Combining Fluorescence and Magnetic Resonance Imaging in Drug Discovery—A Review
Abstract
1. Introduction
2. Multimodal Imaging Techniques in Molecular Analysis and Drug Discovery
2.1. The Phenomenon of Fluorescence and Its Importance in Molecular Analysis
2.1.1. Fluorescent Markers in Biological Research
2.1.2. Applications of Fluorescence in Molecular Analysis
2.1.3. Advantages and Limitations of Fluorescence Techniques
2.2. Magnetic Resonance Imaging (MRI) in Imaging Biological Structures and Processes
2.2.1. Physical Basics of Magnetic Resonance Imaging
Spin Polarization and Macroscopic Magnetization
Larmor Precession
RF Excitation and Signal Detection
Relaxation Mechanisms
- Longitudinal (spin–lattice) relaxation (T1)—the recovery of the magnetization component parallel to B0, governed by energy exchange between the spin system and its molecular environment.
- Transverse (spin–spin) relaxation (T2)—the loss of phase coherence among spins in the transverse plane due to local magnetic field fluctuations and spin–spin interactions.
2.2.2. Construction of MRI Systems
2.2.3. Application of MRI in Imaging Biological Structures
2.2.4. The Importance of Contrast Agents in MRI
2.2.5. Advantages and Challenges of MRI in Pharmaceutical and Clinical Research
2.3. Combination of Fluorescence and MRI
2.3.1. The Concept of Multimodal Imaging
2.3.2. Technologies Combining Fluorescence and MRI
2.3.3. Examples of Hybrid Probes
2.3.4. Challenges in Integrating Both Techniques
2.4. Application of the Combination of Both Techniques in the Discovery of New Drugs
2.4.1. Drug–Target Interaction Monitoring
2.4.2. Bioavailability and Pharmacokinetics Study
2.4.3. Disease Imaging in Preclinical Models
2.4.4. Examples and Achievements in Drug Development
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernald, K.D.S.; Förster, P.C.; Claassen, E.; van de Burgwal, L.H.M. The pharmaceutical productivity gap—Incremental decline in R&D efficiency despite transient improvements. Drug Discov. Today 2024, 29, 104160. [Google Scholar] [CrossRef] [PubMed]
- Mag, P.; Nemes-Terényi, M.; Jerzsele, Á.; Mátyus, P. Some Aspects and Convergence of Human and Veterinary Drug Repositioning. Molecules 2024, 29, 4475. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, H.Y. In vivo molecular imaging in preclinical research. Lab. Anim. Res. 2022, 38, 31. [Google Scholar] [CrossRef]
- Hong, S.; Jo, H.C.; Kim, H.L.; Kim, H.; Lee, J.; Jeon, J.; Rhim, J.; Rhee, S.; Park, J.; Chung, Y.H.; et al. In vivo exosome imaging: Applications of diverse visualization techniques. BMB Rep. 2025, 58, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yu, P.; Bandari, R.P.; Smith, C.J.; Aro, M.R.; Singh, A.; Ma, L. Bimodal MRI/Fluorescence Nanoparticle Imaging Contrast Agent Targeting Prostate Cancer. Nanomaterials 2024, 14, 1177. [Google Scholar] [CrossRef]
- Vermeulen, I.; Isin, E.M.; Barton, P.; Cillero-Pastor, B.; Heeren, R.M.A. Multimodal molecular imaging in drug discovery and development. Drug Discov. Today 2022, 27, 2086–2099. [Google Scholar] [CrossRef]
- Mendys, A. What is fluorescence. Neutrino 2012, 18, 16–19. [Google Scholar]
- Jabłoński, A. Photoluminescence of crystals. Postępy Fiz. 2019, 70, 8–19. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: Cham, Switzerland, 2006. [Google Scholar]
- Wang, X.; Ding, Q.; Groleau, R.R.; Wu, L.; Mao, Y.; Che, F.; Kotova, O.; Scanlan, E.M.; Lewis, S.E.; Li, P.; et al. Fluorescent Probes for Disease Diagnosis. Chem. Rev. 2024, 124, 7106–7164. [Google Scholar] [CrossRef]
- Chiu, P.W.; Hsu, C.T.; Huang, S.P.; Chiou, W.Y.; Lin, C.H. Prediction of Contaminated Areas Using Ultraviolet Fluorescence Markers for Medical Simulation: A Mobile Phone Application Approach. Bioengineering 2023, 10, 530. [Google Scholar] [CrossRef]
- Deng, D.J.; Xia, Q.C.; Jia, G.S.; Suo, F.; Chen, J.L.; Sun, L.; Wang, J.Q.; Wang, S.M.; Du, L.L.; Wang, Y.; et al. Perturbation of kinetochore function using GFP-binding protein in fission yeast. G3 2021, 11, jkab290. [Google Scholar] [CrossRef]
- Seah, D.; Cheng, Z.; Vendrell, M. Fluorescent Probes for Imaging in Humans: Where Are We Now? ACS Nano 2023, 17, 19478–19490. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, F.; Wang, Y.; Li, H.; Zhang, J.; Sun, Z.; Jiang, Y. Fluorescent Organic Small Molecule Probes for Bioimaging and Detection Applications. Molecules 2022, 27, 8421. [Google Scholar] [CrossRef] [PubMed]
- Kaizuka, T.; Morishita, H.; Hama, Y.; Tsukamoto, S.; Matsui, T.; Toyota, Y.; Kodama, A.; Ishihara, T.; Mizushima, T.; Mizushima, N. An Autophagic Flux Probe that Releases an Internal Control. Mol. Cell 2016, 64, 835–849. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.H.; Hsiao, J.K. Indocyanine green: An old drug with novel applications. Tzu Chi Med. J. 2021, 33, 317–322. [Google Scholar] [CrossRef]
- Belia, F.; Biondi, A.; Agnes, A.; Santocchi, P.; Laurino, A.; Lorenzon, L.; Pezzuto, R.; Tirelli, F.; Ferri, L.; D’Ugo, D.; et al. The Use of Indocyanine Green (ICG) and Near-Infrared (NIR) Fluorescence-Guided Imaging in Gastric Cancer Surgery: A Narrative Review. Front. Surg. 2022, 9, 880773. [Google Scholar] [CrossRef]
- Depalma, N.; D’Ugo, S.; Manoochehri, F.; Libia, A.; Sergi, W.; Marchese, T.R.L.; Forciniti, S.; Del Mercato, L.L.; Piscitelli, P.; Garritano, S.; et al. NIR ICG-Enhanced Fluorescence: A Quantitative Evaluation of Bowel Microperfusion and Its Relation to Central Perfusion in Colorectal Surgery. Cancers 2023, 15, 5528. [Google Scholar] [CrossRef]
- Refaat, A.; Yap, M.L.; Pietersz, G.; Walsh, A.P.G.; Zeller, J.; Del Rosal, B.; Wang, X.; Peter, K. In vivo fluorescence imaging: Success in preclinical imaging paves the way for clinical applications. J. Nanobiotechnol. 2022, 20, 450. [Google Scholar] [CrossRef]
- Momeni, S.; Shanei, A.; Sazgarnia, A.; Azmoonfar, R.; Ghorbani, F. Increased radiosensitivity of melanoma cells through cold plasma pretreatment mediated by ICG. J. Radiat. Res. 2023, 64, 751–760. [Google Scholar] [CrossRef]
- Saini, A.; Singh, J.; Kumar, S. Optically superior fluorescent probes for selective imaging of cells, tumors, and reactive chemical species. Org. Biomol. Chem. 2021, 19, 5208–5236. [Google Scholar] [CrossRef]
- Lu, S.; Dai, Z.; Cui, Y.; Kong, D.M. Recent Development of Advanced Fluorescent Molecular Probes for Organelle-Targeted Cell Imaging. Biosensors 2023, 13, 360. [Google Scholar] [CrossRef]
- Golm, S.K.; Hübner, W.; Müller, K.M. Fluorescence Microscopy in Adeno-Associated Virus Research. Viruses 2023, 15, 1174. [Google Scholar] [CrossRef]
- Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019, 21, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Walker, J.N.; Luong, A.T.; Mathews, J.; Shields, S.W.J.; Kuo, Y.A.; Chen, Y.I.; Nguyen, T.D.; He, Y.; Nguyen, A.T.; et al. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. Nat. Nanotechnol. 2024, 19, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, X.; Zhu, M.; Wang, V.Y.; Guo, J. Progress and Prospects in FRET for the Investigation of Protein-Protein Interactions. Biosensors 2025, 15, 624. [Google Scholar] [CrossRef] [PubMed]
- Jeude, L.M.; Leben, R.; Beninga, W.; Ding, Y.; Stevanato, G.; Glöggler, S.; Niesner, R.A.; Kube, D. Metabolic Changes in Living Human Lymphoma Cells Intervening NAD+ Metabolism as Revealed by NAD(P)H-Fluorescence Lifetime Imaging and Para-Hydrogen-Induced Polarization NMR. Cytom. Part A 2025, 107, 750–762. [Google Scholar] [CrossRef]
- Yashin, K.S.; Shcheslavskiy, V.I.; Medyanik, I.A.; Kravets, L.Y.; Shirmanova, M.V. Towards Optical Biopsy in Glioma Surgery. Int. J. Mol. Sci. 2025, 26, 4554. [Google Scholar] [CrossRef]
- Yan, J.; Liu, S.; Sun, D.; Peng, S.; Ming, Y.; Ostovan, A.; Song, Z.; You, J.; Li, J.; Fan, H. Molecularly Imprinted Ratiometric Fluorescent Sensors for Analysis of Pharmaceuticals and Biomarkers. Sensors 2024, 24, 7068. [Google Scholar] [CrossRef]
- Zacharioudaki, D.E.; Fitilis, I.; Kotti, M. Review of Fluorescence Spectroscopy in Environmental Quality Applications. Molecules 2022, 27, 4801. [Google Scholar] [CrossRef]
- Pigoń, K.; Ruziewicz, Z. Physical Chemistry; State Scientific Publishing House: Warszawa, Poland, 1980; Available online: https://images.iformat.pl/5FEDC415EB/8186F154-7724-45E6-A1AD-25B2CEB904B6.pdf (accessed on 19 November 2025).
- Kumar, V.; Lakshman, P.K.; Prasad, T.K.; Manjunath, K.; Bairy, S.; Vasu, A.S.; Ganavi, B.; Jasti, S.; Kamariah, N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2023, 10, e23864. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, X.; Dennis, A.M. Minimizing near-infrared autofluorescence in preclinical imaging with diet and wavelength selection. J. Biomed. Opt. 2023, 28, 094805. [Google Scholar] [CrossRef] [PubMed]
- Bénard, M.; Schapman, D.; Chamot, C.; Dubois, F.; Levallet, G.; Komuro, H.; Galas, L. Optimization of Advanced Live-Cell Imaging Through Red/Near-Infrared Dye Labeling and Fluorescence Lifetime-Based Strategies. Int. J. Mol. Sci. 2021, 22, 11092. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Zhang, C.; Yu, B.; Lin, D.; Qu, J. Super-Resolution Microscopy: Shedding New Light on In Vivo Imaging. Front. Chem. 2021, 9, 746900. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Liu, S.; Ping, J.; Yao, X.; Chen, L.; Yang, D.; Liu, Y.; Wang, C.; Xiao, Y.; Qi, L.; et al. Recent Advances in Fluorescent Nanoparticles for Stimulated Emission Depletion Imaging. Biosensors 2024, 14, 314. [Google Scholar] [CrossRef]
- Saito, S.; Ueda, J. Preclinical magnetic resonance imaging and spectroscopy in the fields of radiological technology, medical physics, and radiology. Radiol. Phys. Technol. 2024, 17, 47–59. [Google Scholar] [CrossRef]
- Grover, V.P.; Tognarelli, J.M.; Crossey, M.M.; Cox, I.J.; Taylor-Robinson, S.D.; McPhail, M.J. Magnetic resonance imaging: Principles and techniques: Lessons for clinicians. J. Clin. Exp. Hepatol. 2015, 5, 246–255. [Google Scholar] [CrossRef]
- Si, G.; Du, Y.; Tang, P.; Ma, G.; Jia, Z.; Zhou, X.; Mu, D.; Shen, Y.; Lu, Y.; Mao, Y.; et al. Unveiling the next generation of MRI contrast agents: Current insights and perspectives on ferumoxytol-enhanced MRI. Natl. Sci. Rev. 2024, 11, nwae057. [Google Scholar] [CrossRef]
- Klohs, J.; Chen, W.C.; Araki, R. Advanced preclinical functional magnetic resonance imaging of the brain. Npj Imaging 2025, 3, 27. [Google Scholar] [CrossRef]
- Azhar, S.; Chong, L.R. Clinician’s guide to the basic principles of MRI. Postgrad. Med. J. 2023, 99, 894–903. [Google Scholar] [CrossRef]
- Vassiliou, V.S.; Cameron, D.; Prasad, S.K.; Gatehouse, P.D. Magnetic resonance imaging: Physics basics for the cardiologist. JRSM Cardiovasc. Dis. 2018, 7, 2048004018772237. [Google Scholar] [CrossRef]
- Pęczkowski, P. Physical Foundations and History of Magnetic Resonance Imaging. Universe. 2012. Available online: https://wszechswiat.ptpk.org/index.php/wszechswiat/article/view/571/442 (accessed on 19 November 2025).
- Gaeta, M.; Galletta, K.; Cavallaro, M.; Mormina, E.; Cannizzaro, M.T.; Lanzafame, L.R.M.; D’Angelo, T.; Blandino, A.; Vinci, S.L.; Granata, F. T1 relaxation: Chemo-physical fundamentals of magnetic resonance imaging and clinical applications. Insights Imaging 2024, 15, 200. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Sappo, C.R.; Grissom, W.A.; Gore, J.C.; Yan, X. Dual-Tuned Lattice Balun for Multi-Nuclear MRI and MRS. IEEE Trans. Med. Imaging 2022, 41, 1420–1430. [Google Scholar] [CrossRef] [PubMed]
- Levitt, M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance; John Wiley & Sons Ltd.: Oxford, UK, 2008. [Google Scholar]
- Mańko, M.; Karpiński, R. RF coils—Their Role in the MRI System and an Overview of Selected Solutions. Modern Technologies of the 21st Century—Overview, Trends and Research; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2019; Volume 1, pp. 73–84. Available online: https://bc.wydawnictwo-tygiel.pl/publikacja/B748B37A-5C63-7A37-CE6D-B000648E2D2E (accessed on 19 November 2025).
- Berlincourt, T.G. Superconducting Niobium-Titanium: Enabler for Affordable MRI and the Search for the Higgs Boson. Phys. Perspect. 2016, 17, 334–353. [Google Scholar] [CrossRef]
- Huang, S.; Algarín, J.M.; Alonso, J.; Anieyrudh, R.; Borreguero, J.; Bschorr, F.; Cassidy, P.; Choo, W.M.; Corcos, D.; Guallart-Naval, T.; et al. Experience of how to build an MRI machine from scratch. Prog. Nucl. Magn. Reson. Spectrosc. 2025, 150–151, 101574. [Google Scholar] [CrossRef] [PubMed]
- Hori, M.; Hagiwara, A.; Goto, M.; Wada, A.; Aoki, S. Low-Field Magnetic Resonance Imaging: Its History and Renaissance. Investig. Radiol. 2021, 56, 669–679. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarwar, A.; Nemirovski, A.; Shapiro, B. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles. J. Magn. Magn. Mater. 2012, 324, 742–754. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kravchenko, D.; Hagar, M.T.; Vecsey-Nagy, M.; Kabat, I.; Groteklaes, A.; Luetkens, J.A.; Kuetting, D.; Isaak, A.; Emrich, T.; Varga-Szemes, A.; et al. Low-field and portable MRI technology: Advancements and innovations. Eur. Radiol. Exp. 2025, 9, 103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arnold, T.C.; Freeman, C.W.; Litt, B.; Stein, J.M. Low-field MRI: Clinical promise and challenges. J. Magn. Reson. Imaging 2023, 57, 25–44. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dostál, M.; Jurasová, K.; Keřkovský, M.; Vaníček, J.; Kalas, L.; Látal, L.; Trojek, V.; Šprláková-Puková, A. What factors affect a patient’s subjective perception of MRI examination. Sci. Rep. 2024, 14, 22731. [Google Scholar] [CrossRef]
- Motovilova, E.; Winkler, S.A. Overview of Methods for Noise and Heat Reduction in MRI Gradient Coils. Front. Phys. 2022, 10, 907619. [Google Scholar] [CrossRef]
- Vorobiev, V.; Adriouach, S.; Crowe, L.A.; Lenglet, S.; Thomas, A.; Chauvin, A.S.; Allémann, E. Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells. Eur. J. Pharm. Biopharm. 2021, 158, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Petralia, G.; Zugni, F.; Summers, P.E.; Colombo, A.; Pricolo, P.; Grazioli, L.; Colagrande, S.; Giovagnoni, A.; Padhani, A.R.; Italian Working Group on Magnetic Resonance. Whole-body magnetic resonance imaging (WB-MRI) for cancer screening: Recommendations for use. Radiol. Med. 2021, 126, 1434–1450. [Google Scholar] [CrossRef] [PubMed]
- Nukovic, J.J.; Opancina, V.; Ciceri, E.; Muto, M.; Zdravkovic, N.; Altin, A.; Altaysoy, P.; Kastelic, R.; Velazquez Mendivil, D.M.; Nukovic, J.A.; et al. Neuroimaging Modalities Used for Ischemic Stroke Diagnosis and Monitoring. Medicina 2023, 59, 1908. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhong, H.; Guan, X.; Wan, L.; Zhao, X.; Zou, S.; Zhang, H. Role of microenvironment characteristics and MRI radiomics in the risk stratification of distant metastases in rectal cancer: A diagnostic study. Int. J. Surg. 2025, 111, 200–209. [Google Scholar] [CrossRef]
- Puledda, F.; Ffytche, D.; Lythgoe, D.J.; O’Daly, O.; Schankin, C.; Williams, S.C.R.; Goadsby, P.J. Insular and occipital changes in visual snow syndrome: A BOLD fMRI and MRS study. Ann. Clin. Transl. Neurol. 2020, 7, 296–306. [Google Scholar] [CrossRef]
- Rusche, T.; Vosshenrich, J.; Winkel, D.J.; Donners, R.; Segeroth, M.; Bach, M.; Merkle, E.M.; Breit, H.C. More Space, Less Noise-New-generation Low-Field Magnetic Resonance Imaging Systems Can Improve Patient Comfort: A Prospective 0.55T-1.5T-Scanner Comparison. J. Clin. Med. 2022, 11, 6705. [Google Scholar] [CrossRef]
- Dan, Q.; Jiang, X.; Wang, R.; Dai, Z.; Sun, D. Biogenic Imaging Contrast Agents. Adv. Sci. 2023, 10, e2207090. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Liu, T.; Qi, Y.; Ma, L. The effects of three different contrast agents (Gd-BOPTA, Gd-DTPA, and Gd-DOTA) on brachial plexus magnetic resonance imaging. Ann. Transl. Med. 2021, 9, 344. [Google Scholar] [CrossRef]
- Schemberg, J.; Abbassi, A.E.; Lindenbauer, A.; Chen, L.Y.; Grodrian, A.; Nakos, X.; Apte, G.; Khan, N.; Kraupner, A.; Nguyen, T.H.; et al. Synthesis of Biocompatible Superparamagnetic Iron Oxide Nanoparticles (SPION) under Different Microfluidic Regimes. ACS Appl. Mater. Interfaces 2022, 14, 48011–48028. [Google Scholar] [CrossRef]
- Blomqvist, L.; Nordberg, G.F.; Nurchi, V.M.; Aaseth, J.O. Gadolinium in Medical Imaging-Usefulness, Toxic Reactions and Possible Countermeasures—A Review. Biomolecules 2022, 12, 742. [Google Scholar] [CrossRef]
- Zhang, L.; Roy, S.; Guo, B. The role of manganese-based MRI contrast agents for cancer theranostics: Where do we stand in 2025? Theranostics 2025, 15, 4147–4174. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geraldes, C.F.G.C. Manganese Oxide Nanoparticles for MRI-Based Multimodal Imaging and Theranostics. Molecules 2024, 29, 5591. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mishra, V.; Kumari, N.; Vyas, M.; Aljabali, A.A.A.; Chattaraj, A.; Mishra, Y. Advances in multimodal imaging techniques in nanomedicine: Enhancing drug delivery precision. RSC Adv. 2025, 15, 27187–27209. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gong, T.; Ullah, Z.; Roy, S.; Cheng, C.; Li, M.; Cheng, J.; Zhang, Y.; Guo, B.; Qiu, Y. Implication of Bimodal Magnetic Resonance and Fluorescence Imaging Probes in Advanced Healthcare: Enhancing Disease Diagnosis and Targeted Therapy. Int. J. Nanomed. 2025, 20, 9473–9503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Öcbe, M. The evolving role of MRI in dentomaxillofacial diagnostics: A comprehensive review. Eur. Oral. Res. 2025, 59, 58–67. [Google Scholar] [CrossRef]
- Hagiwara, A.; Takahashi, M. Advanced Techniques for MR Neuroimaging. Magn. Reson. Med. Sci. 2024, 23, 249–251. [Google Scholar] [CrossRef]
- Altaf, A.; Shakir, M.; Irshad, H.A.; Atif, S.; Kumari, U.; Islam, O.; Kimberly, W.T.; Knopp, E.; Truwit, C.; Siddiqui, K. Applications, limitations and advancements of ultra-low-field magnetic resonance imaging: A scoping review. Surg. Neurol. Int. 2024, 15, 218. [Google Scholar] [CrossRef]
- Váša, F.; Bennallick, C.; Bourke, N.J.; Padormo, F.; Baljer, L.; Briski, U.; Cawley, P.; Arichi, T.; Wood, T.C.; Lythgoe, D.J.; et al. Ultra-low-field brain MRI morphometry: Test-retest reliability and correspondence to high-field MRI. Imaging Neurosci. 2025, 3, IMAG.a.930. [Google Scholar] [CrossRef]
- Mannheim, J.G.; Schmid, A.M.; Schwenck, J.; Katiyar, P.; Herfert, K.; Pichler, B.J.; Disselhorst, J.A. PET/MRI Hybrid Systems. Semin. Nucl. Med. 2018, 48, 332–347. [Google Scholar] [CrossRef]
- Chaddad, A.; Tan, G.; Liang, X.; Hassan, L.; Rathore, S.; Desrosiers, C.; Katib, Y.; Niazi, T. Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects. Cancers 2023, 15, 3839. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yang, K.; Wen, Y.; Wang, P.; Hu, Y.; Lai, Y.; Wang, Y.; Zhao, K.; Tang, S.; Zhang, A.; et al. Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging. Nat. Med. 2024, 30, 1471–1480. [Google Scholar] [CrossRef]
- Farah, F.A.; Qin, Y.; Green, M.A.; Wilton-Ely, J.D.E.T. Semiconducting Polymer Nanoparticles as Multimodal Agents for Optical and Magnetic Resonance Imaging. Adv. Healtch. Mater. 2025, 14, e2500195. [Google Scholar] [CrossRef] [PubMed]
- Yun, W.S.; Cho, H.; Jeon, S.I.; Lim, D.K.; Kim, K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023, 13, 1787. [Google Scholar] [CrossRef] [PubMed]
- Pinkerton, N.M.; Gindy, M.E.; Calero-DdelC, V.L.; Wolfson, T.; Pagels, R.F.; Adler, D.; Gao, D.; Li, S.; Wang, R.; Zevon, M.; et al. Single-Step Assembly of Multimodal Imaging Nanocarriers: MRI and Long-Wavelength Fluorescence Imaging. Adv. Healtch. Mater. 2015, 4, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- Karan, S.; Cho, J.H.; Tran, C.T.N.; Cho, M.Y.; Lee, H.; Naskar, R.; Hwang, I.; Pradhan, S.; Park, H.S.; Han, E.H.; et al. Activatable near-infrared fluorescence and chemical exchange saturation transfer MRI multimodal imaging probe for tumor detection in vitro and in vivo. Sens. Actuators B Chem. 2024, 413, 135839. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Wang, J.W.; Wu, Y.; Tao, Q.; Wang, F.F.; Wang, N.; Ji, X.R.; Li, Y.G.; Yu, S.; Zhang, J.Z. Multimodal Magnetic Resonance and Fluorescence Imaging of the Induced Pluripotent Stem Cell Transplantation in the Brain. Mol. Biol. 2022, 56, 453–462. [Google Scholar] [CrossRef]
- Yang, R.Q.; Wang, P.Y.; Lou, K.L.; Dang, Y.Y.; Tian, H.N.; Li, Y.; Gao, Y.Y.; Huang, W.H.; Zhang, Y.Q.; Liu, X.L.; et al. Biodegradable Nanoprobe for NIR-II Fluorescence Image-Guided Surgery and Enhanced Breast Cancer Radiotherapy Efficacy. Adv. Sci. 2022, 9, e2104728. [Google Scholar] [CrossRef]
- Gao, T.; Wang, P.; Gong, T.; Zhou, Y.; Wang, A.; Tang, X.; Song, X.; Fan, Y. Reporter Genes for Brain Imaging Using MRI, SPECT and PET. Int. J. Mol. Sci. 2022, 23, 8443. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Y.; Fu, C.; Li, C.; Feng, F.; Li, H.; Tan, L.; Qu, H.; Hui, H.; Wang, J.; et al. Quantitative visualization of myocardial ischemia-reperfusion-induced cardiac lesions via ferroptosis magnetic particle imaging. Theranostics 2024, 2024, 1081–1097. [Google Scholar] [CrossRef]
- Surasinghe, S.; Liatsou, I.; Nováková, Z.; Bařinka, C.; Artemov, D.; Hapuarachchige, S. Optical and MRI-Guided Theranostic Application of Ultrasmall Superparamagnetic Iron Oxide Nanodrug Conjugate for PSMA-Positive Prostate Cancer Therapy. ACS Appl. Mater. Interfaces 2025, 17, 11611–11623. [Google Scholar] [CrossRef]
- Ravoori, M.K.; Singh, S.; Bhavane, R.; Sood, A.K.; Anvari, B.; Bankson, J.; Annapragada, A.; Kundra, V. Multimodal Magnetic Resonance and Near-Infrared-Fluorescent Imaging of Intraperitoneal Ovarian Cancer Using a Dual-Mode-Dual-Gadolinium Liposomal Contrast Agent. Sci. Rep. 2016, 6, 38991. [Google Scholar] [CrossRef]
- Karsalia, R.; Cheng, N.H.; Teng, C.W.; Cho, S.S.; Harmsen, S.; Lee, J.Y.K. Second window ICG predicts postoperative MRI gadolinium enhancement in high grade gliomas and brain metastases. Neurosurg. Focus Video 2022, 6, V8. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Lin, C.; Yao, Q.; Wang, J.; Zhou, J.; He, L.; Chen, G.; Hu, X. Addition of gadolinium contrast to three-dimensional SSFP MR sequences improves the visibility of coronary artery anatomy in young children. Front. Pediatr. 2023, 11, 1159347. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cui, J.; Li, C.; Zhou, H.; Chang, J.; Aras, O.; An, F. 19F MRI Nanotheranostics for Cancer Management: Progress and Prospects. ChemMedChem 2022, 17, e202100701. [Google Scholar] [CrossRef] [PubMed]
- Thankarajan, E.; Oz, S.; Saady, A.; Kulbitski, K.; Kompanets, M.O.; Eisen, M.S.; Berlin, S. SNAP-Tag-Targeted MRI-Fluorescent Multimodal Probes. Chembiochem 2023, 24, e202300172. [Google Scholar] [CrossRef]
- Majewski, M.; Piwko, K.; Ordak, M.; Muszynska, E.; Nasierowski, T.; Bujalska-Zadrozny, M. Magnetic Resonance Imaging and Manganism: A Narrative Review and Laboratory Recommendations. J. Clin. Med. 2024, 13, 2823. [Google Scholar] [CrossRef]
- Schraven, S.; Brück, R.; Rosenhain, S.; Lemainque, T.; Heines, D.; Noormohammadian, H.; Pabst, O.; Lederle, W.; Gremse, F.; Kiessling, F. CT- and MRI-Aided Fluorescence Tomography Reconstructions for Biodistribution Analysis. Investig. Radiol. 2024, 59, 504–512. [Google Scholar] [CrossRef]
- Serkova, N.J.; Glunde, K.; Haney, C.R.; Farhoud, M.; De Lille, A.; Redente, E.F.; Simberg, D.; Westerly, D.C.; Griffin, L.; Mason, R.P. Preclinical Applications of Multi-Platform Imaging in Animal Models of Cancer. Cancer Res. 2021, 81, 1189–1200. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Ma, Y.; Lei, L.; Yue, R.; Cao, H.; Huan, S.; Sun, W.; Song, G. Imaging Carotid Plaque Burden in Living Mice via Hybrid Semiconducting Polymer Nanoparticles-Based Near-Infrared-II Fluorescence and Magnetic Resonance Imaging. Research 2023, 6, 0186. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.; Wang, H.B.; Gong, M.; Kong, X.K.; Xia, P.; Chen, Q.W. Multifunctional Fe3O4@C@Ag hybrid nanoparticles as dual modal imaging probes and near-infrared light-responsive drug delivery platform. Biomaterials 2013, 34, 571–581. [Google Scholar] [CrossRef]
- Sun, S.K.; Dong, L.X.; Cao, Y.; Sun, H.R.; Yan, X.P. Fabrication of multifunctional Gd2O3/Au hybrid nanoprobe via a one-step approach for near-infrared fluorescence and magnetic resonance multimodal imaging in vivo. Anal. Chem. 2013, 85, 8436–8441. [Google Scholar] [CrossRef] [PubMed]
- Fadón-Padilla, L.; Miranda-Pérez de Alejo, C.; Miguel-Coello, A.B.; Beraza, M.; Di Silvio, D.; Urkola-Arsuaga, A.; Sánchez-Guisado, M.J.; Aiestaran-Zelaia, I.; Fernández-Méndez, L.; Martinez-Parra, L.; et al. Magnetic nanoradiotracers for targeted neutrophil detection in pulmonary arterial hypertension. J. Nanobiotechnol. 2024, 22, 709. [Google Scholar] [CrossRef] [PubMed]
- Periyathambi, P.; Balian, A.; Hu, Z.; Padro, D. Activatable MRI probes for the specific detection of bacteria. Anal. Bioanal. Chem. 2021, 413, 7353–7362. [Google Scholar] [CrossRef] [PubMed]
- Ye, M.; Wang, X.; Zou, J.; Sun, W.; Chi, W.; Mao, Z.; Liu, Z. Breaking shackles of molecular weight and emission for NIR-II fluorophores by regulating Columb attraction interaction. Nat. Commun. 2025, 16, 8007. [Google Scholar] [CrossRef]
- Ullah, Z.; Roy, S.; Gu, J.; Ko Soe, S.; Jin, J.; Guo, B. NIR-II Fluorescent Probes for Fluorescence-Imaging-Guided Tumor Surgery. Biosensors 2024, 14, 282. [Google Scholar] [CrossRef]
- Li, Z.; Du, L.; Du, B.; Ullah, Z.; Zhang, Y.; Tu, Y.; Zhou, Y.; Guo, B. Inorganic and hybrid nanomaterials for NIR-II fluorescence imaging-guided therapy of Glioblastoma and perspectives. Theranostics 2025, 15, 5616–5665. [Google Scholar] [CrossRef]
- Cheng, M.; Kong, Q.; Tian, Q.; Cai, W.; Wang, C.; Yuan, M.; Wang, W.; Wang, P.; Yan, W. Osteosarcoma-targeted Cu and Ce based oxide nanoplatform for NIR II fluorescence/magnetic resonance dual-mode imaging and ros cascade amplification along with immunotherapy. J. Nanobiotechnol. 2024, 22, 151. [Google Scholar] [CrossRef]
- Chow, J.C.L. Nanomaterial-Based Molecular Imaging in Cancer: Advances in Simulation and AI Integration. Biomolecules 2025, 15, 444. [Google Scholar] [CrossRef]
- Zhuang, Y.; Mendes, B.B.; Menon, D.; Oliveira, J.; Chen, X.; Duman, F.D.; Conniot, J.; Mercado, S.; Liu, X.; Zhang, S.Y.; et al. Multiscale Profiling of Nanoscale Metal-Organic Framework Biocompatibility and Immune Interactions. Adv. Healthc. Mater. 2025, 14, e01809. [Google Scholar] [CrossRef]
- Canchola, A.; Li, K.; Chen, K.; Borboa-Pimentel, A.; Chou, C.; Dela Rama, R.; Chen, C.Y.; Chen, X.; Strobel, M.; Riviere, J.E.; et al. Meta-Analysis and Machine Learning Prediction of Protein Corona Composition across Nanoparticle Systems in Biological Media. ACS Nano 2025, 19, 37633–37650. [Google Scholar] [CrossRef]
- Gonçalves, V.; Rocha, C.V.; Cernadas, E.; Fernández-Delgado, M.; Bañobre-López, M.; Peng, W.K.; Gallo, J. Dual intelligent multiplexing sensor for accurate disease management with portable NMR. Biosens. Bioelectron. 2025, 287, 117700. [Google Scholar] [CrossRef] [PubMed]
- Polomska, A.K.; Proulx, S.T. Imaging technology of the lymphatic system. Adv. Drug Deliv. Rev. 2021, 170, 294–311. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, Y.; Wang, T.; Shi, D.; Sun, Z.; Xia, C.; Wang, B. Application prospective of nanoprobes with MRI and FI dual-modality imaging on breast cancer stem cells in tumor. J. Nanobiotechnol. 2016, 14, 52. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Semelka, R.C. Gadolinium toxicity: Mechanisms, clinical manifestations, and nanoparticle role. Arch Toxicol. 2025, 99, 3897–3916. [Google Scholar] [CrossRef]
- Davies, J.; Siebenhandl-Wolff, P.; Tranquart, F.; Jones, P.; Evans, P. Gadolinium: Pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch. Toxicol. 2022, 96, 403–429. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, A.; Chen, X. Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging. Mol. Pharm. 2017, 14, 1352–1364. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Lai, Y.C.; Lu, K.Y.; Lin, G. Advancements, challenges, and future prospects in clinical hyperpolarized magnetic resonance imaging: A comprehensive review. Biomed. J. 2025, 48, 100802. [Google Scholar] [CrossRef]
- Runge, V.M. Dechelation (Transmetalation): Consequences and Safety Concerns with the Linear Gadolinium-Based Contrast Agents, In View of Recent Health Care Rulings by the EMA (Europe), FDA (United States), and PMDA (Japan). Investig. Radiol. 2018, 53, 571–578. [Google Scholar] [CrossRef]
- Moreau, J.; Callewaert, M.; Malytskyi, V.; Henoumont, C.; Voicu, S.N.; Stan, M.S.; Molinari, M.; Cadiou, C.; Laurent, S.; Chuburu, F. Fluorescent chitosan-based nanohydrogels and encapsulation of gadolinium MRI contrast agent for magneto-optical imaging. Carbohydr. Polym. Technol. Appl. 2021, 2, 100104. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, Y.; Tian, H.; Yu, Y.; Gan, Y.; Li, H.; Yuan, M.; Huang, X.; Liu, X. Recent Advancement in MRI-Based Nanotheranostic Agents for Tumor Diagnosis and Therapy Integration. Int. J. Nanomed. 2025, 20, 10503–10540. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, P.; Pathak, S.; Jain, K.; Garg, P.; Pant, M.; Mahapatro, A.K.; Singh, R.K.; Rajput, P.; Kim, S.K.; et al. Tailored nanoparticles for magnetic hyperthermia: Highly stable aqueous dispersion of Mn-substituted magnetite superparamagnetic nanoparticles by double surfactant coating for improved heating efficiency. J. Alloys Compd. 2024, 976, 172999. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, Y.; Zhang, X.; Chen, K.; Li, Y.; Xu, X.; Xu, B. A Preliminary Study of PSMA Fluorescent Probe for Targeted Fluorescence Imaging of Prostate Cancer. Molecules 2022, 27, 2736. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Wang, F.; Luo, Y.; Kang, S.G.; Tang, J.; Lightstone, F.C. Deep generative molecular design reshapes drug discovery. Cell Rep. Med. 2022, 3, 100794. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cheng, S.; Xu, Y.; Zheng, T.; Ling, C.; Du, J. Arsenic Trioxide Enhances the Efficacy of PD-1 Inhibitors in Hepatocellular Carcinoma by Inducing Immunogenic Cell Death via the ROS/ERS Pathway. Immun. Inflamm. Dis. 2025, 13, e70214. [Google Scholar] [CrossRef]
- Li, X.; Younis, M.H.; Wei, W.; Cai, W. PD-L1-targeted magnetic fluorescent hybrid nanoparticles: Illuminating the path of image-guided cancer immunotherapy. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2240–2243. [Google Scholar] [CrossRef]
- Henoumont, C.; Devreux, M.; Laurent, S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023, 28, 7275. [Google Scholar] [CrossRef]
- Nott, K.P. Magnetic resonance imaging of tablet dissolution. Eur. J. Pharm. Biopharm. 2010, 74, 78–83. [Google Scholar] [CrossRef]
- Mikac, U.; Kristl, J. Magnetic Resonance Methods as a Prognostic Tool for the Biorelevant Behavior of Xanthan Tablets. Molecules 2020, 25, 5871. [Google Scholar] [CrossRef]
- Kolesnikova, O.A.; Shikvin, D.A.; Antonova, A.O.; Iureva, A.M.; Komedchikova, E.N.; Obozina, A.S.; Kachan, V.S.; Svetlakova, A.V.; Kukushkin, I.D.; Shipunova, V.O. Nanoparticle Detection in Biology and Medicine: A Review. Biosensors 2025, 15, 809. [Google Scholar] [CrossRef]
- Kuzma, B.A.; Pence, I.J.; Greenfield, D.A.; Ho, A.; Evans, C.L. Visualizing and quantifying antimicrobial drug distribution in tissue. Adv. Drug Deliv. Rev. 2021, 177, 113942. [Google Scholar] [CrossRef]
- Amrahli, M.; Centelles, M.; Cressey, P.; Prusevicius, M.; Gedroyc, W.; Xu, X.Y.; So, P.W.; Wright, M.; Thanou, M. MR-labelled liposomes and focused ultrasound for spatiotemporally controlled drug release in triple negative breast cancers in mice. Nanotheranostics 2021, 5, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Qiu, C.; Wu, Y.; Shi, Q.; Guo, Q.; Zhang, J.; Meng, Y.; Wang, C.; Xia, F.; Wang, J.; Xu, C. Advanced strategies for nucleic acids and small-molecular drugs in combined anticancer therapy. Int. J. Biol. Sci. 2023, 19, 789–810. [Google Scholar] [CrossRef] [PubMed]
- Butreddy, A.; Gaddam, R.P.; Kommineni, N.; Dudhipala, N.; Voshavar, C. PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int. J. Mol. Sci. 2021, 22, 8884. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Nowak, A.J.; Hill, V.B.; Kumthekar, P. Diagnostics and Screening in Breast Cancer with Brain and Leptomeningeal Metastasis: A Review of the Literature. Cancers 2024, 16, 3686. [Google Scholar] [CrossRef]
- Liu, W.L.; Zhang, Y.Q.; Luo, X.J.; Zhu, Y.Y.; Song, L.; Ming, Z.H.; Zhang, L.X.; Li, M.J.; Lv, R.C.; Zhang, G.J.; et al. Novel Dual-Mode NIR-II/MRI Nanoprobe Targeting PD-L1 Accurately Evaluates the Efficacy of Immunotherapy for Triple-Negative Breast Cancer. Int. J. Nanomed. 2023, 18, 5141–5157. [Google Scholar] [CrossRef]
- AghaAmiri, S.; Simien, J.; Thompson, A.M.; Voss, J.; Ghosh, S.C.; Hernandez Vargas, S.; Kim, S.; Azhdarinia, A.; Tran Cao, H.S. Comparison of HER2-Targeted Antibodies for Fluorescence-Guided Surgery in Breast Cancer. Mol. Imaging 2021, 2021, 5540569. [Google Scholar] [CrossRef]
- Werner, C.; Sauer, M.; Geis, C. Super-resolving Microscopy in Neuroscience. Chem. Rev. 2021, 121, 11971–12015. [Google Scholar] [CrossRef]
- Wang, C.; Cai, X.; Wang, R.; Zhai, S.; Zhang, Y.; Hu, W.; Zhang, Y.; Wang, D. Neuroprotective effects of verbascoside against Alzheimer’s disease via the relief of endoplasmic reticulum stress in Aβ-exposed U251 cells and APP/PS1 mice. J. Neuroinflamm. 2020, 17, 309. [Google Scholar] [CrossRef]
- Stendahl, J.C.; Sinusas, A.J. Nanoparticles for Cardiovascular Imaging and Therapeutic Delivery, Part 2: Radiolabeled Probes. J. Nucl. Med. 2015, 56, 1637–1641. [Google Scholar] [CrossRef]
- Lim, T.H.; Tien, S.L.; Lim, P.; Lim, A.S. The incidence and patterns of BCR/ABL rearrangements in chronic myeloid leukaemia (CML) using fluorescence in situ hybridisation (FISH). Ann. Acad. Med. Singap. 2005, 34, 533–538. [Google Scholar] [CrossRef]
- Švabek, Ž.T.; Josipović, M.; Horvat, I.; Zadro, R.; Davidović-Mrsić, S. The incidence of atypical patterns of BCR-ABL1 rearrangement and molecular-cytogenetic response to tyrosine kinase inhibitor therapy in newly diagnosed cases with chronic myeloid leukemia (CML). Blood Res. 2018, 53, 152–159. [Google Scholar] [CrossRef]
- Chen, Q.; Shang, W.; Zeng, C.; Wang, K.; Liang, X.; Chi, C.; Liang, X.; Yang, J.; Fang, C.; Tian, J. Theranostic imaging of liver cancer using targeted optical/MRI dual-modal probes. Oncotarget 2017, 8, 32741–32751. [Google Scholar] [CrossRef]
- Cai, J.; Yi, P.; Miao, Y.; Liu, J.; Hu, Y.; Liu, Q.; Feng, Y.; Chen, H.; Li, L. Ultrasmall T1–T2 magnetic resonance multimodal imaging nanoprobes for the detection of β-amyloid aggregates in Alzheimer’s disease mice. ACS Appl. Mater. Interfaces 2020, 12, 26812–26821. [Google Scholar] [CrossRef]
- Ren, W.; Ji, B.; Guan, Y.; Cao, L.; Ni, R. Recent technical advances in accelerating the clinical translation of small animal brain imaging: Hybrid imaging, deep learning, and transcriptomics. Front. Med. 2022, 9, 771982. [Google Scholar] [CrossRef]
- Nkune, N.W.; Moloudi, K.; George, B.P.; Abrahamse, H. An update on the latest advances in fluorescent materials for fluorescence-based molecular imaging: A review. RSC Adv. 2025, 15, 22267–22284. [Google Scholar] [CrossRef]







| Parameter | Description | Importance in Molecular Analysis |
|---|---|---|
| Quantum efficiency (ΦF) | The ratio of the number of photons emitted to those absorbed | Determines the emission efficiency; influences the signal intensity |
| Fluorescence lifetime (τF) | Average excited state duration | Allows for analysis of the dynamics of molecular interactions |
| Stokes shift (Δλ) | The difference between the emission and excitation wavelengths | Provides information on energy losses and environmental impact |
| Photostability | Fluorophore resistance to bleaching | Key to long-term cell imaging |
| Mechanism of Action | Effect on Relaxation | Applications | Limitations | |
|---|---|---|---|---|
| Gadolinium chelates (Gd-DTPA, Gd-DOTA) | Paramagnetism of Gd3+ ions | T1 shortening (increase in signal brightness) | Imaging of vessels, tumors, and inflammatory changes | Risk of nephrotoxicity, gadolinium accumulation |
| SPION (Fe3O4, γ-Fe2O3) | Superparamagnetism of iron nanoparticles | T2 shortening (signal intensity decrease) | Liver, spleen, lymphatic system | Potential toxicity, nanoparticle agglomeration |
| Modern nanohybrid contrasts | Hybrid metal–organic cores | Adjustable T1/T2 effect depending on composition | Molecular targeting, pharmaceutical research | Experimental research phase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Smolak, B.; Dynarowicz, K.; Bartusik-Aebisher, D.; Henrykowska, G.; Aebisher, D.; Guz, W. Combining Fluorescence and Magnetic Resonance Imaging in Drug Discovery—A Review. Pharmaceuticals 2026, 19, 56. https://doi.org/10.3390/ph19010056
Smolak B, Dynarowicz K, Bartusik-Aebisher D, Henrykowska G, Aebisher D, Guz W. Combining Fluorescence and Magnetic Resonance Imaging in Drug Discovery—A Review. Pharmaceuticals. 2026; 19(1):56. https://doi.org/10.3390/ph19010056
Chicago/Turabian StyleSmolak, Barbara, Klaudia Dynarowicz, Dorota Bartusik-Aebisher, Gabriela Henrykowska, David Aebisher, and Wiesław Guz. 2026. "Combining Fluorescence and Magnetic Resonance Imaging in Drug Discovery—A Review" Pharmaceuticals 19, no. 1: 56. https://doi.org/10.3390/ph19010056
APA StyleSmolak, B., Dynarowicz, K., Bartusik-Aebisher, D., Henrykowska, G., Aebisher, D., & Guz, W. (2026). Combining Fluorescence and Magnetic Resonance Imaging in Drug Discovery—A Review. Pharmaceuticals, 19(1), 56. https://doi.org/10.3390/ph19010056

