Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,823)

Search Parameters:
Keywords = optimal feature selection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6483 KiB  
Article
Polyelectrolyte Microcapsule-Assembled Colloidosomes: A Novel Strategy for the Encapsulation of Hydrophobic Substances
by Egor V. Musin, Alexey V. Dubrovskii, Yuri S. Chebykin, Aleksandr L. Kim and Sergey A. Tikhonenko
Polymers 2025, 17(14), 1975; https://doi.org/10.3390/polym17141975 - 18 Jul 2025
Abstract
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly [...] Read more.
The encapsulation of hydrophobic substances remains a significant challenge due to limitations such as low loading efficiency, leakage, and poor distribution within microcapsules. This study introduces a novel strategy utilizing colloidosomes assembled from polyelectrolyte microcapsules (PMCs). PMCs were fabricated via layer-by-layer (LbL) assembly on manganese carbonate (MnCO3) or calcium carbonate (CaCO3) cores, followed by core dissolution. A solvent gradient replacement method was employed to substitute the internal aqueous phase of PMCs with kerosene, enabling the formation of colloidosomes through self-assembly upon resuspension in water. Comparative analysis revealed that MnCO3-based PMCs with smaller diameters (2.5–3 µm vs. 4.5–5.5 µm for CaCO3) exhibited 3.5-fold greater stability, attributed to enhanced inter-capsule interactions via electrostatic and hydrophobic forces. Confocal microscopy confirmed the structural integrity of colloidosomes, featuring a liquid kerosene core encapsulated within a PMC shell. Temporal stability studies indicated structural degradation within 30 min, though 5% of colloidosomes retained integrity post-water evaporation. PMC-based colloidosomes exhibit significant application potential due to their integration of colloidosome functionality with PMC-derived structural features—semi-permeability, tunable shell thickness/composition, and stimuli-responsive behavior—enabling their adaptability to diverse technological and biomedical contexts. This innovation holds promise for applications in drug delivery, agrochemicals, and environmental technologies, where controlled release and stability are critical. The findings highlight the role of core material selection and solvent engineering in optimizing colloidosome performance, paving the way for advanced encapsulation systems. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

20 pages, 5236 KiB  
Article
Leakage Detection in Subway Tunnels Using 3D Point Cloud Data: Integrating Intensity and Geometric Features with XGBoost Classifier
by Anyin Zhang, Junjun Huang, Zexin Sun, Juju Duan, Yuanai Zhang and Yueqian Shen
Sensors 2025, 25(14), 4475; https://doi.org/10.3390/s25144475 - 18 Jul 2025
Abstract
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics [...] Read more.
Detecting leakage using a point cloud acquired by mobile laser scanning (MLS) presents significant challenges, particularly from within three-dimensional space. These challenges primarily arise from the prevalence of noise in tunnel point clouds and the difficulty in accurately capturing the three-dimensional morphological characteristics of leakage patterns. To address these limitations, this study proposes a classification method based on XGBoost classifier, integrating both intensity and geometric features. The proposed methodology comprises the following steps: First, a RANSAC algorithm is employed to filter out noise from tunnel objects, such as facilities, tracks, and bolt holes, which exhibit intensity values similar to leakage. Next, intensity features are extracted to facilitate the initial separation of leakage regions from the tunnel lining. Subsequently, geometric features derived from the k neighborhood are incorporated to complement the intensity features, enabling more effective segmentation of leakage from the lining structures. The optimal neighborhood scale is determined by selecting the scale that yields the highest F1-score for leakage across various multiple evaluated scales. Finally, the XGBoost classifier is applied to the binary classification to distinguish leakage from tunnel lining. Experimental results demonstrate that the integration of geometric features significantly enhances leakage detection accuracy, achieving an F1-score of 91.18% and 97.84% on two evaluated datasets, respectively. The consistent performance across four heterogeneous datasets indicates the robust generalization capability of the proposed methodology. Comparative analysis further shows that XGBoost outperforms other classifiers, such as Random Forest, AdaBoost, LightGBM, and CatBoost, in terms of balance of accuracy and computational efficiency. Moreover, compared to deep learning models, including PointNet, PointNet++, and DGCNN, the proposed method demonstrates superior performance in both detection accuracy and computational efficiency. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

27 pages, 3704 KiB  
Article
Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables
by Sajjad Nematzadeh and Vedat Esen
Appl. Sci. 2025, 15(14), 8005; https://doi.org/10.3390/app15148005 - 18 Jul 2025
Abstract
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters [...] Read more.
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters and reveals their physical relevance to PV generation. Starting from 27 local and plant-level variables recorded at 15 min resolution for a 1 MW array in Çanakkale region, Türkiye (1 August 2022–3 August 2024), we apply a three-stage feature-selection pipeline: (i) variance filtering, (ii) hierarchical correlation clustering with Ward linkage, and (iii) a meta-heuristic optimizer that maximizes a neural-network R2 while penalizing poor or redundant inputs. The resulting subset, dominated by apparent temperature and diffuse, direct, global-tilted, and terrestrial irradiance, reduces dimensionality without significantly degrading accuracy. Feature importance is then quantified through two complementary aspects: (a) tree-based permutation scores extracted from a set of ensemble models and (b) information gain computed over random feature combinations. Both views converge on shortwave, direct, and global-tilted irradiance as the primary drivers of active power. Using only the selected features, the best model attains an average R2 ≅ 0.91 on unseen data. By utilizing transparent feature-reduction techniques and explainable importance metrics, the proposed approach delivers compact, more generalized, and reliable PV forecasts that generalize to sites lacking embedded sensor networks, and it provides actionable insights for plant siting, sensor prioritization, and grid-operation strategies. Full article
Show Figures

Figure 1

22 pages, 4732 KiB  
Article
Improving Winter Wheat Yield Estimation Under Saline Stress by Integrating Sentinel-2 and Soil Salt Content Using Random Forest
by Chuang Lu, Maowei Yang, Shiwei Dong, Yu Liu, Yinkun Li and Yuchun Pan
Agriculture 2025, 15(14), 1544; https://doi.org/10.3390/agriculture15141544 - 18 Jul 2025
Abstract
Accurate estimation of winter wheat yield under saline stress is crucial for addressing food security challenges and optimizing agricultural management in regional soils. This study proposed a method integrating Sentinel-2 data and field-measured soil salt content (SC) using a random forest (RF) method [...] Read more.
Accurate estimation of winter wheat yield under saline stress is crucial for addressing food security challenges and optimizing agricultural management in regional soils. This study proposed a method integrating Sentinel-2 data and field-measured soil salt content (SC) using a random forest (RF) method to improve yield estimation of winter wheat in Kenli County, a typical saline area in China’s Yellow River Delta. First, feature importance analysis of a temporal vegetation index (VI) and salinity index (SI) across all growth periods were achieved to select main parameters. Second, yield models of winter wheat were developed in VI-, SI-, VI + SI-, and VI + SI + SC-based groups. Furthermore, error assessment and spatial yield mapping were analyzed in detail. The results demonstrated that feature importance varied by growth periods. SI dominated in pre-jointing periods, while VI was better in the post-jointing phase. The VI + SI + SC-based model achieved better accuracy (R2 = 0.78, RMSE = 720.16 kg/ha) than VI-based (R2 = 0.71), SI-based (R2 = 0.69), and VI + SI-based (R2 = 0.77) models. Error analysis results suggested that the residuals were reduced as the input parameters increased, and the VI + SI + SC-based model showed a good consistency with the field-measured yields. The spatial distribution of winter wheat yield using the VI + SI + SC-based model showed significant differences, and average yields in no, slight, moderate, and severe salinity areas were 7945, 7258, 5217, and 4707 kg/ha, respectively. This study can provide a reference for winter wheat yield estimation and crop production improvement in saline regions. Full article
Show Figures

Figure 1

28 pages, 7545 KiB  
Article
Estimation of Rice Leaf Nitrogen Content Using UAV-Based Spectral–Texture Fusion Indices (STFIs) and Two-Stage Feature Selection
by Xiaopeng Zhang, Yating Hu, Xiaofeng Li, Ping Wang, Sike Guo, Lu Wang, Cuiyu Zhang and Xue Ge
Remote Sens. 2025, 17(14), 2499; https://doi.org/10.3390/rs17142499 - 18 Jul 2025
Abstract
Accurate estimation of rice leaf nitrogen content (LNC) is essential for optimizing nitrogen management in precision agriculture. However, challenges such as spectral saturation and canopy structural variations across different growth stages complicate this task. This study proposes a robust framework for LNC estimation [...] Read more.
Accurate estimation of rice leaf nitrogen content (LNC) is essential for optimizing nitrogen management in precision agriculture. However, challenges such as spectral saturation and canopy structural variations across different growth stages complicate this task. This study proposes a robust framework for LNC estimation that integrates both spectral and texture features extracted from UAV-based multispectral imagery through the development of novel Spectral–Texture Fusion Indices (STFIs). Field data were collected under nitrogen gradient treatments across three critical growth stages: heading, early filling, and late filling. A total of 18 vegetation indices (VIs), 40 texture features (TFs), and 27 STFIs were derived from UAV images. To optimize the feature set, a two-stage feature selection strategy was employed, combining Pearson correlation analysis with model-specific embedded selection methods: Recursive Feature Elimination with Cross-Validation (RFECV) for Random Forest (RF) and Extreme Gradient Boosting (XGBoost), and Sequential Forward Selection (SFS) for Support Vector Regression (SVR) and Deep Neural Networks (DNNs). The models—RFECV-RF, RFECV-XGBoost, SFS-SVR, and SFS-DNN—were evaluated using four feature configurations. The SFS-DNN model with STFIs achieved the highest prediction accuracy (R2 = 0.874, RMSE = 2.621 mg/g). SHAP analysis revealed the significant contribution of STFIs to model predictions, underscoring the effectiveness of integrating spectral and texture information. The proposed STFI-based framework demonstrates strong generalization across phenological stages and offers a scalable, interpretable approach for UAV-based nitrogen monitoring in rice production systems. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

55 pages, 6352 KiB  
Review
A Deep Learning Framework for Enhanced Detection of Polymorphic Ransomware
by Mazen Gazzan, Bader Alobaywi, Mohammed Almutairi and Frederick T. Sheldon
Future Internet 2025, 17(7), 311; https://doi.org/10.3390/fi17070311 - 18 Jul 2025
Abstract
Ransomware, a significant cybersecurity threat, encrypts files and causes substantial damage, making early detection crucial yet challenging. This paper introduces a novel multi-phase framework for early ransomware detection, designed to enhance accuracy and minimize false positives. The framework addresses the limitations of existing [...] Read more.
Ransomware, a significant cybersecurity threat, encrypts files and causes substantial damage, making early detection crucial yet challenging. This paper introduces a novel multi-phase framework for early ransomware detection, designed to enhance accuracy and minimize false positives. The framework addresses the limitations of existing methods by integrating operational data with situational and threat intelligence, enabling it to dynamically adapt to the evolving ransomware landscape. Key innovations include (1) data augmentation using a Bi-Gradual Minimax Generative Adversarial Network (BGM-GAN) to generate synthetic ransomware attack patterns, addressing data insufficiency; (2) Incremental Mutual Information Selection (IMIS) for dynamically selecting relevant features, adapting to evolving ransomware behaviors and reducing computational overhead; and (3) a Deep Belief Network (DBN) detection architecture, trained on the augmented data and optimized with Uncertainty-Aware Dynamic Early Stopping (UA-DES) to prevent overfitting. The model demonstrates a 4% improvement in detection accuracy (from 90% to 94%) through synthetic data generation and reduces false positives from 15.4% to 14%. The IMIS technique further increases accuracy to 96% while reducing false positives. The UA-DES optimization boosts accuracy to 98.6% and lowers false positives to 10%. Overall, this framework effectively addresses the challenges posed by evolving ransomware, significantly enhancing detection accuracy and reliability. Full article
Show Figures

Figure 1

29 pages, 4738 KiB  
Article
A Dual-Variable Selection Framework for Enhancing Forest Aboveground Biomass Estimation via Multi-Source Remote Sensing
by Dapeng Chen, Hongbin Luo, Zhi Liu, Jie Pan, Yong Wu, Er Wang, Chi Lu, Lei Wang, Weibin Wang and Guanglong Ou
Remote Sens. 2025, 17(14), 2493; https://doi.org/10.3390/rs17142493 - 17 Jul 2025
Abstract
Integrating multi-source remote sensing can improve the accuracy of forest aboveground biomass (AGB) estimation. However, the accuracy and stability of the forest AGB estimation results are affected by multiple remote sensing feature variables as well as parameter tuning of machine learning algorithms. To [...] Read more.
Integrating multi-source remote sensing can improve the accuracy of forest aboveground biomass (AGB) estimation. However, the accuracy and stability of the forest AGB estimation results are affected by multiple remote sensing feature variables as well as parameter tuning of machine learning algorithms. To this end, this study employed six types of remote sensing data—Landsat 8 OLI, Sentinel-2A, GEDI, ICESat-2, ALOS-2, and SAOCOM. A dual-variable selection strategy based on SHapley Additive exPlanations (SHAP) was developed, and a genetic algorithm (GA) was used to optimize the parameters of five machine learning models—elastic net (EN), least absolute shrinkage and selection operator (Lasso), support vector regression (SVR), Random Forest (RF), and Categorical Boosting (CatBoost)—to estimate the AGB of Pinus kesiya var. langbianensis forest in Wuyi Village, Zhenyuan County. The dual-variable selection strategy integrates SHAP with the Pearson correlation coefficient (PC), RF, EN, and Lasso to enhance feature screening robustness and interpretability. The results of the study showed that Lasso-SHAP dual-variate screening was more stable than SHAP univariate screening. In particular, the Lasso-SHAP strategy improved the average R2 from 0.59 (using SHAP alone) to above 0.70, achieving an enhancement of 11%. Among GA-optimized parametric machine learning models, the linear GA-Lasso achieved the best performance, with an R2 of 0.91 and an RMSE of 12.94 Mg/ha, followed by the GA-EN model (R2 = 0.89, RMSE = 14.46 Mg/ha). For nonlinear models, GA-SVR performed the best (R2 = 0.74, RMSE = 22.07 Mg/ha), surpassing the GA-CatBoost model (R2 = 0.64, RMSE = 25.88 Mg/ha). In summary, the Lasso-SHAP dual-variable selection strategy effectively improves the estimation accuracy of AGB for Pinus kesiya var. langbianensis forests, while GA-optimized machine learning models demonstrate excellent performance, providing strong support for regional-scale forest resource monitoring and carbon stock assessment. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

11 pages, 1250 KiB  
Article
Optimizing Multivariable Logistic Regression for Identifying Perioperative Risk Factors for Deep Brain Stimulator Explantation: A Pilot Study
by Peyton J. Murin, Anagha S. Prabhune and Yuri Chaves Martins
Clin. Pract. 2025, 15(7), 132; https://doi.org/10.3390/clinpract15070132 - 17 Jul 2025
Abstract
Background/Objectives: Deep brain stimulation (DBS) is an effective surgical treatment for Parkinson’s Disease (PD) and other movement disorders. Despite its benefits, DBS explantation occurs in 5.6% of cases, with costs exceeding USD 22,000 per implant. Traditional statistical methods have struggled to identify [...] Read more.
Background/Objectives: Deep brain stimulation (DBS) is an effective surgical treatment for Parkinson’s Disease (PD) and other movement disorders. Despite its benefits, DBS explantation occurs in 5.6% of cases, with costs exceeding USD 22,000 per implant. Traditional statistical methods have struggled to identify reliable risk factors for explantation. We hypothesized that supervised machine learning would more effectively capture complex interactions among perioperative factors, enabling the identification of novel risk factors. Methods: The Medical Informatics Operating Room Vitals and Events Repository was queried for patients with DBS, adequate clinical data, and at least two years of follow-up (n = 38). Fisher’s exact test assessed demographic and medical history variables. Data were analyzed using Anaconda Version 2.3.1. with pandas, numpy, sklearn, sklearn-extra, matplotlin. pyplot, and seaborn. Recursive feature elimination with cross-validation (RFECV) optimized factor selection was used. A multivariate logistic regression model was trained and evaluated using precision, recall, F1-score, and area under the curve (AUC). Results: Fisher’s exact test identified chronic pain (p = 0.0108) and tobacco use (p = 0.0026) as risk factors. RFECV selected 24 optimal features. The logistic regression model demonstrated strong performance (precision: 0.89, recall: 0.86, F1-score: 0.86, AUC: 1.0). Significant risk factors included tobacco use (OR: 3.64; CI: 3.60–3.68), primary PD (OR: 2.01; CI: 1.99–2.02), ASA score (OR: 1.91; CI: 1.90–1.92), chronic pain (OR: 1.82; CI: 1.80–1.85), and diabetes (OR: 1.63; CI: 1.62–1.65). Conclusions: Our study suggests that supervised machine learning can identify risk factors for early DBS explantation. Larger studies are needed to validate our findings. Full article
Show Figures

Figure 1

13 pages, 2051 KiB  
Article
Near-Infrared Spectroscopy and Machine Learning for Fast Quality Prediction of Bottle Gourd
by Xiao Guo, Hongyu Huang, Haiyan Wang, Chang Cai, Ying Wang, Xiaohua Wu, Jian Wang, Baogen Wang, Biao Zhu and Yun Xiang
Foods 2025, 14(14), 2503; https://doi.org/10.3390/foods14142503 - 17 Jul 2025
Abstract
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and [...] Read more.
Protein and amino acid content are the crucial quality parameters in bottle gourd, and traditional measurement methods for detecting those parameters are complicated, time-consuming, and costly. In this study, we employed NIRS along with machine learning and neural network-based methods to model and predict protein and free amino acids (FAAs) of bottle gourd. Specifically, the content of protein and FAAs were measured through conventional methods. Then a near-infrared analyzer was utilized to obtain the spectral data, which were processed using multiple scattering correction (MSC) and standard normalized variate (SNV). The processed spectral data were further processed using feature importance selection to select the feature bands that had the highest correlation with protein and FAAs, respectively. The models for protein and FAAs estimation were developed using support vector regression (SVR), ridge regression (RR), random forest regression (RFR), and fully connected neural networks (FCNNs). Among them, ridge regression achieved the optimal performance, with determination coefficients (R2) of 0.96 and 0.77 on the protein and FAAs test sets, respectively, and root mean square error (RMSE) values of 0.23 and 0.5, respectively. Based on this, we developed a precise and rapid prediction model for the important quality indices of bottle gourd. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

19 pages, 5415 KiB  
Article
Intelligent Optimized Diagnosis for Hydropower Units Based on CEEMDAN Combined with RCMFDE and ISMA-CNN-GRU-Attention
by Wenting Zhang, Huajun Meng, Ruoxi Wang and Ping Wang
Water 2025, 17(14), 2125; https://doi.org/10.3390/w17142125 - 17 Jul 2025
Abstract
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is [...] Read more.
This study suggests a hybrid approach that combines improved feature selection and intelligent diagnosis to increase the operational safety and intelligent diagnosis capabilities of hydropower units. In order to handle the vibration data, complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used initially. A novel comprehensive index is constructed by combining the Pearson correlation coefficient, mutual information (MI), and Kullback–Leibler divergence (KLD) to select intrinsic mode functions (IMFs). Next, feature extraction is performed on the selected IMFs using Refined Composite Multiscale Fluctuation Dispersion Entropy (RCMFDE). Then, time and frequency domain features are screened by calculating dispersion and combined with IMF features to build a hybrid feature vector. The vector is then fed into a CNN-GRU-Attention model for intelligent diagnosis. The improved slime mold algorithm (ISMA) is employed for the first time to optimize the hyperparameters of the CNN-GRU-Attention model. The experimental results show that the classification accuracy reaches 96.79% for raw signals and 93.33% for noisy signals, significantly outperforming traditional methods. This study incorporates entropy-based feature extraction, combines hyperparameter optimization with the classification model, and addresses the limitations of single feature selection methods for non-stationary and nonlinear signals. The proposed approach provides an excellent solution for intelligent optimized diagnosis of hydropower units. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

23 pages, 21197 KiB  
Article
DLPLSR: Dual Label Propagation-Driven Least Squares Regression with Feature Selection for Semi-Supervised Learning
by Shuanghao Zhang, Zhengtong Yang and Zhaoyin Shi
Mathematics 2025, 13(14), 2290; https://doi.org/10.3390/math13142290 - 16 Jul 2025
Viewed by 59
Abstract
In the real world, most data are unlabeled, which drives the development of semi-supervised learning (SSL). Among SSL methods, least squares regression (LSR) has attracted attention for its simplicity and efficiency. However, existing semi-supervised LSR approaches suffer from challenges such as the insufficient [...] Read more.
In the real world, most data are unlabeled, which drives the development of semi-supervised learning (SSL). Among SSL methods, least squares regression (LSR) has attracted attention for its simplicity and efficiency. However, existing semi-supervised LSR approaches suffer from challenges such as the insufficient use of unlabeled data, low pseudo-label accuracy, and inefficient label propagation. To address these issues, this paper proposes dual label propagation-driven least squares regression with feature selection, named DLPLSR, which is a pseudo-label-free SSL framework. DLPLSR employs a fuzzy-graph-based clustering strategy to capture global relationships among all samples, and manifold regularization preserves local geometric consistency, so that it implements the dual label propagation mechanism for comprehensive utilization of unlabeled data. Meanwhile, a dual-feature selection mechanism is established by integrating orthogonal projection for maximizing feature information with an 2,1-norm regularization for eliminating redundancy, thereby jointly enhancing the discriminative power. Benefiting from these two designs, DLPLSR boosts learning performance without pseudo-labeling. Finally, the objective function admits an efficient closed-form solution solvable via an alternating optimization strategy. Extensive experiments on multiple benchmark datasets show the superiority of DLPLSR compared to state-of-the-art LSR-based SSL methods. Full article
(This article belongs to the Special Issue Machine Learning and Optimization for Clustering Algorithms)
Show Figures

Figure 1

22 pages, 5363 KiB  
Article
Accurate Extraction of Rural Residential Buildings in Alpine Mountainous Areas by Combining Shadow Processing with FF-SwinT
by Guize Luan, Jinxuan Luo, Zuyu Gao and Fei Zhao
Remote Sens. 2025, 17(14), 2463; https://doi.org/10.3390/rs17142463 - 16 Jul 2025
Viewed by 123
Abstract
Precise extraction of rural settlements in alpine regions is critical for geographic data production, rural development, and spatial optimization. However, existing deep learning models are hindered by insufficient datasets and suboptimal algorithm structures, resulting in blurred boundaries and inadequate extraction accuracy. Therefore, this [...] Read more.
Precise extraction of rural settlements in alpine regions is critical for geographic data production, rural development, and spatial optimization. However, existing deep learning models are hindered by insufficient datasets and suboptimal algorithm structures, resulting in blurred boundaries and inadequate extraction accuracy. Therefore, this study uses high-resolution unmanned aerial vehicle (UAV) remote sensing images to construct a specialized dataset for the extraction of rural settlements in alpine mountainous areas, while introducing an innovative shadow mitigation technique that integrates multiple spectral characteristics. This methodology effectively addresses the challenges posed by intense shadows in settlements and environmental occlusions common in mountainous terrain analysis. Based on the comparative experiments with existing deep learning models, the Swin Transformer was selected as the baseline model. Building upon this, the Feature Fusion Swin Transformer (FF-SwinT) model was constructed by optimizing the data processing, loss function, and multi-view feature fusion. Finally, we rigorously evaluated it through ablation studies, generalization tests and large-scale image application experiments. The results show that the FF-SwinT has improved in many indicators compared with the traditional Swin Transformer, and the recognition results have clear edges and strong integrity. These results suggest that the FF-SwinT establishes a novel framework for rural settlement extraction in alpine mountain regions, which is of great significance for regional spatial optimization and development policy formulation. Full article
Show Figures

Figure 1

19 pages, 4037 KiB  
Article
A Rolling Bearing Fault Diagnosis Method Based on Wild Horse Optimizer-Enhanced VMD and Improved GoogLeNet
by Xiaoliang He, Feng Zhao, Nianyun Song, Zepeng Liu and Libing Cao
Sensors 2025, 25(14), 4421; https://doi.org/10.3390/s25144421 - 16 Jul 2025
Viewed by 118
Abstract
To address the challenges of weak fault features and strong non-stationarity in early-stage vibration signals, this study proposes a novel fault diagnosis method combining enhanced variational mode decomposition (VMD) with a structurally improved GoogLeNet. Specifically, an improved wild horse optimizer (IWHO) with tent [...] Read more.
To address the challenges of weak fault features and strong non-stationarity in early-stage vibration signals, this study proposes a novel fault diagnosis method combining enhanced variational mode decomposition (VMD) with a structurally improved GoogLeNet. Specifically, an improved wild horse optimizer (IWHO) with tent chaotic mapping is employed to automatically optimize critical VMD parameters, including the number of modes K and the penalty factor α, enabling precise decomposition of non-stationary signals to extract weak fault features. The vibration signal is decomposed, and the top five intrinsic mode functions (IMFs) are selected based on the kurtosis criterion. Time–frequency features are then extracted from these IMFs and input into a modified GoogLeNet classifier. The GoogLeNet structure is improved by replacing standard n × n convolution kernels with cascaded 1 × n and n × 1 kernels, and by substituting the ReLU activation function with a parameterized TReLU function to enhance adaptability and convergence. Experimental results on two public rolling bearing datasets demonstrate that the proposed method effectively handles non-stationary signals, achieving 99.17% accuracy across four fault types and maintaining over 95.80% accuracy under noisy conditions. Full article
Show Figures

Figure 1

24 pages, 3601 KiB  
Article
Laser-Induced Breakdown Spectroscopy Quantitative Analysis Using a Bayesian Optimization-Based Tunable Softplus Backpropagation Neural Network
by Xuesen Xu, Shijia Luo, Xuchen Zhang, Weiming Xu, Rong Shu, Jianyu Wang, Xiangfeng Liu, Ping Li, Changheng Li and Luning Li
Remote Sens. 2025, 17(14), 2457; https://doi.org/10.3390/rs17142457 - 16 Jul 2025
Viewed by 134
Abstract
Laser-induced breakdown spectroscopy (LIBS) has played a critical role in Mars exploration missions, substantially contributing to the geochemical analysis of Martian surface substances. However, the complex nonlinearity of LIBS processes can considerably limit the quantification accuracy of conventional LIBS chemometric methods. Hence chemometrics [...] Read more.
Laser-induced breakdown spectroscopy (LIBS) has played a critical role in Mars exploration missions, substantially contributing to the geochemical analysis of Martian surface substances. However, the complex nonlinearity of LIBS processes can considerably limit the quantification accuracy of conventional LIBS chemometric methods. Hence chemometrics based on artificial neural network (ANN) algorithms have become increasingly popular in LIBS analysis due to their extraordinary ability in nonlinear feature modeling. The hidden layer activation functions are key to ANN model performance, yet common activation functions usually suffer from problems such as gradient vanishing (e.g., Sigmoid and Tanh) and dying neurons (e.g., ReLU). In this study, we propose a novel LIBS quantification method, named the Bayesian optimization-based tunable Softplus backpropagation neural network (BOTS-BPNN). Based on a dataset comprising 1800 LIBS spectra collected by a laboratory duplicate of the MarSCoDe instrument onboard the Zhurong Mars rover, we have revealed that a BPNN model adopting a tunable Softplus activation function can achieve higher prediction accuracy than BPNN models adopting other common activation functions if the tunable Softplus parameter β is properly selected. Moreover, the way to find the proper β value has also been investigated. We demonstrate that the Bayesian optimization method surpasses the traditional grid search method regarding both performance and efficiency. The BOTS-BPNN model also shows superior performance over other common machine learning models like random forest (RF). This work indicates the potential of BOTS-BPNN as an effective chemometric method for analyzing Mars in situ LIBS data and sheds light on the use of chemometrics for data analysis in future planetary explorations. Full article
Show Figures

Figure 1

Back to TopTop