025, 18, 2194. [Google Scholar] [CrossRef]
- María Villarreal Vives, A.; Wang, R.; Roy, S.; Smallbone, A. Techno-Economic Analysis of Large-Scale Green Hydrogen Production and Storage. Appl. Energy 2023, 346, 121333. [Google Scholar] [CrossRef]
- Pervukhin, D.A.; Tang, L. Enhancing Operational Efficiency In Coal Enterprises Through Capacity Layout Optimisation: A Cost-Effectiveness Analysis. Oper. Res. Eng. Sci. Theory Appl. 2024, 7, 144–163. [Google Scholar] [CrossRef]
- Hill, S.J.P.; Bamisile, O.; Hatton, L.; Staffell, I.; Jansen, M. The Cost of Clean Hydrogen from Offshore Wind and Electrolysis. J. Clean. Prod. 2024, 445, 141162. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Singh, K.K.; Bhanja, K.; Grover, R.B. Assessing Techno-Economic Uncertainties in Nuclear Power-to-X Processes: The Case of Nuclear Hydrogen Production via Water Electrolysis. Int. J. Hydrogen Energy 2023, 48, 14149–14169. [Google Scholar] [CrossRef]
- Marinina, O.A.; Ilyushin, Y.V.; Kildiushov, E.V. Comprehensive Analysis and Forecasting of Indicators of Sustainable Development of Nuclear Industry Enterprises. Int. J. Eng. 2025, 38, 2527–2536. [Google Scholar] [CrossRef]
- Rezaei, M.; Akimov, A.; Gray, E.M.A. Levelised Cost of Dynamic Green Hydrogen Production: A Case Study for Australia’s Hydrogen Hubs. Appl. Energy 2024, 370, 123645. [Google Scholar] [CrossRef]
- Semenova, T.; Sokolov, I. Theoretical Substantiation of Risk Assessment Directions in the Development of Fields with Hard-to-Recover Hydrocarbon Reserves. Resources 2025, 14, 64. [Google Scholar] [CrossRef]
- Costanza, R.; Kubiszewski, I.; Stoeckl, N.; Kompas, T. Pluralistic Discounting Recognizing Different Capital Contributions: An Example Estimating the Net Present Value of Global Ecosystem Services. Ecol. Econ. 2021, 183, 106961. [Google Scholar] [CrossRef]
- Marin, E.A.; Ponomarenko, T.V.; Vasilenko, N.V.; Galevskiy, S.G. Economic Evaluation Of Projects For Development Of Raw Hydrocarbons Fields In The Conditions Of The Northern Production Areas Using Binary And Reverting Discounting. Sev. I Rynok Form. Ekon. Porad. 2022, 25, 144–157. [Google Scholar] [CrossRef]
- Liu, W.; Wan, Y.; Xiong, Y.; Gao, P. Green Hydrogen Standard in China: Standard and Evaluation of Low-Carbon Hydrogen, Clean Hydrogen, and Renewable Hydrogen. Int. J. Hydrogen Energy 2022, 47, 24584–24591. [Google Scholar] [CrossRef]
- Jang, D.; Kim, K.; Kim, K.H.; Kang, S. Techno-Economic Analysis and Monte Carlo Simulation for Green Hydrogen Production Using Offshore Wind Power Plant. Energy Convers Manag. 2022, 263, 115695. [Google Scholar] [CrossRef]
- Zagashvili, Y.; Kuzmin, A.; Buslaev, G.; Morenov, V. Small-Scaled Production of Blue Hydrogen with Reduced Carbon Footprint. Energies 2021, 14, 5194. [Google Scholar] [CrossRef]
- Smirnova, O.; Kharitonova, E.; Babkin, I.; Pulyaeva, V.; Haikin, M. Small-Scale Biofuel Production: Assessment of Efficiency. Int. J. Technol. 2021, 12, 1417. [Google Scholar] [CrossRef]
- dos Reis, R.A.; Rangel, G.P.; Neto, B. Social Life Cycle Assessment of Green Hydrogen Production: Evaluating a Projected Portuguese Industrial Production Plant. Renew. Energy 2024, 235, 121293. [Google Scholar] [CrossRef]
- Ponomarenko, T.; Marin, E.; Galevskiy, S. Economic Evaluation of Oil and Gas Projects: Justification of Engineering Solutions in the Implementation of Field Development Projects. Energies 2022, 15, 3103. [Google Scholar] [CrossRef]
- Saługa, P.W.; Zamasz, K.; Dacko-Pikiewicz, Z.; Szczepańska-Woszczyna, K.; Malec, M. Risk-Adjusted Discount Rate and Its Components for Onshore Wind Farms at the Feasibility Stage. Energies 2021, 14, 6840. [Google Scholar] [CrossRef]
- Tukeev, D.L.; Afanaseva, O.V.; Tulyakov, T.F. Realization of Statistical Models Based on Symmetric Unimodal Distributions. Int. J. Eng. 2026, 39, 407–419. [Google Scholar] [CrossRef]
- Singla, M.K.; Gupta, J.; Beryozkina, S.; Safaraliev, M.; Singh, M. The Colorful Economics of Hydrogen: Assessing the Costs and Viability of Different Hydrogen Production Methods-A Review. Int. J. Hydrogen Energy 2024, 61, 664–677. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Technical Targets for Liquid Alkaline Electrolysis; U.S. Department of Energy: Washington, DC, USA, 2022.
- Hydrogen Europe. Clean Hydrogen Production Pathways Report 2024; Hydrogen Europe: Brussels, Belgium, 2024. [Google Scholar]
- Arcos, J.M.M.; Santos, D.M.F. The Hydrogen Color Spectrum: Techno-Economic Analysis of the Available Technologies for Hydrogen Production. Gases 2023, 3, 25–46. [Google Scholar] [CrossRef]
- Pettinau, A.; Marotto, D.; Dessì, F.; Ferrara, F. Techno-Economic Assessment of Renewable Hydrogen Production for Mobility: A Case Study. Energy Convers Manag. 2024, 311, 118513. [Google Scholar] [CrossRef]
- Bloom Energy An Efficient Electrolyzer for Clean Hydrogen. Available online: https://www.bloomenergy.com/bloomelectrolyzer/ (accessed on 28 May 2025).
- Jang, D.; Kim, J.; Kim, D.; Han, W.B.; Kang, S. Techno-Economic Analysis and Monte Carlo Simulation of Green Hydrogen Production Technology through Various Water Electrolysis Technologies. Energy Convers Manag. 2022, 258, 115499. [Google Scholar] [CrossRef]
- Zulfhazli; Keeley, A.R.; Takeda, S.; Managi, S. A Systematic Review of the Techno-Economic Assessment of Various Hydrogen Production Methods of Power Generation. Front. Sustain. 2022, 3, 943145. [Google Scholar] [CrossRef]
- Harry, J. Victor, deBiasi Electrolyzer Advances Reduce Cost of Green Hydrogen. Available online: https://gasturbineworld.com/electrolyzer-advances/ (accessed on 28 May 2025).
- Bhandari, R.; Shah, R.R. Hydrogen as Energy Carrier: Techno-Economic Assessment of Decentralized Hydrogen Production in Germany. Renew. Energy 2021, 177, 915–931. [Google Scholar] [CrossRef]
- Yukesh Kannah, R.; Kavitha, S.; Preethi; Parthiba Karthikeyan, O.; Kumar, G.; Dai-Viet, N.V.; Rajesh Banu, J. Techno-Economic Assessment of Various Hydrogen Production Methods–A Review. Bioresour. Technol. 2021, 319, 124175. [Google Scholar] [CrossRef] [PubMed]
- Resource Center | U.S. Department of the Treasury. Available online: https://home.treasury.gov/resource-center/data-chart-center/interest-rates/TextView?type=daily_treasury_yield_curve&field_tdr_date_value_month=202506 (accessed on 26 June 2025).
- Rong, Y.; Sun, X. Discount Rate of China’s New Energy Power Industry. Energy Eng. 2021, 119, 315–329. [Google Scholar] [CrossRef]
- International Renewable Energy Agency. Renewable Energy Prospects for the Russian Federation, a REmap Working Paper; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2017. [Google Scholar]
Parameter Category | Parameter Description | ALK | PEM | SOEC | SMR | SMR + CCUS | Source |
---|---|---|---|---|---|---|---|
Annual production () | kg | 20,000,000 | 20,000,000 | 20,000,000 | 20,000,000 | 20,000,000 | - |
Project execution time(T) | year | 20 | 20 | 20 | 20 | 20 | - |
Lead time per year(h) | hour | 4000 | 4000 | 4000 | 8000 | 8000 | [31] |
Electricity (RES)/natural gas price λ | USD/kWh | 0.033 | 0.033 | 0.033 | 0.0239 | 0.0239 | [32] |
Average electricity prices for industry (CCUS) | USD/kWh | - | - | - | - | 0.0795 | [33] |
Average system CAPEX | USD/kW. USD/kW | 539.65 | 809.475 | 863.44 | 500 | 900 | [34,35] |
Average system efficiency (η) | kW/kg | 54 | 60 | 40 | 44.5 | 41 | [36,37] |
CCUS system power consumption (99%) | kWh/kg | - | - | - | - | 0.6 | [32] |
OPEX (Share of CAPEX) | % | 3% | 3% | 3% | 4% | 3.5% | [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galevskiy, S.; Qian, H. A Binary Discounting Method for Economic Evaluation of Hydrogen Projects: Applicability Study Based on Levelized Cost of Hydrogen (LCOH). Energies 2025, 18, 3839. https://doi.org/10.3390/en18143839
Galevskiy S, Qian H. A Binary Discounting Method for Economic Evaluation of Hydrogen Projects: Applicability Study Based on Levelized Cost of Hydrogen (LCOH). Energies. 2025; 18(14):3839. https://doi.org/10.3390/en18143839
Chicago/Turabian StyleGalevskiy, Sergey, and Haidong Qian. 2025. "A Binary Discounting Method for Economic Evaluation of Hydrogen Projects: Applicability Study Based on Levelized Cost of Hydrogen (LCOH)" Energies 18, no. 14: 3839. https://doi.org/10.3390/en18143839
APA StyleGalevskiy, S., & Qian, H. (2025). A Binary Discounting Method for Economic Evaluation of Hydrogen Projects: Applicability Study Based on Levelized Cost of Hydrogen (LCOH). Energies, 18(14), 3839. https://doi.org/10.3390/en18143839