Estimation of Rice Leaf Nitrogen Content Using UAV-Based Spectral–Texture Fusion Indices (STFIs) and Two-Stage Feature Selection
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Design
2.2. Ground Sampling and LNC Determination
2.3. UAV Multispectral Data Acquisition and Preprocessing
2.4. Feature Extraction and Construction
2.4.1. Vegetation Indices (VIs)
2.4.2. Texture Features (TFs)
2.4.3. Spectral–Texture Fusion Indices (STFIs) Construction
2.5. Feature Selection Strategy
2.6. Model Construction and Evaluation
2.7. Feature Importance Interpretation Using SHAP
3. Results
3.1. Trend Analysis of LNC Changes
3.2. Spectral Reflectance Dynamics and Texture Feature Variation Across Rice Growth Stages
3.3. Feature Selection and Interpretability Analysis
3.3.1. Pearson Correlation Analysis
3.3.2. Feature Subset Selection and SHAP-Based Interpretability Analysis
3.4. Comparison of Model Performance Under Different Feature Sets
3.5. Spatial Inversion of Rice LNC
4. Discussion
4.1. Advantages of Spectral–Texture Fusion Indices (STFIs)
4.2. Comparative Analysis of Regression Algorithms
4.3. Benefits of the Two-Stage Feature Selection and SHAP Interpretability
4.4. Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.B.; Ma, J.F.; Zhou, M.; Li, D.; Yao, X.; Cao, W.X.; Zhu, Y.; Cheng, T. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens. 2020, 12, 957. [Google Scholar] [CrossRef]
- Xu, S.Z.; Xu, X.A.; Blacker, C.; Gaulton, R.; Zhu, Q.Z.; Yang, M.; Yang, G.J.; Zhang, J.M.; Yang, Y.A.; Yang, M.; et al. Estimation of leaf nitrogen content in rice using vegetation indices and feature variable optimization with information fusion of multiple-sensor images from UAV. Remote Sens. 2023, 15, 854. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, J.; Tao, X.; Su, X.; Li, W.; Zha, H.; Wu, W.; Li, X. A Three-Dimensional Conceptual Model for Estimating the Above-Ground Biomass of Winter Wheat Using Digital and Multispectral Unmanned Aerial Vehicle Images at Various Growth Stages. Remote Sens. 2023, 15, 3332. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, H.; Wu, Y.; Yao, X.; Zhu, Y.; Cao, W.; Cheng, T. An assessment of background removal approaches for improved estimation of rice leaf nitrogen concentration with unmanned aerial vehicle multispectral imagery at various observation times. Field Crop. Res. 2022, 283, 108543. [Google Scholar] [CrossRef]
- Wang, K.; Shan, S.; Dou, W.; Wei, H.; Zhang, K. A cross-modal deep learning method for enhancing photovoltaic power forecasting with satellite imagery and time series data. Energy Convers. Manag. 2025, 323, 119218. [Google Scholar] [CrossRef]
- Dong, H.; Dong, J.; Sun, S.; Bai, T.; Zhao, D.; Yin, Y.; Shen, X.; Wang, Y.; Zhang, Z.; Wang, Y. Crop water stress detection based on UAV remote sensing systems. Agric. Water Manag. 2024, 303, 109059. [Google Scholar] [CrossRef]
- Wu, G.; Al-qaness, M.A.A.; Al-Alimi, D.; Dahou, A.; Abd Elaziz, M.; Ewees, A.A. Hyperspectral image classification using graph convolutional network: A comprehensive review. Expert Syst. Appl. 2024, 257, 125106. [Google Scholar] [CrossRef]
- Segarra, J.; Rezzouk, F.Z.; Aparicio, N.; González-Torralba, J.; Aranjuelo, I.; Gracia-Romero, A.; Araus, J.L.; Kefauver, S.C. Multiscale assessment of ground, aerial and satellite spectral data for monitoring wheat grain nitrogen content. Inf. Process. Agric. 2023, 10, 504–522. [Google Scholar] [CrossRef]
- Flynn, K.C.; Witt, T.W.; Baath, G.S.; Chinmayi, H.K.; Smith, D.R.; Gowda, P.H.; Ashworth, A.J. Hyperspectral reflectance and machine learning for multi-site monitoring of cotton growth. Smart Agric. Technol. 2024, 9, 100536. [Google Scholar] [CrossRef]
- Guo, Y.H.; Wang, H.X.; Wu, Z.F.; Wang, S.X.; Sun, H.Y.; Senthilnath, J.; Wang, J.Z.; Bryant, C.R.; Fu, Y.S. Modified Red Blue Vegetation Index for Chlorophyll Estimation and Yield Prediction of Maize from Visible Images Captured by UAV. Sensors 2020, 20, 5055. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.T.; Gao, L.T.; Xu, X.; Wu, W.B.; Yang, G.J.; Meng, Y.; Feng, H.K.; Li, Y.F.; Xue, H.Y.; Chen, T.E. Combining UAV remote sensing with ensemble learning to monitor leaf nitrogen content in custard apple (Annona squamosa L.). Agronomy 2025, 15, 38. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, D.; Geng, C.; Zhang, Z.; Xiang, Y.; Hu, T. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize. Biosyst. Eng. 2021, 202, 42–54. [Google Scholar] [CrossRef]
- Peng, Y.P.; Zhong, W.L.; Peng, Z.P.; Tu, Y.T.; Xu, Y.G.; Li, Z.X.; Liang, J.Y.; Huang, J.C.; Liu, X.; Fu, Y.Q. Enhanced estimation of rice leaf nitrogen content via the integration of hybrid preferred features and deep learning methodologies. Agronomy 2024, 14, 1248. [Google Scholar] [CrossRef]
- Li, M.H.; Liu, Y.; Lu, X.; Jiang, J.L.; Ma, X.H.; Wen, M.; Ma, F.Y. Integrating unmanned aerial vehicle-derived vegetation and texture indices for the estimation of leaf nitrogen concentration in drip-irrigated cotton under reduced nitrogen treatment and different plant densities. Agronomy 2024, 14, 120. [Google Scholar] [CrossRef]
- Gupta, S.K.; Pandey, A.C. Spectral aspects for monitoring forest health in extreme season using multispectral imagery. Egypt. J. Remote Sens. Space Sci. 2021, 24, 579–586. [Google Scholar] [CrossRef]
- Yang, H.; Hu, Y.; Zheng, Z.; Qiao, Y.; Zhang, K.; Guo, T.; Chen, J. Estimation of Potato Chlorophyll Content from UAV Multispectral Images with Stacking Ensemble Algorithm. Agronomy 2022, 12, 2318. [Google Scholar] [CrossRef]
- Miao, H.L.; Zhang, R.; Song, Z.H.; Chang, Q.R. Estimating Winter Wheat Canopy Chlorophyll Content Through the Integration of Unmanned Aerial Vehicle Spectral and Textural Insights. Remote Sens. 2025, 17, 406. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2018, 20, 611–629. [Google Scholar] [CrossRef]
- Su, X.; Nian, Y.; Yue, H.; Zhu, Y.; Li, J.; Wang, W.; Sheng, Y.; Ma, Q.; Liu, J.; Wang, W.; et al. Improving wheat leaf nitrogen concentration (LNC) estimation across multiple growth stages using feature combination indices (FCIs) from UAV multispectral imagery. Agronomy 2024, 14, 1052. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Y.; Tian, Y.; Feng, W.; Cao, W. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. Nasa Spec. Publ. 1974, 351, 309. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Miao, Y.; Wang, H.; Huang, S.; Cheng, S.; Khosla, R.; Jiang, R. Non-Destructive Estimation of Rice Plant Nitrogen Status with Crop Circle Multispectral Active Canopy Sensor. F. Crop. Res. 2013, 154, 133–144. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, 7. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Tian, Y.; Liu, X.; Cao, W. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Gitelson, A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Zhou, M.; Zheng, H.; He, C.; Liu, P.; Awan, G.M.; Wang, X.; Cheng, T.; Zhu, Y.; Cao, W.; Yao, X. Wheat phenology detection with the methodology of classification based on the time-series UAV images. Field Crop. Res. 2023, 292, 108798. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Wu, Z.; Luo, J.; Rao, K.; Lin, H.; Song, X. Estimation of wheat kernel moisture content based on hyperspectral reflectance and satellite multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103597. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Gao, M.; Huang, X.Y.; Wang, F.; Zhang, H.L.; Zhao, H.X.; Gao, X.Y. Sea Surface Salinity Inversion Based on DNN Model. Adv. Mar. Sci. 2022, 40, 496–504. [Google Scholar]
- Wang, C.H.; Xiao, Z.Y.; Wu, J.H. Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data. Phys. Med. 2019, 65, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Uncu, Ö.; Türkşen, I.B. A Novel Feature Selection Approach: Combining Feature Wrappers and Filters. Inf. Sci. 2007, 177, 449–466. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Dorigo, W.A.; Zurita-Milla, R.; de Wit, A.J.W.; Brazile, J.; Singh, R.; Schaepman, M.E. A Review on Reflective Remote Sensing and Data Assimilation Techniques for Enhanced Agroecosystem Modeling. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 165–193. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, D.; Wu, Z.; Song, H.; Zhang, X. Prediction of buckwheat maturity in UAV-RGB images based on recursive feature elimination cross-validation: A case study in Jinzhong, Northern China. Plants 2022, 11, 3257. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Y.; Song, L.; Su, X.; Li, J.; Zheng, J.; Zhu, X.; Ren, L.; Wang, W.; Li, X. Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery. Front. Plant Sci. 2023, 14, 1284235. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yi, Q.; Hu, J.; Xie, L.; Yao, X.; Xu, T.; Zheng, J. Combining spectral and textural information in UAV hyperspectral images to estimate rice grain yield. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102397. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, X.; Cheng, Q.; Fei, S.; Chen, Z. A Machine-Learning Model Based on the Fusion of Spectral and Textural Features from UAV Multi-Sensors to Analyse the Total Nitrogen Content in Winter Wheat. Remote Sens. 2023, 15, 2152. [Google Scholar] [CrossRef]
- Shu, M.Y.; Wang, Z.Y.; Guo, W.; Qiao, H.B.; Fu, Y.Y.; Guo, Y.; Wang, L.G.; Ma, Y.T.; Gu, X.H. Effects of Variety and Growth Stage on UAV Multispectral Estimation of Plant Nitrogen Content of Winter Wheat. Agriculture 2024, 14, 1775. [Google Scholar] [CrossRef]
- Freitas, R.G.; Pereira, F.R.; Dos Reis, A.A.; Magalhães, P.S.; Figueiredo, G.K.; Do Amaral, L.R. Estimating pasture aboveground biomass under an integrated crop-livestock system based on spectral and texture measures derived from UAV images. Comput. Electron. Agric. 2022, 198, 107122. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Sun, Y.; Zhao, Y.; Zhuang, H.; Ban, W.; Chen, Y.; Fu, E.; Chen, S.; Liu, J.; et al. Combining spectral and texture features of UAS-based multispectral images for maize leaf area index estimation. Remote Sens. 2022, 14, 331. [Google Scholar] [CrossRef]
- Zhu, W.; Feng, Z.; Dai, S.; Zhang, P.; Wei, X. Using UAV multispectral remote sensing with appropriate spatial resolution andmachine learning to monitor wheat scab. Agriculture 2022, 12, 1785. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Bruzzone, L.; Rojo-Álvarez, J.L.; Melgani, F. Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 339–343. [Google Scholar] [CrossRef]
- Li, R.; Wang, D.; Zhu, B.; Liu, T.; Sun, C.; Zhang, Z. Estimation of nitrogen content in wheat using indices derived from RGB and thermal infrared imaging. Field Crop. Res. 2022, 289, 108735. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Cheng, Q.; Duan, F.; Sui, R.; Huang, X.; Xu, H. UAV-based hyperspectral and ensemble machine learning for predicting yield in winter wheat. Agronomy 2022, 12, 202. [Google Scholar] [CrossRef]
- Metz, M.; Abdelghafour, F.; Roger, J.; Lesnoff, M. A novel robust PLS regression method inspired from boosting principles: RoBoost-PLSR. Anal. Chim. Acta 2021, 1179, 338823. [Google Scholar] [CrossRef] [PubMed]
- Samat, A.; Li, E.; Wang, W.; Liu, S.; Lin, C.; Abuduwaili, J. Meta-XGBoost for hyperspectral image classification using extended MSER-guided morphological profiles. Remote Sens. 2020, 12, 1973. [Google Scholar] [CrossRef]
- Guyon, I.; Elisseeff, A. An Introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003, 3, 1157–1182. [Google Scholar]
- Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus Machine Learning. Nat. Methods 2018, 15, 233–234. [Google Scholar] [CrossRef] [PubMed]
Vegetation Index | Abbreviation | Formulation | References |
---|---|---|---|
Normalized difference vegetation index | NDVI | [23] | |
Normalized difference red-edge index | NDRE | [24] | |
Ratio of enhanced vegetation index | RERVI | [25] | |
Weighted difference vegetation index | WDRVI | [26] | |
Red-edge weighted difference vegetation index | REWDRVI | [27] | |
Red-edge chlorophyll index | CIRE | [28] | |
Red-edge vegetation index | REDVI | [25] | |
Red-edge difference vegetation index | RERDVI | [27] | |
Red-edge optimized soil adjusted vegetation index | REOSAVI | [27] | |
Modified red-edge simple ratio | MSR_RE | [27] | |
Red-edge soil adjusted vegetation index | RESAVI | [27] | |
Soil adjusted vegetation index | SAVI | [29] | |
Optimized soil adjusted vegetation index | OSAVI | [29] | |
Modified simple ratio index | MSR | [30] | |
MERIS terrestrial chlorophyll index | MTCI | [31] | |
Difference vegetation index | DVI | [25] | |
Ratio vegetation index | RVI | [32] | |
Green-band normalized difference vegetation index | GNDVI | [33] |
Numbering | Tm | Abbreviation | Formulation | Description |
---|---|---|---|---|
1 | Mean | Mea | The mean value in the texture | |
2 | Variance | Var | The size of the texture change | |
3 | Homogeneity | Hom | The homogeneity of grey level in the texture | |
4 | Contrast | Con | The clarity in the texture Same as contrast | |
5 | Dissimilarity | Dis | The similarity of the pixels in the texture | |
6 | Entropy | Ent | The diversity of the pixels in the texture | |
7 | Second moment | Sem | The uniformity of greyscale in the texture | |
8 | Correlation | Cor | The consistency in the texture |
Period | Range | Mean | SD | CV (%) |
---|---|---|---|---|
Heading Stage | 18.85–36.18 | 26.59 | 3.69 | 0.14 |
Early Filling Stage | 11.75–30.88 | 21.04 | 4.81 | 0.23 |
Late Filling Stage | 7.10–18.70 | 11.25 | 2.66 | 0.24 |
Feature | Model | R2 | RMSE (mg/g) | MAE (mg/g) |
---|---|---|---|---|
VI | RFECV-RF | 0.788 | 3.353 | 2.472 |
RFECV-XGBoost | 0.800 | 3.308 | 2.156 | |
SFS-SVR | 0.805 | 3.208 | 2.143 | |
SFS-DNN | 0.813 | 3.144 | 2.178 | |
TF | RFECV-RF | 0.706 | 3.949 | 2.845 |
RFECV-XGBoost | 0.789 | 3.395 | 2.432 | |
SFS-SVR | 0.799 | 3.265 | 2.438 | |
SFS-DNN | 0.784 | 3.390 | 2.529 | |
VI + TF | RFECV-RF | 0.801 | 3.247 | 2.327 |
RFECV-XGBoost | 0.829 | 3.040 | 2.263 | |
SFS-SVR | 0.830 | 2.996 | 2.088 | |
SFS-DNN | 0.852 | 2.846 | 1.969 | |
STFI | RFECV-RF | 0.857 | 2.773 | 1.987 |
RFECV-XGBoost | 0.851 | 2.869 | 2.222 | |
SFS-SVR | 0.869 | 2.670 | 1.827 | |
SFS-DNN | 0.874 | 2.621 | 1.845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Hu, Y.; Li, X.; Wang, P.; Guo, S.; Wang, L.; Zhang, C.; Ge, X. Estimation of Rice Leaf Nitrogen Content Using UAV-Based Spectral–Texture Fusion Indices (STFIs) and Two-Stage Feature Selection. Remote Sens. 2025, 17, 2499. https://doi.org/10.3390/rs17142499
Zhang X, Hu Y, Li X, Wang P, Guo S, Wang L, Zhang C, Ge X. Estimation of Rice Leaf Nitrogen Content Using UAV-Based Spectral–Texture Fusion Indices (STFIs) and Two-Stage Feature Selection. Remote Sensing. 2025; 17(14):2499. https://doi.org/10.3390/rs17142499
Chicago/Turabian StyleZhang, Xiaopeng, Yating Hu, Xiaofeng Li, Ping Wang, Sike Guo, Lu Wang, Cuiyu Zhang, and Xue Ge. 2025. "Estimation of Rice Leaf Nitrogen Content Using UAV-Based Spectral–Texture Fusion Indices (STFIs) and Two-Stage Feature Selection" Remote Sensing 17, no. 14: 2499. https://doi.org/10.3390/rs17142499
APA StyleZhang, X., Hu, Y., Li, X., Wang, P., Guo, S., Wang, L., Zhang, C., & Ge, X. (2025). Estimation of Rice Leaf Nitrogen Content Using UAV-Based Spectral–Texture Fusion Indices (STFIs) and Two-Stage Feature Selection. Remote Sensing, 17(14), 2499. https://doi.org/10.3390/rs17142499