Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,381)

Search Parameters:
Keywords = optical refraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2929 KiB  
Article
Graphene-Loaded LiNbO3 Directional Coupler: Characteristics and Potential Applications
by Yifan Liu, Fei Lu, Hui Hu, Haoyang Du, Yan Liu and Yao Wei
Nanomaterials 2025, 15(14), 1116; https://doi.org/10.3390/nano15141116 - 18 Jul 2025
Viewed by 171
Abstract
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode [...] Read more.
This study explores the impact of graphene integration on lithium niobate (LiNbO3, LN) ridge waveguides and directional couplers, focusing on coupling efficiency, polarization-dependent light absorption, and temperature sensitivity. Experimental and simulation results reveal that graphene loading significantly alters the effective mode refractive index and enhances waveguide coupling, enabling precise control over light transmission and power distribution. The temperature-dependent behavior of graphene–LN structures demonstrates strong thermal sensitivity, with notable changes in output power ratios between cross and through ports under varying temperatures. These findings highlight the potential of graphene–LN hybrid devices for compact, high-performance photonic circuits and temperature sensing applications. This study provides valuable insights into the design of advanced integrated photonic systems, paving the way for innovations in optical communication, sensing, and quantum technologies. Full article
Show Figures

Figure 1

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 226
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

15 pages, 2463 KiB  
Article
Measurement of the Effective Refractive Index of Suspensions Containing 5 µm Diameter Spherical Polystyrene Microparticles by Surface Plasmon Resonance and Scattering
by Osvaldo Rodríguez-Quiroz, Donato Luna-Moreno, Araceli Sánchez-Álvarez, Gabriela Elizabeth Quintanilla-Villanueva, Oscar Javier Silva-Hernández, Melissa Marlene Rodríguez-Delgado and Juan Francisco Villarreal-Chiu
Chemosensors 2025, 13(7), 257; https://doi.org/10.3390/chemosensors13070257 - 15 Jul 2025
Viewed by 259
Abstract
Microplastics (MP) have been found not only in the environment but also in living beings, including humans. As an initial step in MP detection, a method is proposed to measure the effective refractive index of a solution containing 5 µm diameter spherical polystyrene [...] Read more.
Microplastics (MP) have been found not only in the environment but also in living beings, including humans. As an initial step in MP detection, a method is proposed to measure the effective refractive index of a solution containing 5 µm diameter spherical polystyrene particles (SPSP) in distilled water, based on the surface plasmon resonance (SPR) technique and Mie scattering theory. The reflectances of the samples are obtained with their resonance angles and depths that must be normalized and adjusted according to the reference of the air and the distilled water, to subsequently find their effective refraction index corresponding to the Mie scattering theory. The system has an optical sensor with a Kretschmann–Raether configuration, consisting of a semicircular prism, a thin gold film, and a glass cell for solution samples with different concentrations (0.00, 0.20, 0.05, 0.50, and 1.00%). The experimental result provided a good linear fit with an R2 = 0.9856 and a sensitivity of 7.2863 × 105 RIU/% (refractive index unit per percentage of fill fraction). The limits of detection (LOD) and limit of quantification (LOQ) were determined to be 0.001% and 0.0035%, respectively. The developed optomechatronic system and its applications based on the SPR and Scattering enabled the effective measurement of the refractive index and concentration of solutions containing 5 µm diameter SPSP in distilled water. Full article
(This article belongs to the Special Issue Spectroscopic Techniques for Chemical Analysis)
Show Figures

Figure 1

18 pages, 12019 KiB  
Article
Influence of Temperature on the Optical Properties of Ternary Organic Thin Films for Photovoltaics
by Gabriela Lewinska, Jerzy Sanetra, Konstanty W. Marszalek, Alexander Quandt and Bouchta Sahraoui
Materials 2025, 18(14), 3319; https://doi.org/10.3390/ma18143319 - 15 Jul 2025
Viewed by 265
Abstract
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, [...] Read more.
This study investigates the influence of temperature on the linear and nonlinear optical properties of ternary organic thin films for solar cell applications. Three-component organic thin films (poly({4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b′]dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno[3,4-b]thiophenediyl}) and (poly([2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b]dithiophene]{3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}), marked PTB7 and PTB7th- donors, PCBM, phenyl-C61-butyric acid methyl ester acceptor, and Y5: 2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro[1,2,5]thiadiazolo[3,4e]thieno[2′,3′:4′,5′] thieno[2′,3′:4,5]pyrrolo[3,2-g] thieno[2′,3′:4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro1H-indene-2,1-diylidene))dimalononitrile) and Y6 non-fullerene acceptors: (2,2′-((2Z,2′Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13- dihydro-[1,2,5]thiadiazolo[3,4- e] thieno [2,″3″:4′,5′]thieno [2′,3′:4,5]), non-fullerene acceptors, were analyzed using spectroscopic ellipsometry and third-harmonic generation techniques across a temperature range of 30 °C to 120 °C. The absorption spectra of the ternary layers remained largely stable with temperature, but ellipsometry revealed temperature-dependent changes in layer thickness (a few percent increase during heating) and variations in refractive index and extinction coefficients, suggesting modest structural alterations. Analysis using a gradient model indicated that film composition varies with thickness. Third-harmonic generation measurements showed a decrease in χ(3) after annealing, with the most significant change observed in the PTB7th:Y5:PCBM layer. Full article
Show Figures

Figure 1

36 pages, 8164 KiB  
Review
Technology Landscape Review of In-Sensor Photonic Intelligence: From Optical Sensors to Smart Devices
by Hong Zhou, Dongxiao Li and Chengkuo Lee
AI Sens. 2025, 1(1), 5; https://doi.org/10.3390/aisens1010005 - 14 Jul 2025
Viewed by 357
Abstract
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical [...] Read more.
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical microsystems to AI-driven smart devices. First, we examine classical optical sensing methodologies, including refractive index sensing, surface-enhanced infrared absorption (SEIRA), surface-enhanced Raman spectroscopy (SERS), surface plasmon-enhanced chiral spectroscopy, and surface-enhanced fluorescence (SEF) spectroscopy, highlighting their principles, capabilities, and limitations. Subsequently, we analyze the architecture of PIC-based sensing platforms, emphasizing their miniaturization, scalability, and real-time detection performance. This review then introduces the emerging paradigm of in-sensor computing, where AI algorithms are integrated directly within photonic devices, enabling real-time data processing, decision making, and enhanced system autonomy. Finally, we offer a comprehensive outlook on current technological challenges and future research directions, addressing integration complexity, material compatibility, and data processing bottlenecks. This review provides timely insights into the transformative potential of AI-enhanced PIC sensors, setting the stage for future innovations in autonomous, intelligent sensing applications. Full article
Show Figures

Figure 1

12 pages, 2724 KiB  
Article
Non-Adiabatically Tapered Optical Fiber Humidity Sensor with High Sensitivity and Temperature Compensation
by Zijun Liang, Chao Wang, Yaqi Tang, Shoulin Jiang, Xianjie Zhong, Zhe Zhang and Rui Dai
Sensors 2025, 25(14), 4390; https://doi.org/10.3390/s25144390 - 14 Jul 2025
Viewed by 296
Abstract
We demonstrate an all-fiber, high-sensitivity, dual-parameter sensor for humidity and temperature. The sensor consists of a symmetrical, non-adiabatic, tapered, single-mode optical fiber, operating at the wavelength near the dispersion turning point, and a cascaded fiber Bragg grating (FBG) for temperature compensation. At one [...] Read more.
We demonstrate an all-fiber, high-sensitivity, dual-parameter sensor for humidity and temperature. The sensor consists of a symmetrical, non-adiabatic, tapered, single-mode optical fiber, operating at the wavelength near the dispersion turning point, and a cascaded fiber Bragg grating (FBG) for temperature compensation. At one end of the fiber’s tapered region, part of the fundamental mode is coupled to a higher-order mode, and vice versa at the other end. Under the circumstances that the two modes have the same group index, the transmission spectrum would show an interference fringe with uneven dips. In the tapered region of the sensor, some of the light transmits to the air, so it is sensitive to changes in the refractive index caused by the ambient humidity. In the absence of moisture-sensitive materials, the humidity sensitivity of our sensor sample can reach −286 pm/%RH. In order to address the temperature and humidity crosstalk and achieve a dual-parameter measurement, we cascaded a humidity-insensitive FBG. In addition, the sensor has a good humidity stability and a response time of 0.26 s, which shows its potential in fields such as medical respiratory dynamic monitoring. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

14 pages, 3314 KiB  
Article
High-Performance Guided Mode Resonance Optofluidic Sensor
by Liang Guo, Lei Xu and Liying Liu
Sensors 2025, 25(14), 4386; https://doi.org/10.3390/s25144386 - 14 Jul 2025
Viewed by 317
Abstract
This paper reports on the high performance of a thick-waveguide guided mode resonance (GMR) sensor. Theoretical calculations revealed that when light incidents on the grating and excites the negative first-order diffraction order, by increasing the waveguide thickness, both a high sensitivity and high [...] Read more.
This paper reports on the high performance of a thick-waveguide guided mode resonance (GMR) sensor. Theoretical calculations revealed that when light incidents on the grating and excites the negative first-order diffraction order, by increasing the waveguide thickness, both a high sensitivity and high figure of merit (FOM) can be obtained. Experimentally, we achieved a sensitivity of 1255.78 nm/RIU, a resonance linewidth of 0.59 nm at the resonance wavelength of 535 nm, an FOM as high as 2128 RIU−1, and a detection limit as low as 1.74 × 10−7 RIU. To our knowledge, this performance represents the highest comprehensive level for current GMR sensors. Additionally, the use of a microfluidic hemisphere and polymer materials effectively reduces the liquid consumption under oblique incidence and the fabrication cost in practical application. Overall, the proposed GMR sensor exhibits great potential in label-free biosensing. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
Influence of Material Optical Properties in Direct ToF LiDAR Optical Tactile Sensing: Comprehensive Evaluation
by Ilze Aulika, Andrejs Ogurcovs, Meldra Kemere, Arturs Bundulis, Jelena Butikova, Karlis Kundzins, Emmanuel Bacher, Martin Laurenzis, Stephane Schertzer, Julija Stopar, Ales Zore and Roman Kamnik
Materials 2025, 18(14), 3287; https://doi.org/10.3390/ma18143287 - 11 Jul 2025
Viewed by 247
Abstract
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability [...] Read more.
Optical tactile sensing is gaining traction as a foundational technology in collaborative and human-interactive robotics, where reliable touch and pressure feedback are critical. Traditional systems based on total internal reflection (TIR) and frustrated TIR (FTIR) often require complex infrared setups and lack adaptability to curved or flexible surfaces. To overcome these limitations, we developed OptoSkin—a novel tactile platform leveraging direct time-of-flight (ToF) LiDAR principles for robust contact and pressure detection. In this extended study, we systematically evaluate how key optical properties of waveguide materials affect ToF signal behavior and sensing fidelity. We examine a diverse set of materials, characterized by varying light transmission (82–92)%, scattering coefficients (0.02–1.1) cm−1, diffuse reflectance (0.17–7.40)%, and refractive indices 1.398–1.537 at the ToF emitter wavelength of 940 nm. Through systematic evaluation, we demonstrate that controlled light scattering within the material significantly enhances ToF signal quality for both direct touch and near-proximity sensing. These findings underscore the critical role of material selection in designing efficient, low-cost, and geometry-independent optical tactile systems. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

17 pages, 5854 KiB  
Article
Interpupillary Distance and Peripapillary Myopic Changes: A Pilot Study in a Glaucomatous Cohort
by Sameer Butt and Adèle Ehongo
J. Clin. Med. 2025, 14(14), 4895; https://doi.org/10.3390/jcm14144895 - 10 Jul 2025
Viewed by 296
Abstract
Background/Objectives: Myopia is associated with peripapillary changes, namely, gamma peripapillary atrophy (γPPA) and optic disc ovalization, estimated by the ovality index (OI). These changes have been suggested to be promoted by adduction. Recent studies highlight that near reading significantly contributes to the [...] Read more.
Background/Objectives: Myopia is associated with peripapillary changes, namely, gamma peripapillary atrophy (γPPA) and optic disc ovalization, estimated by the ovality index (OI). These changes have been suggested to be promoted by adduction. Recent studies highlight that near reading significantly contributes to the development and progression of myopia and that the interpupillary distance (IPD) influences vergence amplitudes. While both adduction and convergence are involved during near reading, a potential link between IPD and myopic peripapillary changes has not yet been explored. We, therefore, sought to determine whether IPD is related to the OI or γPPA width. Methods: In this monocentric cross-sectional study, 100 eyes from 100 adults (mean age of 62.6 ± 13.7 years) were analyzed. Axial length (AL), refractive error, and IPD were recorded. The OI and γPPA width were assessed using spectral-domain Optical Coherence Tomography. Pearson correlations and multivariable linear regressions were performed, adjusting for age, gender, and myopia status. Results: IPD showed no significant correlation with the OI (r = 0.001; p = 0.989) or γPPA (r = −0.028; p = 0.789). A weak, non-significant correlation was found between IPD and AL (p = 0.059). In contrast, AL was strongly correlated with both a lower OI and wider γPPA (p < 0.001). Conclusions: These findings suggest that IPD-related biomechanical forces do not influence optic nerve head (ONH) shape or γPPA. Axial elongation remains the key driver of myopic ONH remodeling. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

9 pages, 206 KiB  
Article
Effect of Prior Laser-Assisted In Situ Keratomileusis on the Calibration Accuracy of Extended Depth of Focus Intraocular Lenses: A Direct Comparative Study
by I-Hung Lin, Chen-Cheng Chao and Chao-Kai Chang
J. Pers. Med. 2025, 15(7), 301; https://doi.org/10.3390/jpm15070301 - 10 Jul 2025
Viewed by 199
Abstract
Background: Personalized precision medicine has become a prevailing trend and applies to the selection of intraocular lenses (IOLs) for cataract surgery based on the unique corneal morphology of each person. The choice of presbyopia-correcting IOLs for post-laser-assisted in situ keratomileusis (LASIK) cataract surgery [...] Read more.
Background: Personalized precision medicine has become a prevailing trend and applies to the selection of intraocular lenses (IOLs) for cataract surgery based on the unique corneal morphology of each person. The choice of presbyopia-correcting IOLs for post-laser-assisted in situ keratomileusis (LASIK) cataract surgery is a significant concern. However, few direct comparison studies exist between eyes with and without LASIK history. We analyzed the performance of extended depth of focus (EDOF) IOL implantation in these two groups. Methods: In this retrospective single-center study, we included patients with or without previous LASIK who underwent cataract surgery and EDOF Symfony IOL implantation, with ≥1 follow up. All patients underwent optical biometry using the IOLMaster. IOL power was calculated using the Sanders Retzslaff Kraff/theoretical and Haigis-L formulas for patients without and with LASIK, respectively. Uncorrected distance visual acuity (UDVA), uncorrected near visual acuity (UNVA), refraction, and corneal tomography were recorded. The prediction error was the absolute difference between the postoperative sphere and target refraction. The right eyes of patients who met the inclusion criteria were selected for analysis. Results: Among the 321 recruited eyes, 18 underwent previous LASIK. After 1:3 age/sex matching, 17 LASIK and 49 non-LASIK eyes from 66 patients were analyzed. No significant preoperative differences existed in target refraction, spherical equivalent, or best-corrected visual acuity. All surgical procedures were uneventful. LASIK exhibited non-inferiority to non-LASIK for predictive refraction error and UNVA. An age/sex-matched regression analysis indicated no UDVA superiority between the two groups. Conclusions: Previous LASIK may have no discernible effect on the visual performance of presbyopia-correcting EDOF IOLs with respect to the absolute refractive error, UNVA, and UDVA. Longer follow-up and larger-scale studies are required to further validate these results. Full article
16 pages, 2510 KiB  
Article
Aberration Theoretical Principle of Broadband Multilayer Refractive–Diffractive Optical Elements by Polychromatic Integral Aberration Method
by Ying Yang, Chongxing Liu, Wanting Yang, Yumin Wei, Mengyuan Liu, Bo Dong and Changxi Xue
Photonics 2025, 12(7), 690; https://doi.org/10.3390/photonics12070690 - 8 Jul 2025
Viewed by 164
Abstract
Multilayer diffractive optical elements (MLDOEs), which have broadband imaging performance, are widely used in lightweight and compact optical systems on the surface of the refractive lenses forming refractive–diffractive lenses. However, current research is generally limited to its broadband diffraction efficiency distribution and rarely [...] Read more.
Multilayer diffractive optical elements (MLDOEs), which have broadband imaging performance, are widely used in lightweight and compact optical systems on the surface of the refractive lenses forming refractive–diffractive lenses. However, current research is generally limited to its broadband diffraction efficiency distribution and rarely involves the study of the imaging quality of multilayer refractive–diffractive optical elements in the broadband. The lack of research on its aberration principle and the absence of methods on how to achieve average aberration control in the broadband have led to a decline in imaging quality when it is applied to the optical system. Therefore, in this paper, we have derived in detail the aberration theory of multilayer refractive–diffractive optical elements and proposed the polychromatic integral aberration (PIA) method to evaluate the aberration characteristics of multilayer diffraction optical elements in the whole broadband. First, we start with the aberrations of diffractive optical elements in the air, and then derive the overall aberrations applied to multilayer refractive–diffractive optical elements. Then, based on the performance of the average aberrations throughout the entire broadband, a broadband aberration evaluation method named PIA is proposed. Finally, the design of traditional multilayer diffraction optical elements, the design of refractive–diffractive multilayer optical elements based on the derivation, and the design of multilayer refraction diffraction optical elements under the PIA method are compared. The results show that the multilayer refractive–diffractive optical element designed by PIA can effectively achieve aberration control and balanced aberration performance in the whole broadband. This research provides a practical and feasible path for exploring the imaging quality of broadband multilayer refractive–diffractive optical elements. Full article
Show Figures

Figure 1

16 pages, 9957 KiB  
Article
Analysis and Optimization of Rotationally Symmetric Au-Ag Alloy Nanoparticles for Refractive Index Sensing Properties Using T-Matrix Method
by Long Cheng, Shuhong Gong and Paerhatijiang Tuersun
Nanomaterials 2025, 15(13), 1052; https://doi.org/10.3390/nano15131052 - 6 Jul 2025
Viewed by 323
Abstract
Previous investigations devoted to non-spherical nanoparticles for biosensing have primarily addressed two hot topics, namely, finding nanoparticles with the best shape for refractive index sensing properties and the optimization of size parameters. In this study, based on these hot topics, Au-Ag alloy nanoparticles [...] Read more.
Previous investigations devoted to non-spherical nanoparticles for biosensing have primarily addressed two hot topics, namely, finding nanoparticles with the best shape for refractive index sensing properties and the optimization of size parameters. In this study, based on these hot topics, Au-Ag alloy nanoparticles with excellent optical properties were selected as the research object. Targeting rotationally symmetric Au-Ag alloy nanoparticles for biosensing applications, the complex media function correction model and T-matrix approach were used to systematically analyze the variation patterns of extinction properties, refractive index sensitivity, full width at half maximum, and figure of merit of three rotationally symmetric Au-Ag alloy nanoparticles with respect to the size of the particles and the Au molar fraction. In addition, we optimized the figure of merit to obtain the best size parameters and Au molar fractions for the three rotationally symmetric Au-Ag alloy nanoparticles. Finally, the range of dimensional parameters corresponding to a figure of merit greater than 98% of its maximum value was calculated. The results show that the optimized Au-Ag alloy nanorods exhibit a refractive index sensitivity of 395.2 nm/RIU, a figure of merit of 7.16, and a wide range of size parameters. Therefore, the optimized Au-Ag alloy nanorods can be used as high-performance biosensors. Furthermore, this study provides theoretical guidance for the application and preparation of rotationally symmetric Au-Ag alloy nanoparticles in biosensing. Full article
(This article belongs to the Special Issue Theoretical Calculation Study of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

13 pages, 3092 KiB  
Article
Carbon Dioxide Gas Sensor Based on Terahertz Metasurface with Asymmetric Cross-Shaped Holes Empowered by Quasi-Bound States in the Continuum
by Kai He and Tian Ma
Sensors 2025, 25(13), 4178; https://doi.org/10.3390/s25134178 - 4 Jul 2025
Viewed by 289
Abstract
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped [...] Read more.
In this paper, a novel type of polarization-insensitive terahertz metal metasurface with cross-shaped holes is presented, which is designed based on the theory of bound states in continuous media. The fundamental unit of the metasurface comprises a metal tungsten sheet with a cross-shaped hole structure. A thorough analysis of the optical properties and the quasi-BIC response is conducted using the finite element method. Utilizing the symmetry-breaking theory, the symmetry of the metal metasurface is broken, allowing the excitation of double quasi-BIC resonance modes with a high quality factor and high sensitivity to be achieved. Analysis of the multipole power distribution diagram and the spatial distribution of the electric field at the two quasi-BIC resonances verifies that the two quasi-BIC resonances of the metasurface are excited by electric dipoles and electric quadrupoles, respectively. Further simulation analysis demonstrates that the refractive index sensitivities of the two quasi-BIC modes of the metasurface reach 404.5 GHz/RIU and 578.6 GHz/RIU, respectively. Finally, the functional material PHMB is introduced into the metasurface to achieve highly sensitive sensing and detection of CO2 gas concentrations. The proposed metallic metasurface structure exhibits significant advantages, including high sensitivity, ease of preparation, and a high Q-value, which renders it highly promising for a broad range of applications in the domains of terahertz biosensing and highly sensitive gas sensing. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

12 pages, 483 KiB  
Article
Effect of Localized Surface Plasmons on the Nonlinear Optical Properties in the Semi-Parabolic Quantum Well
by Shusen Chen and Kangxian Guo
Optics 2025, 6(3), 29; https://doi.org/10.3390/opt6030029 - 2 Jul 2025
Viewed by 240
Abstract
In this paper, the effects of localized surface plasmons on the nonlinear optical properties of a composite system are studied. The system operates by placing a metal nanoparticle next to a semi-parabolic quantum well under a terahertz laser field. Firstly, the energy expression [...] Read more.
In this paper, the effects of localized surface plasmons on the nonlinear optical properties of a composite system are studied. The system operates by placing a metal nanoparticle next to a semi-parabolic quantum well under a terahertz laser field. Firstly, the energy expression of the semi-parabolic well in the terahertz laser field is derived via a Kramers–Henneberger transformation, and then the new energy levels and wave functions are solved by the finite difference method. Next, optical absorption coefficients and refraction index changes are derived according to quantum theory. Finally, the study shows that localized surface plasmons can cause a redshift in the peak position, while simultaneously weakening the peak value of optical absorption coefficients. The results confirm that the desired performance can be obtained by adjusting the radius of the particle, the distance between the particle and the quantum well, or the natural frequency of the quantum well. Full article
Show Figures

Figure 1

15 pages, 2380 KiB  
Article
Practical and Compact Guided Mode Resonance Sensing System for Highly Sensitive Real-Time Detection
by Yen-Song Chen, Devesh Barshilia, Chia-Jui Hsieh, Hsun-Yuan Li, Wen-Hsin Hsieh and Guo-En Chang
Sensors 2025, 25(13), 4019; https://doi.org/10.3390/s25134019 - 27 Jun 2025
Viewed by 272
Abstract
Guided mode resonance (GMR) sensors are known for their ultrasensitive and label-free detection, achieved by assessing refractive index (RI) variations on grating surfaces. However, conventional systems often require manual adjustments, which limits their practical applicability. Therefore, this study enhances the practicality of GMR [...] Read more.
Guided mode resonance (GMR) sensors are known for their ultrasensitive and label-free detection, achieved by assessing refractive index (RI) variations on grating surfaces. However, conventional systems often require manual adjustments, which limits their practical applicability. Therefore, this study enhances the practicality of GMR sensors by introducing an optimized detection system based on the Jones matrix method. In addition, finite element method simulations were performed to optimize the GMR sensor structure parameter. The GMR sensor chip consists of three main components: a cyclic olefin copolymer (COC) substrate with a one-dimensional grating structure of a period of ~295 nm, a height of ~100 nm, and a ~130 nm thick TiO2 waveguide layer that enhances the light confinement; an integrated COC microfluidic module featuring a microchannel; and flexible tubes for efficient sample handling. A GMR sensor in conjunction with a specially designed system was used to perform RI measurements across varying concentrations of sucrose. The results demonstrate its exceptional performance, with a normalized sensitivity (Sn) and RI resolution (Rs) of 0.4 RIU−1 and 8.15 × 10−5 RIU, respectively. The proposed detection system not only offers improved user-friendliness and cost efficiency but also delivers an enhanced performance, making it ideal for scientific and industrial applications, including biosensing and optical metrology, where precise polarization control is crucial. Full article
(This article belongs to the Special Issue Optical Sensors for Industrial Applications)
Show Figures

Figure 1

Back to TopTop