Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,374)

Search Parameters:
Keywords = optical resonances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3382 KB  
Article
Passively Mode-Locked Fiber Laser Based on a TiO2/SiO2-Assisted Microsphere Resonator
by Tianjiao Wu, Tianshu Wang and Baoqun Li
Photonics 2026, 13(1), 37; https://doi.org/10.3390/photonics13010037 (registering DOI) - 31 Dec 2025
Abstract
A composite dual-cavity passively mode-locked fiber laser based on a functionalized microsphere resonator is proposed and experimentally demonstrated. The nonlinear response of the resonator is enhanced by depositing TiO2 film on a SiO2 microsphere, which leads to improved mode-locking performance. The [...] Read more.
A composite dual-cavity passively mode-locked fiber laser based on a functionalized microsphere resonator is proposed and experimentally demonstrated. The nonlinear response of the resonator is enhanced by depositing TiO2 film on a SiO2 microsphere, which leads to improved mode-locking performance. The wavelength selectivity and optical field confinement of the microsphere resonator are exploited, allowing it to simultaneously serve as an intracavity narrowband filter and a nonlinear modulation element. The threshold of the mode-locked laser was measured to be as low as 34 mW, and stable mode-locked operation was achieved at a pump power of 105.7 mW, with a pulse duration of 2.8 ns, a repetition rate of 13.88 MHz, and a signal-to-noise ratio of 74.86 dB. The output spectrum exhibited a central wavelength of 1560.12 nm, a 3 dB linewidth of 0.06 nm, and a side-mode suppression ratio of 55.13 dB. This straightforward design provides an effective approach for the miniaturization of passively mode-locked fiber lasers. Full article
(This article belongs to the Special Issue Advanced Fiber Laser Technology and Its Application: 2nd Edition)
Show Figures

Figure 1

19 pages, 11708 KB  
Article
Highly Sensitive Measurement of the Refractive Index of Mesoporous Hollow Silica Microcapsules Using Whispering Gallery Mode Resonances
by Qisheng Xu, Sadok Kouz, Aatir Khan, Naheed Hossain, Nizar Bchellaoui and Abdel I. El Abed
Sensors 2026, 26(1), 250; https://doi.org/10.3390/s26010250 - 31 Dec 2025
Abstract
Monodisperse mesoporous hollow silica microcapsules present unique opportunities for advanced optical characterization due to their tunable nanostructure, high porosity and easy functionalization. A critical and challenging parameter in the optimization of these applications is the accurate determination of the effective refractive index, which [...] Read more.
Monodisperse mesoporous hollow silica microcapsules present unique opportunities for advanced optical characterization due to their tunable nanostructure, high porosity and easy functionalization. A critical and challenging parameter in the optimization of these applications is the accurate determination of the effective refractive index, which governs light propagation and confinement within the nanostructured matrix of such mesoporous materials. In this study, individual mesoporous hollow silica microcapsules doped with Rhodamine B dye were analysed optically by exploiting whispering gallery mode (WGM) resonances, enabling non-destructive, single-particle refractometry with nanostructural sensitivity. Fourier Transform analysis of the fluorescence emission spectra revealed sharply defined, periodically spaced WGM peaks. For microcapsules with an 88 μm diameter, the measured intermodal spacing (Δλ = 1.296 nm) yielded an effective refractive index of 1.164. The measured value of the effective refractive index was cross-validated using Lorenz–Lorentz and Bruggeman effective medium models, both predicting porosity values (~63%) that closely match independent Brunauer–Emmett–Teller (BET) nitrogen adsorption measurements. The excellent agreement between optical and adsorption-based porosity demonstrates that WGM spectroscopy combined with Fourier analysis is a powerful, label-free, and non-invasive technique for correlating nanoscale porosity with macroscopic optical properties. This approach is widely applicable to single-particle analyses of nanostructured dielectric materials and opens new possibilities for in situ optical metrology in the development of advanced photonic, catalytic, and biomedical platforms. Full article
(This article belongs to the Special Issue Optofluidic Sensors)
Show Figures

Figure 1

14 pages, 1968 KB  
Article
Multispectral Camouflage Photonic Structure for Visible–IR–LiDAR Bands with Radiative Cooling
by Lehong Huang, Yuting Gao, Bo Peng and Caiwen Ma
Photonics 2026, 13(1), 31; https://doi.org/10.3390/photonics13010031 - 30 Dec 2025
Abstract
The rapid development of detection technologies has increased the demand for multispectral camouflage materials capable of broadband concealment and effective thermal management. To address the conflicting optical requirements between infrared camouflage and LiDAR camouflage, we propose a composite design combining a germanium–ytterbium fluoride [...] Read more.
The rapid development of detection technologies has increased the demand for multispectral camouflage materials capable of broadband concealment and effective thermal management. To address the conflicting optical requirements between infrared camouflage and LiDAR camouflage, we propose a composite design combining a germanium–ytterbium fluoride (Ge/YbF3) selective emitter with an amorphous silicon (a-Si) two-dimensional periodic microstructure. The multilayer film, optimized using the transfer-matrix method and a particle swarm optimisation algorithm, achieves low emissivity in the 3–5 μm and 8–14 μm infrared atmospheric windows and high emissivity within 5–8 μm for radiative cooling, while introducing a narrowband absorption peak at 1.55 μm. Additionally, the a-Si microstructure provides strong narrowband absorption at 10.6 μm via a grating-resonance mechanism. FDTD simulations confirm low emissivity in the infrared windows, high absorptance at LiDAR wavelengths, and good angular and polarization robustness. This work demonstrates a multifunctional photonic structure capable of integrating infrared camouflage, laser camouflage, and thermal-radiation control. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

16 pages, 12873 KB  
Article
In Situ Anchoring of CQDs-Induced CuO Quantum Dots on Ultrafine TiO2 Nanowire Arrays for Enhanced Photocatalysis
by Xinyu Hao, Xiaoyang Xi, Jinwei Qu and Qiurong Li
Catalysts 2026, 16(1), 23; https://doi.org/10.3390/catal16010023 - 28 Dec 2025
Viewed by 93
Abstract
CuO/TiO2 is a highly active visible-light-driven photocatalyst. The precise structural regulation of TiO2 and the quantum dot-scale loading strategy of CuO have long been researching hotspots and challenges. This work presents an ingenious synthetic strategy, leveraging the photoinduced superhydrophilicity and dark-induced [...] Read more.
CuO/TiO2 is a highly active visible-light-driven photocatalyst. The precise structural regulation of TiO2 and the quantum dot-scale loading strategy of CuO have long been researching hotspots and challenges. This work presents an ingenious synthetic strategy, leveraging the photoinduced superhydrophilicity and dark-induced reversible hydrophobicity of TiO2, coupled with carbon quantum dots (CQDs) as “seeds” to induce the in situ synthesis of CuO quantum dots (CuO QDs). Specifically, CuO QDs with an average diameter of 5–10 nm were successfully anchored onto TiO2 nanowire arrays (TNWAs) with a diameter of 10–15 nm. By adjusting the dosage of “seeds” (CQDs), the loading amount of CuO QDs can be effectively controlled. Corresponding characterizations were performed, including ultraviolet-visible-near-infrared (UV-Vis-NIR spectroscopy) for optical absorption properties, photoluminescence (PL) spectroscopy for photoluminescent behavior, electron paramagnetic resonance (EPR) spectroscopy for free radical generation capability, and bisphenol A (BPA) degradation assays for photocatalytic performance. Loading 4.78 wt% CuO QDs can effectively inhibit the recombination of electron–hole pairs in TNWAs. Simultaneously, it prolongs the lifetime of charge carriers (photoelectrons) and enhances the yields of hydroxyl radicals (•OH) and superoxide radicals (•O2). The BPA degradation efficiency of the CuO QDs/TNWA composite is 2.4 times higher than that of TNWAs. Furthermore, we found that the loading of CuO QDs significantly modulates the depletion layer width of the P–N heterojunction, and the underlying mechanism has been discussed in detail. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

25 pages, 3489 KB  
Article
Citicoline Oral Solution Induces Functional Enhancement and Synaptic Plasticity in Patients with Open-Angle Glaucoma
by Vincenzo Parisi, Lucia Ziccardi, Lucia Tanga, Lucilla Barbano, Emanuele Tinelli, Gianluca Coppola, Antonio Di Renzo, Manuele Michelessi, Gloria Roberti, Carmela Carnevale, Sara Giammaria, Carmen Dell’Aquila, Mattia D’Andrea, Gianluca Manni and Francesco Oddone
J. Clin. Med. 2026, 15(1), 223; https://doi.org/10.3390/jcm15010223 - 27 Dec 2025
Viewed by 117
Abstract
Objectives: To evaluate the changes in retinal function and neural conduction along the visual pathways after 12 months of treatment with Citicoline oral solution in patients with open-angle glaucoma (OAG). Methods: In this randomized, prospective, double-blind study, 29 OAG patients were enrolled. Fifteen [...] Read more.
Objectives: To evaluate the changes in retinal function and neural conduction along the visual pathways after 12 months of treatment with Citicoline oral solution in patients with open-angle glaucoma (OAG). Methods: In this randomized, prospective, double-blind study, 29 OAG patients were enrolled. Fifteen patients (Citicoline Group, 15 eyes) received Citicoline oral solution (Neurotidine®, 500 mg/day), and 14 patients (Placebo Group, 14 eyes) received placebo for 12 months. Visual field (VF), pattern electroretinogram (PERG), visual evoked potentials (VEP), and Retinocortical Time (RCT) were assessed at baseline and after 6 and 12 months. Brain Diffusion Tensor Imaging (DTI)-Magnetic Resonance Imaging (MRI) was performed at baseline and at 12 months. Results: PERG, VEP, and RCT baseline values were comparable between groups (p > 0.01) at baseline. After 12 months of Citicoline treatment, significant (p < 0.01) increases in PERG P50–N95 and VEP N75-P100 amplitudes, and significant shortening of PERG P50, VEP P100 implicit times and RCT were observed. VEP implicit times shortening significantly correlated with the changes in VF Mean Deviation, and RCT shortening was associated with changes in DTI-MRI metrics in the lateral geniculate nucleus and on optic radiations, without reaching the level of significance. No significant changes were found in the Placebo Group. Conclusions: In OAG, Citicoline oral solution enhances retinal function likely through neuromodulation processes and changes post-retinal visual pathway connectivity. This could explain the improvement of visual field defects. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

47 pages, 10163 KB  
Review
Nanomedicine in Ovarian Cancer: Advances in Imaging, Targeted Delivery, and Theranostic Therapeutic Platforms
by Dorota Bartusik-Aebisher, Izabella Wilk and David Aebisher
Cancers 2026, 18(1), 86; https://doi.org/10.3390/cancers18010086 - 27 Dec 2025
Viewed by 318
Abstract
Ovarian cancer continues to be the most lethal gynaecological malignancy, principally due to its late-stage diagnosis, extensive peritoneal dissemination, chemoresistance, and limitations of current imaging and therapeutic strategies. By optimising pharmacokinetics, refining tumour-selective drug delivery, and supporting high-resolution, multimodal imaging, nanomedicine offers a [...] Read more.
Ovarian cancer continues to be the most lethal gynaecological malignancy, principally due to its late-stage diagnosis, extensive peritoneal dissemination, chemoresistance, and limitations of current imaging and therapeutic strategies. By optimising pharmacokinetics, refining tumour-selective drug delivery, and supporting high-resolution, multimodal imaging, nanomedicine offers a versatile platform to address these limitations. In this review, current progress across lipid-based, polymeric, inorganic, hybrid, and biomimetic nanocarriers is synthesised, emphasising how tailored physiochemical properties, surface functionalisation, and stimuli-responsive designs can improve tumour localisation, surmount stromal and ascetic barriers, and enable controlled drug release. Concurrently, significant advancement in imaging nanoprobes, including magnetic resonance imaging (MRI), positron emission tomography (PET)/single-photon emission computed tomography (SPECT), optical, near-infrared imaging (NIR), ultrasound, and photoacoustic systems, has evolved early lesion detection, intraoperative guidance, and quantitative monitoring of treatment. Diagnosis and therapy are further integrated within single platforms by emerging theranostic constructs, encouraging real-time visualisation of drug distribution and treatment response. Additionally, immune-nanomedicine, intraperitoneal depot systems, and nucleic acid-centred nanotherapies offer promising strategies to address immune suppression and molecular resistance in advanced ovarian cancer. In spite of noteworthy achievements, clinical translation is limited by complex manufacturing requirements, challenges with safety and stability, and restricted patient stratification. To unlock the full clinical potential of nanotechnology in ovarian cancer management, constant innovation in scalable design, regulatory standardisation, and integration of precision biomarkers will be necessary. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Graphical abstract

51 pages, 1561 KB  
Review
Recent Advances in Magnetooptics: Innovations in Materials, Techniques, and Applications
by Conrad Rizal
Magnetism 2026, 6(1), 3; https://doi.org/10.3390/magnetism6010003 - 26 Dec 2025
Viewed by 234
Abstract
Magnetooptics (MO) explores light—matter interactions in magnetized media and has advanced rapidly with progress in materials science, spectroscopy, and integrated photonics. This review highlights recent developments in fundamental principles, experimental techniques, and emerging applications. We revisit the canonical MO effects: Faraday, MO Kerr [...] Read more.
Magnetooptics (MO) explores light—matter interactions in magnetized media and has advanced rapidly with progress in materials science, spectroscopy, and integrated photonics. This review highlights recent developments in fundamental principles, experimental techniques, and emerging applications. We revisit the canonical MO effects: Faraday, MO Kerr effect (MOKE), Voigt, Cotton—Mouton, Zeeman, and Magnetic Circular Dichroism (MCD), which underpin technologies ranging from optical isolators and high-resolution sensors to advanced spectroscopic and imaging systems. Ultrafast spectroscopy, particularly time-resolved MOKE, enables femtosecond-scale studies of spin dynamics and nonequilibrium processes. Hybrid magnetoplasmonic platforms that couple plasmonic resonances with MO activity offer enhanced sensitivity for environmental and biomedical sensing, while all-dielectric magnetooptical metasurfaces provide low-loss, high-efficiency alternatives. Maxwell-based modeling with permittivity tensor (ε) and machine-learning approaches are accelerating materials discovery, inverse design, and performance optimization. Benchmark sensitivities and detection limits for surface plasmon resonance, SPR and MOSPR systems are summarized to provide quantitative context. Finally, we address key challenges in material quality, thermal stability, modeling, and fabrication. Overall, magnetooptics is evolving from fundamental science into diverse and expanding technologies with applications that extend far beyond current domains. Full article
(This article belongs to the Special Issue Soft Magnetic Materials and Their Applications)
Show Figures

Graphical abstract

30 pages, 1670 KB  
Review
Combining Fluorescence and Magnetic Resonance Imaging in Drug Discovery—A Review
by Barbara Smolak, Klaudia Dynarowicz, Dorota Bartusik-Aebisher, Gabriela Henrykowska, David Aebisher and Wiesław Guz
Pharmaceuticals 2026, 19(1), 56; https://doi.org/10.3390/ph19010056 - 26 Dec 2025
Viewed by 276
Abstract
Drug discovery is a complex and multi-stage process that requires advanced analytical technologies capable of accelerating preclinical evaluation and improving the precision of therapeutic design. The combination of fluorescence and magnetic resonance imaging (MRI) within multimodal imaging plays an increasingly important role in [...] Read more.
Drug discovery is a complex and multi-stage process that requires advanced analytical technologies capable of accelerating preclinical evaluation and improving the precision of therapeutic design. The combination of fluorescence and magnetic resonance imaging (MRI) within multimodal imaging plays an increasingly important role in modern pharmacokinetics, integrating the high molecular sensitivity of fluorescence with the non-invasive anatomical visualization offered by MRI. Fluorescence enables real-time monitoring of cellular processes, including drug–target interactions and molecular dynamics, whereas MRI provides detailed structural information on tissues without exposure to ionizing radiation. Hybrid probes—such as superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with near-infrared (NIR) fluorophores or gadolinium-based complexes linked to optical dyes—enable simultaneous acquisition of molecular and anatomical data in a single examination. These multimodal systems are being explored in oncology, neurology, and cardiology, where they support improved visualization of tumor biology, amyloid pathology, and inflammatory processes in vascular disease. Although multimodal imaging shows great promise for enhancing pharmacokinetic and pharmacodynamic studies, several challenges remain, including the potential toxicity of heavy-metal-based contrast agents, limited tissue penetration of fluorescence signals, probe stability in vivo, and the complexity and cost of synthesis. Advances in nanotechnology, particularly biodegradable carriers and manganese-based MRI contrasts, together with the integration of artificial intelligence algorithms, are helping to address these limitations. In the future, fluorescence–MRI hybrid imaging may become an important tool in personalized medicine, supporting more precise therapy planning and reducing the likelihood of clinical failure. Full article
(This article belongs to the Special Issue Advances in Medicinal Chemistry: 2nd Edition)
Show Figures

Graphical abstract

32 pages, 2768 KB  
Review
Fiber-Optic Gyroscopes: Architectures, Signal Processing, Error Compensation, and Emerging Trends
by Yerlan Tashtay, Nurzhigit Smailov, Daulet Naubetov, Akezhan Sabibolda, Yerzhan Nussupov, Nurzhamal Kashkimbayeva, Yersaiyn Mailybayev and Askhat Batyrgaliyev
J. Sens. Actuator Netw. 2026, 15(1), 3; https://doi.org/10.3390/jsan15010003 - 25 Dec 2025
Viewed by 270
Abstract
Fiber-optic gyroscopes (FOGs) have become one of the most important elements of modern inertial navigation systems due to their high accuracy, reliability, and independence from external signals such as satellite navigation. This review analyzes and discusses the key FOG architectures: interferometric (IFOG), resonant [...] Read more.
Fiber-optic gyroscopes (FOGs) have become one of the most important elements of modern inertial navigation systems due to their high accuracy, reliability, and independence from external signals such as satellite navigation. This review analyzes and discusses the key FOG architectures: interferometric (IFOG), resonant (RFOG), digital (DFOG), and hybrid (HFOG). The concepts of their functioning, structural features, and the main advantages and limitations of each architecture are examined. Particular focus is placed on advanced signal-processing and error-compensation algorithms, including filtering techniques, noise suppression, mitigation of thermal and mechanical drifts, and emerging machine learning (ML) based approaches. The analysis of these architectures is carried out in terms of major parameters that determine accuracy, robustness, and miniaturization potential. Various applications of FOGs in space systems, ground platforms, marine and underwater navigation, aviation, and scientific research are also being considered. Finally, the latest development trends are summarized, with a particular focus on miniaturization, integration with additional sensors, and the introduction of digital and AI-driven solutions, aimed at achieving higher accuracy, long-term stability, and resilience to real-world disturbances. Full article
Show Figures

Figure 1

25 pages, 1075 KB  
Review
The Role of Tumor pH in Breast Cancer Imaging: Biology, Diagnostic Applications, and Emerging Techniques
by Dyutika Kantamneni, Saumya Gurbani and Mary Salvatore
Diagnostics 2026, 16(1), 76; https://doi.org/10.3390/diagnostics16010076 - 25 Dec 2025
Viewed by 327
Abstract
Breast cancer screening, while vital for reducing mortality, faces significant limitations in sensitivity and specificity, particularly in dense breasts. Current modalities primarily detect anatomical changes, often missing biologically aggressive tumors at their earliest stages. The altered metabolism of cancer cells establishes a characteristic [...] Read more.
Breast cancer screening, while vital for reducing mortality, faces significant limitations in sensitivity and specificity, particularly in dense breasts. Current modalities primarily detect anatomical changes, often missing biologically aggressive tumors at their earliest stages. The altered metabolism of cancer cells establishes a characteristic inverted pH gradient that drives tumor invasion, metastasis, and treatment resistance. This makes tumor acidity a compelling, functional biomarker for early detection. This review synthesizes the emerging role of pH as a diagnostic biomarker and provides a critical evaluation of advanced imaging techniques for its non-invasive or minimal measurement. We detail the biological underpinnings of tumor acidosis, emphasizing its regulation through glycolytic reprogramming and dysregulated proton transport. Our analysis encompasses a broad spectrum of pH-sensitive imaging modalities, including magnetic resonance methods such as Chemical Exchange Saturation Transfer (CEST) MRI for extracellular pH mapping and multi-nuclear Magnetic Resonance Spectroscopy (MRS) using 1H, 31P, and 19F nuclei to probe various cellular compartments. Furthermore, we examine hyperpolarized 13C MRI for real-time metabolic flux imaging, where metrics such as the lactate-to-pyruvate ratio demonstrate significant predictive value for treatment response. The review also assesses optical and photoacoustic imaging techniques, which offer high sensitivity but are often constrained to superficial tumors. Imaging tumor pH provides a powerful functional window into the earliest metabolic shifts in breast cancer, far preceding macroscopic anatomical changes. The ongoing development and evidence support the role of the pH-sensitive imaging techniques in diagnosis, lesion characterization, and therapy. Additionally, it holds promise for supplementing breast cancer screening by enabling earlier, more specific detection and personalized risk stratification, ultimately aiming to improve patient outcomes. Full article
(This article belongs to the Special Issue Advances in Breast Diagnostics)
Show Figures

Figure 1

18 pages, 3761 KB  
Article
Biocompatible Carbon-Coated Ferrite Nanodot-Based Magnetoliposomes for Magnetic-Induced Multimodal Theragnostic
by Venkatakrishnan Kiran, Anbazhagan Thirumalai, Pazhani Durgadevi, Najim Akhtar, Alex Daniel Prabhu, Koyeli Girigoswami and Agnishwar Girigoswami
Colloids Interfaces 2026, 10(1), 4; https://doi.org/10.3390/colloids10010004 - 24 Dec 2025
Viewed by 142
Abstract
Magnetoliposomes are hybrid nanostructures that integrate superparamagnetic ultrasmall carbon-coated ferrite nanodots (MNCDs) within liposomes (Lipo) composed of egg yolk-derived phospholipids and stabilized with an environmentally benign potato peel extract (PPE), enabling enhanced magnetic resonance imaging (MRI) and optical imaging. The hydrothermally synthesized MNCDs [...] Read more.
Magnetoliposomes are hybrid nanostructures that integrate superparamagnetic ultrasmall carbon-coated ferrite nanodots (MNCDs) within liposomes (Lipo) composed of egg yolk-derived phospholipids and stabilized with an environmentally benign potato peel extract (PPE), enabling enhanced magnetic resonance imaging (MRI) and optical imaging. The hydrothermally synthesized MNCDs were entrapped in liposomes prepared by thin-film hydration, and physicochemical properties were established at each stage of engineering. These magnetoresponsive vesicles (MNCDs+Lipo@PPE) serve as a triple-mode medical imaging contrast for T1 & T2-weighted MRI, while simultaneously enabling optical tracking of liposome degradation under an external magnetic field. They exhibited long-term enhanced fluorescence intensity and colloidal stability over 30 days, with hydrodynamic diameters ranging from 190 to 331 nm and an improved surface charge following PPE coating. In vitro cytotoxicity assays (MTT and Live/Dead staining) demonstrated over 87% cell viability for MNCDs+Lipo@PPE up to 2.7 mM concentration in A549 cells, indicating considerable toxicity. This multimodality engineering facilitates precise image-guided anticancer doxorubicin delivery and magnetic-responsive controlled release. The theoretical model shows that the release profile follows the Korsmeyer-Peppas profile. The externally applied magnetic field enhances the release by 1.4-fold. To demonstrate the anticancer efficiency in vitro with minimum off-target cytotoxicity, MTT and live/dead cell assay were performed against A549 cells. The reported study is a validated demonstration of magnetic-responsive nanocarrier systems for anticancer therapy and multimodal MRI and optical imaging-based diagnosis. Full article
(This article belongs to the Section Colloidal Systems)
Show Figures

Figure 1

11 pages, 2536 KB  
Communication
Nonlinearly Tunable Fano Resonance in One-Dimensional Light Tunneling Heterostructure
by Wenzhe He, Wei Huang, Lei Yang, Fei Wang, Quanying Wu and Yongqiang Chen
Photonics 2026, 13(1), 14; https://doi.org/10.3390/photonics13010014 - 24 Dec 2025
Viewed by 206
Abstract
In this paper, we theoretically investigate nonlinearly tunable Fano resonance by employing a light tunneling heterostructure with one-dimensional defective photonic crystals and a lossy metallic film. We find that the phenomenon of Fano resonance can be created by coupling the Fabry–Pérot cavity mode [...] Read more.
In this paper, we theoretically investigate nonlinearly tunable Fano resonance by employing a light tunneling heterostructure with one-dimensional defective photonic crystals and a lossy metallic film. We find that the phenomenon of Fano resonance can be created by coupling the Fabry–Pérot cavity mode with the topological optical Tamm state. We emphasize that the local field confinement induced by Fano resonance can ensure that the large nonlinear permittivity of metal can be utilized sufficiently. We show that the Fano-type transmission spectrum can be actively modulated by altering the input power intensity of light. We also illustrate that the hysteresis effects and nonreciprocal transmission behaviors can be obtained directly by using the Fano resonant heterostructure, allowing for the realization of high-performance all-optical switches and diodes. Our findings may open up new prospects for the nonlinear topological photonic systems with classical analogue–quantum phenomena. Full article
(This article belongs to the Special Issue Photonic Crystals: Physics and Devices, 2nd Edition)
Show Figures

Figure 1

17 pages, 2761 KB  
Article
Metasurfaces with Phase-Change Materials for Mid-Wave Infrared Thermal Management
by Viktoriia E. Babicheva, Heungsoo Kim and Alberto Piqué
Micromachines 2026, 17(1), 17; https://doi.org/10.3390/mi17010017 - 24 Dec 2025
Viewed by 299
Abstract
Applying coatings that suppress the radiance changes related to temperature-dependent blackbody emission enables temperature-independent optical and sensing systems. Phase-change materials can significantly modify their optical properties within their transition window, but compensating for the large mid-wave infrared (MWIR, 3–5 µm) variation is demanding: [...] Read more.
Applying coatings that suppress the radiance changes related to temperature-dependent blackbody emission enables temperature-independent optical and sensing systems. Phase-change materials can significantly modify their optical properties within their transition window, but compensating for the large mid-wave infrared (MWIR, 3–5 µm) variation is demanding: blackbody radiance at 3 µm increases nearly 10-fold as the temperature rises from 30 °C to 80 °C. Vanadium dioxide VO2, whose insulator–metal transition offers a sharp contrast and a low-loss insulating state, is attractive for applications in thermal management, but simple thin-film designs cannot provide full compensation. We demonstrate metasurface coatings that provide this compensation by constructing an array of metal–VO2–metal antennas tuned to maintain constant thermal emission at a target wavelength over a temperature range of 30 °C to 80 °C. Antennas of several lateral sizes are combined, so their individual resonances collectively track the Planck change. This design provides both optical contrast and the correct temperature derivative, which are unattainable with homogeneous layers. Our approach results in a negligible apparent temperature change of the metasurface across the 30–80 °C range, effectively masking thermal signatures from MWIR detectors stemming from the low losses of VO2. Full article
Show Figures

Figure 1

17 pages, 3231 KB  
Article
Spectroscopic Real-Time Monitoring of Plasmonic Gold Nanoparticle Formation in ZnO Thin Films via Pulsed Laser Annealing
by Edgar B. Sousa, N. F. Cunha, Joel Borges and Michael Belsley
Micro 2026, 6(1), 1; https://doi.org/10.3390/micro6010001 - 24 Dec 2025
Viewed by 92
Abstract
We demonstrate that pulsed laser annealing induces plasmonic gold nanoparticles in ZnO thin films, monitored in real-time via pulse-by-pulse spectroscopy. Initially embedded gold nanoparticles (smaller than 5 nm) in sputtered ZnO films were annealed using 532 nm pulses from a Q-switched Nd:YAG laser [...] Read more.
We demonstrate that pulsed laser annealing induces plasmonic gold nanoparticles in ZnO thin films, monitored in real-time via pulse-by-pulse spectroscopy. Initially embedded gold nanoparticles (smaller than 5 nm) in sputtered ZnO films were annealed using 532 nm pulses from a Q-switched Nd:YAG laser while monitoring transmission spectra in situ. A plasmonic resonance dip emerged after ~100 pulses in the 530–550 nm region, progressively deepening with continued exposure. Remarkably, different incident energies converged to a thermodynamically stable optical state centered near 555 nm, indicating robust nanoparticle configurations. After several hundred laser shots, the process stabilized, producing larger nanoparticles (40–200 nm diameter) with significant surface protrusion. SEM analysis confirmed substantial gold nanoparticle growth. Theoretical modeling supports these observations, correlating spectral evolution with particle size and embedding depth. The protruding gold nanoparticles can be functionalized to detect specific biomolecules, offering significant advantages for biosensing applications. This approach offers superior spatial selectivity and real-time process monitoring compared to conventional thermal annealing, with potential for optimizing uniform nanoparticle distributions with pronounced plasmonic resonances for biosensing applications. Full article
(This article belongs to the Section Microscale Physics)
Show Figures

Figure 1

10 pages, 1852 KB  
Communication
Whispering Gallery Mode Resonator Based on In-Fiber Liquid Microsphere and Y-Waveguide Coupler
by Lixiang Zhao, Shuhui Liu, Ruiying Cao, Lin Mao and Zhicong He
Photonics 2026, 13(1), 8; https://doi.org/10.3390/photonics13010008 - 24 Dec 2025
Viewed by 212
Abstract
A reflective in-fiber liquid microsphere whispering gallery mode (WGM) resonator based on a Y-waveguide coupler is proposed and experimentally demonstrated. The sphere resonator is introduced inside a single-mode fiber (SMF) by using femtosecond laser micromachining and fusion splicing. A Y-waveguide coupler is fabricated [...] Read more.
A reflective in-fiber liquid microsphere whispering gallery mode (WGM) resonator based on a Y-waveguide coupler is proposed and experimentally demonstrated. The sphere resonator is introduced inside a single-mode fiber (SMF) by using femtosecond laser micromachining and fusion splicing. A Y-waveguide coupler is fabricated with femtosecond laser direct writing, which is used to simultaneously excite and collect the WGM field through evanescent field coupling. High-index liquids are filled into the sphere through a laser-drilled channel to form a liquid microsphere where the WGM resonation takes place. The WGM resonator is sensitive to the refractive index (RI) of the filled liquids, and a RI sensitivity of 439 nm/RIU is achieved in an index range from 1.672 to 1.692. The liquid microsphere resonator is also sensitive to temperature, with a sensitivity of −307.1 pm/°C obtained. The microsphere resonator is small in size and robust, which has broad application prospects in the field of food and the chemical industry. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing Technologies for Optical Fiber Devices)
Show Figures

Figure 1

Back to TopTop