Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (251)

Search Parameters:
Keywords = optimization of heat accumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 5657 KiB  
Article
Modeling of Temperature and Moisture Dynamics in Corn Storage Silos with and Without Aeration Periods in Three Dimensions
by F. I. Molina-Herrera, H. Jiménez-Islas, M. A. Sandoval-Hernández, N. E. Maldonado-Sierra, C. Domínguez Campos, L. Jarquín Enríquez, F. J. Mondragón Rojas and N. L. Flores-Martínez
ChemEngineering 2025, 9(4), 89; https://doi.org/10.3390/chemengineering9040089 - 15 Aug 2025
Abstract
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar [...] Read more.
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar radiation, grain moisture equilibrium with air humidity through the sorption isotherm (water activity), and grain respiration to simulate real storage conditions. The model is based on continuity, momentum, energy, and moisture conservation equations in porous media. This model was solved using the finite element method (FEM) to evaluate temperature and interstitial humidity variations during January and May, representing cold and warm environmental conditions, respectively. The simulations show that, without aeration, grain temperature progressively accumulates in the center and bottom region of the silo, reaching critical values for safe storage. In January, the low ambient temperature favors the natural dissipation of heat. In contrast, in May, the combination of high ambient temperatures and solar radiation intensifies thermal accumulation, increasing the risk of grain deterioration. However, implementing aeration periods allowed for a reduction in the silo’s internal temperature, achieving more homogeneous cooling and reducing the threats of mold and insect proliferation. For January, an airflow rate of 0.15 m3/(min·ton) was optimal for maintaining the temperature within the safe storage range (≤17 °C). In contrast, in May, neither this airflow rate nor the accumulation of 120 h of aeration was sufficient to achieve optimal storage temperatures. This indicates that, under warm conditions, the aeration strategy needs to be reconsidered, assessing whether a higher airflow rate, longer periods, or a combination of both could improve heat dissipation. The results also show that interstitial relative humidity remains stable with nocturnal aeration, minimizing moisture absorption in January and preventing excessive drying in May. However, it was identified that aeration period management must be adaptive, taking environmental conditions into account to avoid issues such as re-wetting or excessive grain drying. Full article
Show Figures

Figure 1

18 pages, 4208 KiB  
Article
Experimental Study and Defect Control in Picosecond Laser Trepanning Drilling of Superalloy
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Metals 2025, 15(8), 893; https://doi.org/10.3390/met15080893 - 10 Aug 2025
Viewed by 184
Abstract
Picosecond laser trepanning is a key technology for fabricating film cooling holes in aero-engine turbine blades, overcoming the limitations of conventional machining such as severe tool wear and thermal damage. However, optimizing this advanced process to achieve consistent, high-quality results remains a challenge. [...] Read more.
Picosecond laser trepanning is a key technology for fabricating film cooling holes in aero-engine turbine blades, overcoming the limitations of conventional machining such as severe tool wear and thermal damage. However, optimizing this advanced process to achieve consistent, high-quality results remains a challenge. This study therefore systematically investigates the influence of key laser parameters (power, scanning speed, defocusing distance, and number of scans) on the geometric quality (diameter, taper, and roundness) of holes trepanned in GH4169 superalloy. The experimental results revealed that laser power and defocusing distance are the dominant factors controlling hole diameter and taper. Furthermore, a critical trade-off was identified concerning the number of scans: while more scans improved exit roundness, they also detrimentally increased entrance diameter and taper due to heat accumulation. Based on these findings, we propose a defect control strategy prioritizing a lower number of scans in the initial phase to effectively suppress molten material formation and preserve surface integrity. This work provides a valuable technological reference and theoretical foundation for the low-damage, high-reliability laser manufacturing of high-performance aerospace components. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

31 pages, 2529 KiB  
Article
Improving the Heat Transfer Efficiency of Economizers: A Comprehensive Strategy Based on Machine Learning and Quantile Ideas
by Nan Wang, Yuanhao Shi, Fangshu Cui, Jie Wen, Jianfang Jia and Bohui Wang
Energies 2025, 18(16), 4227; https://doi.org/10.3390/en18164227 - 8 Aug 2025
Viewed by 201
Abstract
Ash deposition on economizer heating surfaces degrades convective heat transfer efficiency and compromises boiler operational stability in coal-fired power plants. Conventional time-scheduled soot blowing strategies partially mitigate this issue but often cause excessive steam/energy consumption, conflicting with enterprise cost-saving and efficiency-enhancement goals. This [...] Read more.
Ash deposition on economizer heating surfaces degrades convective heat transfer efficiency and compromises boiler operational stability in coal-fired power plants. Conventional time-scheduled soot blowing strategies partially mitigate this issue but often cause excessive steam/energy consumption, conflicting with enterprise cost-saving and efficiency-enhancement goals. This study introduces an integrated framework combining real-time ash monitoring, dynamic process modeling, and predictive optimization to address these challenges. A modified soot blowing protocol was developed using combustion process parameters to quantify heating surface cleanliness via a cleanliness factor (CF) dataset. A comprehensive model of the attenuation of heat transfer efficiency was constructed by analyzing the full-cycle interaction between ash accumulation, blowing operations, and post-blowing refouling, incorporating steam consumption during blowing phases. An optimized subtraction-based mean value algorithm was applied to minimize the cumulative attenuation of heat transfer efficiency by determining optimal blowing initiation/cessation thresholds. Furthermore, a bidirectional gated recurrent unit network with quantile regression (BiGRU-QR) was implemented for probabilistic blowing time prediction, capturing data distribution characteristics and prediction uncertainties. Validation on a 300 MW supercritical boiler in Guizhou demonstrated a 3.96% energy efficiency improvement, providing a practical solution for sustainable coal-fired power generation operations. Full article
Show Figures

Figure 1

18 pages, 3212 KiB  
Article
Supplementation with Live and Heat-Treated Lacticaseibacillus paracasei NB23 Enhances Endurance and Attenuates Exercise-Induced Fatigue in Mice
by Mon-Chien Lee, Ting-Yin Cheng, Ping-Jui Lin, Ting-Chun Lin, Chia-Hsuan Chou, Chao-Yuan Chen and Chi-Chang Huang
Nutrients 2025, 17(15), 2568; https://doi.org/10.3390/nu17152568 - 7 Aug 2025
Viewed by 358
Abstract
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate [...] Read more.
Background: Exercise-induced fatigue arises primarily from energy substrate depletion and the accumulation of metabolites such as lactate and ammonia, which impair performance and delay recovery. Emerging evidence implicates gut microbiota modulation—particularly via probiotics—as a means to optimize host energy metabolism and accelerate clearance of fatigue-associated by-products. Objective: This study aimed to determine whether live or heat-inactivated Lacticaseibacillus paracasei NB23 can enhance exercise endurance and attenuate fatigue biomarkers in a murine model. Methods: Forty male Institute of Cancer Research (ICR) mice were randomized into four groups (n = 10 each) receiving daily gavage for six weeks with vehicle, heat-killed NB23 (3 × 1010 cells/human/day), low-dose live NB23 (1 × 1010 CFUs/human/day), or high-dose live NB23 (3 × 1010 CFUs/human/day). Forelimb grip strength and weight-loaded swim-to-exhaustion tests assessed performance. Blood was collected post-exercise to measure serum lactate, ammonia, blood urea nitrogen (BUN), and creatine kinase (CK). Liver and muscle glycogen content was also quantified, and safety was confirmed by clinical-chemistry panels and histological examination. Results: NB23 treatment produced dose-dependent improvements in grip strength (p < 0.01) and swim endurance (p < 0.001). All NB23 groups exhibited significant reductions in post-exercise lactate (p < 0.0001), ammonia (p < 0.001), BUN (p < 0.001), and CK (p < 0.0001). Hepatic and muscle glycogen stores rose by 41–59% and 65–142%, respectively (p < 0.001). No changes in food or water intake, serum clinical-chemistry parameters, or tissue histology were observed. Conclusions: Our findings suggest that both live and heat-treated L. paracasei NB23 may contribute to improved endurance performance, increased energy reserves, and faster clearance of fatigue-related metabolites in our experimental model. However, these results should be interpreted cautiously given the exploratory nature and limitations of our study. Full article
Show Figures

Figure 1

14 pages, 5840 KiB  
Article
Paint Removal Performance and Sub-Surface Microstructural Evolution of Ti6Al4V Alloy Using Different Process Parameters of Continuous Laser Cleaning
by Haoye Zeng, Biwen Li, Liangbin Hu, Yun Zhang, Ruiqing Li, Chaochao Zhou and Pinghu Chen
Coatings 2025, 15(8), 916; https://doi.org/10.3390/coatings15080916 - 6 Aug 2025
Viewed by 327
Abstract
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave [...] Read more.
Laser cleaning technology has been increasingly applied in the removal of damaged protective coatings from aircraft components due to its environmental friendliness and high efficiency. Appropriate laser cleaning process parameters improve cleaning efficiency while preventing substrate damage. In this study, a Gaussian continuous-wave laser was used to remove the 120 μm coating on the surface of Ti6Al4V alloy. The influence of laser power (100 W to 200 W) and scanning speed (520 mm/min to 610 mm/min) on the paint removal effect was explored based on paint removal rate, surface roughness, microstructural evolution, and the hardness’ change in the direction of heat transfer. The results reveal that optimal paint removal parameters are achieved at a laser power of 100 W with a scanning speed of 550 mm/min. The surface roughness of the sample after paint removal (55 nm) is similar to that of the original substrate (56 nm). Through EBSD analysis, the influence of laser thermal accumulation on the microstructure of the substrate is relatively small. The average hardness of the cross-section after cleaning was 347 HV, which was only 3.41% higher than that of the original substrate. This confirms that parameter-controlled laser cleaning can effectively remove ~120 μm thick paint layers without inflicting damage on the substrate. Full article
Show Figures

Figure 1

24 pages, 34850 KiB  
Article
New Belgrade’s Thermal Mosaic: Investigating Climate Performance in Urban Heritage Blocks Beyond Coverage Ratios
by Saja Kosanović, Đurica Marković and Marija Stamenković
Atmosphere 2025, 16(8), 935; https://doi.org/10.3390/atmos16080935 - 3 Aug 2025
Viewed by 360
Abstract
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used [...] Read more.
This study investigated the nuanced influence of urban morphology on the thermal performance of nine mass housing blocks (21–26, 28–30) in New Belgrade’s Central Zone. These blocks, showcasing diverse structures, provided a robust basis for evaluating the design parameters. ENVI-met simulations were used to assess two scenarios: an “asphalt-only” environment, isolating the urban structure’s impact, and a “real-world” scenario, including green infrastructure (GI). Overall, the findings emphasize that while GI offers mitigation, the inherent urban built structure fundamentally determines thermal outcomes. An urban block’s thermal performance, it turns out, is a complex interplay between morphological factors and local climate. Crucially, simple metrics like Green Area Percentage (GAP) and Building Coverage Ratio (BCR) proved unreliable predictors of thermal performance. This highlights the critical need for urban planning regulations to evolve beyond basic surface indicators and embrace sophisticated, context-sensitive design principles for effective heat mitigation. Optimal performance arises from morphologies that actively manage heat accumulation and facilitate its dissipation, a characteristic exemplified by Block 22’s integrated design. However, even the best-performing Block 22 remains warmer compared to denser central areas, suggesting that urban densification can be a strategy for heat mitigation. Given New Belgrade’s blocks are protected heritage, targeted GI reinforcements remain the only viable approach for improving the outdoor thermal comfort. Full article
Show Figures

Figure 1

20 pages, 4961 KiB  
Article
Optimization of Thermal Conductivity of Bismaleimide/h-BN Composite Materials Based on Molecular Structure Design
by Weizhuo Li, Run Gu, Xuan Wang, Chenglong Wang, Mingzhe Qu, Xiaoming Wang and Jiahao Shi
Polymers 2025, 17(15), 2133; https://doi.org/10.3390/polym17152133 - 3 Aug 2025
Viewed by 361
Abstract
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate [...] Read more.
With the rapid development of information technology and semiconductor technology, the iteration speed of electronic devices has accelerated in an unprecedented manner, and the market demand for miniaturized, highly integrated, and highly intelligent devices continues to rise. But when these electronic devices operate at high power, the electronic components generate a large amount of integrated heat. Due to the limitations of existing heat dissipation channels, the current heat dissipation performance of electronic packaging materials is struggling to meet practical needs, resulting in heat accumulation and high temperatures inside the equipment, seriously affecting operational stability. For electronic devices that require high energy density and fast signal transmission, improving the heat dissipation capability of electronic packaging materials can significantly enhance their application prospects. In order to improve the thermal conductivity of composite materials, hexagonal boron nitride (h-BN) was selected as the thermal filling material in this paper. The BMI resin was structurally modified through molecular structure design. The results showed that the micro-branched structure and h-BN synergistically improved the thermal conductivity and insulation performance of the composite material, with a thermal conductivity coefficient of 1.51 W/(m·K) and a significant improvement in insulation performance. The core mechanism is the optimization of the dispersion state of h-BN filler in the matrix resin through the free volume in the micro-branched structure, which improves the thermal conductivity of the composite material while maintaining high insulation. Full article
(This article belongs to the Special Issue Electrical Properties of Polymer Composites)
Show Figures

Figure 1

37 pages, 7429 KiB  
Article
Study on the Influence of Window Size on the Thermal Comfort of Traditional One-Seal Dwellings (Yikeyin) in Kunming Under Natural Wind
by Yaoning Yang, Junfeng Yin, Jixiang Cai, Xinping Wang and Juncheng Zeng
Buildings 2025, 15(15), 2714; https://doi.org/10.3390/buildings15152714 - 1 Aug 2025
Viewed by 279
Abstract
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio [...] Read more.
Under the dual challenges of global energy crisis and climate change, the building sector, as a major carbon emitter consuming 33% of global primary energy, has seen its energy efficiency optimization become a critical pathway towards achieving carbon neutrality goals. The Window-to-Wall Ratio (WWR), serving as a core parameter in building envelope design, directly influences building energy consumption, with its optimized design playing a decisive role in balancing natural daylighting, ventilation efficiency, and thermal comfort. This study focuses on the traditional One-Seal dwellings (Yikeyin) in Kunming, China, establishing a dynamic wind field-thermal environment coupled analysis framework to investigate the impact mechanism of window dimensions (WWR and aspect ratio) on indoor thermal comfort under natural wind conditions in transitional climate zones. Utilizing the Grasshopper platform integrated with Ladybug, Honeybee, and Butterfly plugins, we developed parametric models incorporating Kunming’s Energy Plus Weather meteorological data. EnergyPlus and OpenFOAM were employed, respectively, for building heat-moisture balance calculations and Computational Fluid Dynamic (CFD) simulations, with particular emphasis on analyzing the effects of varying WWR (0.05–0.20) on temperature-humidity, air velocity, and ventilation efficiency during typical winter and summer weeks. Key findings include, (1) in summer, the baseline scenario with WWR = 0.1 achieves a dynamic thermal-humidity balance (20.89–24.27 °C, 65.35–74.22%) through a “air-permeable but non-ventilative” strategy, though wing rooms show humidity-heat accumulation risks; increasing WWR to 0.15–0.2 enhances ventilation efficiency (2–3 times higher air changes) but causes a 4.5% humidity surge; (2) winter conditions with WWR ≥ 0.15 reduce wing room temperatures to 17.32 °C, approaching cold thresholds, while WWR = 0.05 mitigates heat loss but exacerbates humidity accumulation; (3) a symmetrical layout structurally constrains central ventilation, maintaining main halls air changes below one Air Change per Hour (ACH). The study proposes an optimized WWR range of 0.1–0.15 combined with asymmetric window opening strategies, providing quantitative guidance for validating the scientific value of vernacular architectural wisdom in low-energy design. Full article
Show Figures

Figure 1

14 pages, 3742 KiB  
Article
Modeling and Analyzing Air Supply Control to Optimize Thermal Pattern in Iron-Ore-Sintering Process
by Xiaoxian Huang, Zongping Li, Pengfei Zou, Jun Yuan, Xuling Chen, Zhenxiang Feng and Xiaohui Fan
Minerals 2025, 15(8), 770; https://doi.org/10.3390/min15080770 - 22 Jul 2025
Viewed by 206
Abstract
This research proposes optimizing the thermal pattern in the sintering bed by manipulating the air supply. The impact of the air supply on the distribution of heat in the upper and lower layers of the material bed is investigated based on a numerical [...] Read more.
This research proposes optimizing the thermal pattern in the sintering bed by manipulating the air supply. The impact of the air supply on the distribution of heat in the upper and lower layers of the material bed is investigated based on a numerical simulation model. An optimized air supply scheme is proposed to enhance the thermal distribution of the sintering bed. The simulation results suggest that decreasing the air supply during sintering in the upper layer leads to an increase in bed temperature and an extension of the melting zone thickness from 5 mm to 16 mm. Similarly, reducing the air supply during sintering of the lower layer prevents over-melting of the sintering material by reducing heat accumulation. However, both decrease the speed of vertical sintering. To optimize the sintering process, it is suggested to decrease the air supply during the early and late stages and increase it during the middle stage. This optimized air supply leads to a uniform temperature distribution, with a 30 °C decrease in the gap between the highest temperatures. Additionally, the melting zone thickness in the early sintering stage increases from 0 mm to 14 mm, and the average vertical sintering speed remains comparable. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 4023 KiB  
Article
Numerical Study on the Thermal Behavior of Lithium-Ion Batteries Based on an Electrochemical–Thermal Coupling Model
by Xing Hu, Hu Xu, Chenglin Ding, Yupeng Tian and Kuo Yang
Batteries 2025, 11(7), 280; https://doi.org/10.3390/batteries11070280 - 21 Jul 2025
Viewed by 644
Abstract
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics [...] Read more.
The escalating demand for efficient thermal management in lithium-ion batteries necessitates precise characterization of their thermal behavior under diverse operating conditions. This study develops a three-dimensional (3D) electrochemical–thermal coupling model grounded in porous electrode theory and energy conservation principles. The model solves multi-physics equations such as Fick’s law, Ohm’s law, and the Butler–Volmer equation, to resolve coupled electrochemical and thermal dynamics, with temperature-dependent parameters calibrated via the Arrhenius equation. Simulations under varying discharge rates reveal that high-rate discharges exacerbate internal heat accumulation. Low ambient temperatures amplify polarization effects. Forced convection cooling reduces surface temperatures but exacerbates core-to-surface thermal gradients. Structural optimization strategies demonstrate that enhancing through-thickness thermal conductivity reduces temperature differences. These findings underscore the necessity of balancing energy density and thermal management in lithium-ion battery design, proposing actionable insights such as preheating protocols for low-temperature operation, optimized cooling systems for high-rate scenarios, and material-level enhancements for improved thermal uniformity. Full article
Show Figures

Figure 1

34 pages, 16612 KiB  
Article
Identification of Optimal Areas for the Cultivation of Genetically Modified Cotton in Mexico: Compatibility with the Center of Origin and Centers of Genetic Diversity
by Antonia Macedo-Cruz
Agriculture 2025, 15(14), 1550; https://doi.org/10.3390/agriculture15141550 - 19 Jul 2025
Viewed by 410
Abstract
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting [...] Read more.
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting and harvest dates based on agroclimatic conditions, such as temperature, precipitation, and soil type, as well as identifying areas with a lower risk of water or thermal stress. As a result, cotton productivity is optimized, and costs associated with supplementary irrigation or losses due to adverse conditions are reduced. However, data from automatic weather stations in Mexico are scarce and incomplete. Instead, grid meteorological databases (DMM, in Spanish) were used with daily temperature and precipitation data from 1983 to 2020 to determine the heat units (HUs) for each cotton crop development stage; daily and accumulated HU; minimum, mean, and maximum temperatures; and mean annual precipitation. This information was used to determine areas that comply with environmental, geographic, and regulatory conditions (NOM-059-SEMARNAT-2010, NOM-026-SAG/FITO-2014) to delimit areas with agricultural potential for planting genetically modified (GM) cotton. The methodology made it possible to produce thirty-four maps at a 1:250,000 scale and a digital GIS with 95% accuracy. These maps indicate whether a given agricultural parcel is optimal for cultivating GM cotton. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

18 pages, 4639 KiB  
Article
High Stubble Height Enhances Ratoon Rice Yield by Optimizing Light–Temperature Resource Utilization and Photothermal Quotient
by Yin Zhang, Tian Sheng, Liyan Shang, Beiyou Zhang, Long Jin, Fangfang Hou, Matthew Tom Harrison, Liying Huang, Zhaoqiang Jin, Xiaohai Tian, Ke Liu, Shijie Shi, Yunbo Zhang and Dayong Li
Plants 2025, 14(14), 2222; https://doi.org/10.3390/plants14142222 - 18 Jul 2025
Viewed by 312
Abstract
Ratoon rice is a sustainable planting model, and its yield is closely linked to the light and temperature use efficiency. The photothermal quotient (PQ), a key parameter for evaluating the light and temperature use efficiency, significantly influences ratoon rice yield. However, research on [...] Read more.
Ratoon rice is a sustainable planting model, and its yield is closely linked to the light and temperature use efficiency. The photothermal quotient (PQ), a key parameter for evaluating the light and temperature use efficiency, significantly influences ratoon rice yield. However, research on how different stubble heights affect PQ and the utilization efficiency of light and temperature resources remains limited. Here, we conducted a two-year field experiment to investigate the radiation use efficiency (RUE), effective accumulated temperature use efficiency (TUE), PQ, interception percentage (IP), intercepted photosynthetically active radiation (IPAR), and total dry weight (TDW) of six ratoon rice varieties under two stubble height treatments (HS: high stubble, LS: low stubble) during the ratoon season. This study aimed to analyze how different stubble heights impact ratoon rice yield by evaluating light and temperature resource utilization efficiency and investigates the relationship between PQ and ratoon rice yield. The results showed that the HS treatment significantly increased ratoon season yield compared to LS treatment, with average yield increases of 21.2% and 28.1% in 2022 and 2023, respectively. This yield enhancement was attributed to improved TDW under HS treatment, driven by increased IP, IPAR, RUE, and TUE. Notably, PQ was significantly lower under HS than under LS treatment. This reduction was primarily attributed to the decreased duration available for light and heat accumulation, consequently lowering PQ. Correlation analysis revealed a significant positive association between main season yield and PQ, while ratoon season yield exhibited a negative correlation with PQ. In conclusion, the HS treatment increased IP and IPAR, enhanced TUE and RUE, and reduced PQ, collectively contributing to higher ratoon season yields. Importantly, our findings indicate that PQ can more effectively predict yield changes in the ratoon season under HS treatment, providing a theoretical basis for optimizing light and temperature resource utilization in ratoon rice. Full article
Show Figures

Figure 1

25 pages, 5753 KiB  
Article
Effect of New Mesh Fins on the Heat Storage Performance of a Solar Phase Change Heat Accumulator
by Zihan Zhao, Jingzhi Jiang and Jingzhou An
Energies 2025, 18(14), 3718; https://doi.org/10.3390/en18143718 - 14 Jul 2025
Viewed by 305
Abstract
In view of the problems of slow heat storage process and uneven temperature distribution in the existing phase change heat accumulator, a new type of mesh fin heat accumulator was designed and developed which increased the contact area between the phase change material [...] Read more.
In view of the problems of slow heat storage process and uneven temperature distribution in the existing phase change heat accumulator, a new type of mesh fin heat accumulator was designed and developed which increased the contact area between the phase change material (PCM) and the fins, enhanced the apparent thermal conductivity of the PCM, improved the heat storage efficiency of the heat accumulator, blocked the PCM, improved the natural convection erosion of the PCM on the upper and lower parts of the heat accumulator, and melted the PCM in each area more evenly. Fluent15.0 was used to numerically simulate the heat storage process of the mesh fins heat accumulator with the finite volume method. The composite PCM prepared by adding 10% mass fraction of expanded graphite to paraffin wax was used as the heat storage material. A 2D, non-steady-state model, incompressible fluid, and the pressure-based solution method were selected. The energy model and the solidification and melting model based on the enthalpy method were used to simulate and calculate the phase change process of PCM. The PISO algorithm was used. The influences of the structural parameters of the mesh fins on the heat storage condition of the heat accumulator were investigated by numerical simulation. The results showed that with the increase in the radius R of the mesh fin, the heat storage time decreased first and then increased. With the increases in vertical fin thickness c, mesh fins thickness δ, and vertical fins number N, the heat storage time decreased. The optimal mesh fin structure parameters were R = 33.5 mm, c = 3 mm, δ = 3 mm, and N = 8, and the heat storage time was 8086 s, which is 47.8% shorter than that of the concentric tube heat accumulator. Otherwise, with the increases in vertical fin thickness c, mesh fins thickness δ, and vertical fins number N, the PCM volume decreased, which shortened PCM melting time. Full article
Show Figures

Figure 1

15 pages, 4738 KiB  
Article
Mechanical Performance of Ceria-Coated 3D-Printed Black Zirconia Cellular Structures After Solar Thermochemical CO/H2 Fuel Production Cycles
by Fernando A. Costa Oliveira, Manuel Sardinha, Joaquim M. Justino Netto, Miguel Farinha, Marco Leite, M. Alexandra Barreiros, Stéphane Abanades and Jorge Cruz Fernandes
Crystals 2025, 15(7), 629; https://doi.org/10.3390/cryst15070629 - 8 Jul 2025
Viewed by 385
Abstract
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their [...] Read more.
Solar fuels production requires developing redox active materials with porous structures able to withstand thermochemical cycles with enhanced thermal stability under concentrated solar irradiation conditions. The mechanical performance of 3D-printed, macroporous black zirconia gyroid structures, coated with redox-active ceria, was assessed for their suitability in solar thermochemical cycles for CO2 and H2O splitting. Experiments were conducted using a 1.5 kW solar furnace to supply the high-temperature concentrated heat to a windowed reaction chamber to carry out thermal redox cycling under realistic on-sun conditions. The ceria coating on ceramic structures improved the thermal stability and redox efficiency while minimizing the quantity of the redox material involved. Crushing strength measurements showed that samples not directly exposed to the concentrated solar flux retained their mechanical performance after thermal cycling (~10 MPa), while those near the concentrated solar beam focus exhibited significant degradation due to thermal stresses and the formation of CexZr1−xO2 solid solutions (~1.5 MPa). A Weibull modulus of 8.5 was estimated, marking the first report of such a parameter for fused filament fabrication (FFF)-manufactured black zirconia with gyroid architecture. Failure occurred via a damage accumulation mechanism at both micro- and macro-scales. These findings support the viability of ceria-coated cellular ceramics for scalable solar fuel production and highlight the need for optimized reactor designs. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

24 pages, 4729 KiB  
Article
Formulation and Stability of Quercetin-Loaded Pickering Emulsions Using Chitosan/Gum Arabic Nanoparticles for Topical Skincare Applications
by Mathukorn Sainakham, Paemika Arunlakvilart, Napatwan Samran, Pattavet Vivattanaseth and Weeraya Preedalikit
Polymers 2025, 17(13), 1871; https://doi.org/10.3390/polym17131871 - 4 Jul 2025
Viewed by 614
Abstract
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of [...] Read more.
Natural polymer-based nanoparticles have emerged as promising stabilizers for Pickering emulsions, offering biocompatibility, environmental sustainability, and improved protection of active compounds. This study developed chitosan/gum arabic (CH/GA) nanoparticles as solid stabilizers for quercetin-loaded Pickering emulsions to enhance the stability and antioxidant bioactivity of quercetin (QE), a plant-derived flavonoid known for its potent radical-scavenging activity but limited by oxidative degradation. A systematic formulation strategy was employed to evaluate the effects of CH/GA concentration (0.5–2.0% w/v), oil type (olive, soybean, sunflower, and coconut), and oil volume fraction (ϕ = 0.5–0.7) on emulsion stability. The formulation containing 1.5% CH/GA and olive oil at ϕ = 0.6 exhibited optimal physical and interfacial stability. Quercetin (0.1% w/w) was incorporated into the optimized emulsions and characterized for long-term stability, particle size, droplet morphology, rheology, antioxidant activity (DPPH), cytocompatibility, and intracellular reactive oxygen species (ROS) protection using HaCaT keratinocytes. The olive oil-based formulation (D1-QE) exhibited greater viscosity retention and antioxidant stability than its soybean-based counterpart (E2-QE) under both room temperature (RT) and accelerated heating–cooling (H/C) storage conditions. Confocal microscopy confirmed the accumulation of CH/GA nanoparticles at the oil–water interface, forming a dense interfacial barrier and enhancing emulsion stability. HPLC analysis showed that D1-QE retained 92.8 ± 0.5% of QE at RT and 82.8 ± 1.5% under H/C conditions after 30 days. Antioxidant activity was largely preserved, with only 4.7 ± 1.7% and 14.9 ± 4.8% loss of DPPH radical scavenging activity at RT and H/C, respectively. Cytotoxicity testing in HaCaT keratinocytes confirmed that the emulsions were non-toxic at 1 mg/mL QE and effectively reduced H2O2-induced oxidative stress, decreasing intracellular ROS levels by 75.16%. These results highlight the potential of CH/GA-stabilized Pickering emulsions as a polymer-based delivery system for maintaining the stability and functional antioxidant activity of QE in bioactive formulations. Full article
Show Figures

Figure 1

Back to TopTop