Interpupillary Distance and Peripapillary Myopic Changes: A Pilot Study in a Glaucomatous Cohort
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion Population
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Myopic Group
2.5. General and Ocular Data
2.6. Color Fundus Photographs
2.7. Eye Selection
2.8. OCT Imaging
2.9. OCT Analysis
- Measurement of width of γPPA
- OI measurement
2.10. Analysis Procedure
2.11. Statistical Analyses
3. Results
3.1. Sample Characteristics
3.2. Correlation Analyses
3.3. Multivariable Regression Analyses
3.4. Sensitivity Analyses
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AL | axial length |
ASO | anterior scleral opening |
BMO | Bruch’s membrane opening |
GON | glaucomatous optic neuropathy |
IPD | interpupillary distance |
OCT | Optical Coherence Tomography |
OI | ovality index |
ONH | optic nerve head |
ONS | optic nerve sheath |
PPA | peripapillary atrophy |
αPPA | alpha peripapillary atrophy |
ßPPA | beta peripapillary atrophy |
γPPA | gamma peripapillary atrophy |
RE | refractive error |
RPE | retinal pigment epithelium |
SD | standard deviation |
SE | spherical equivalent |
Appendix A
Appendix A.1. Sensitivity Analyses (Details)
Dependent Variable | Predictors Included | β (95% CI) for IPD | p-Value |
---|---|---|---|
γPPA | IPD, age, gender, myopia, and γPPA_dummy | −3.814 (−13.67; 6.05) | 0.444 |
ln (γPPA + 1) | IPD, age, gender, myopia, and γPPA_dummy | −0.016 (−0.041; 0.010) | 0.231 |
Variable Pair | r (Pearson) | p-Value (Pearson) | ρ (Spearman) | p-Value (Spearman) |
---|---|---|---|---|
IPD-γPPA | −0.028 | 0.782 | 0.028 | 0.785 |
IPD-OI | 0.001 | 0.989 | −0.006 | 0.949 |
IPD-AL | 0.256 * | 0.011 | 0.274 ** | 0.006 |
γPPA-OI | −0.694 ** | <0.001 | −0.403 ** | <0.001 |
γPPA-AL | 0.547 ** | <0.001 | 0.554 ** | <0.001 |
AL-OI | −0.417 ** | <0.001 | −0.275 ** | 0.007 |
References
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Sankaridurg, P.; Tahhan, N.; Kandel, H.; Naduvilath, T.; Zou, H.; Frick, K.D.; Marmamula, S.; Friedman, D.S.; Lamoureux, E.; Keeffe, J.; et al. IMI Impact of Myopia. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Li, Y.; Musch, D.C.; Wei, N.; Qi, X.; Ding, G.; Li, X.; Li, J.; Song, L.; Zhang, Y.; et al. Progression of Myopia in School-Aged Children After COVID-19 Home Confinement. JAMA Ophthalmol. 2021, 139, 293–300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, T.W.; Kim, M.; Weinreb, R.N.; Woo, S.J.; Park, K.H.; Hwang, J.M. Optic disc change with incipient myopia of childhood. Ophthalmology 2012, 119, 21–26.e3. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Jonas, J.B.; Ling, Z.; Sun, X. Ophthalmoscopic-Perspectively Distorted Optic Disc Diameters and Real Disc Diameters. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7076–7083. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, T.W.; Weinreb, R.N.; Lee, E.J. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology 2013, 120, 1790–1797. [Google Scholar] [CrossRef] [PubMed]
- Ehongo, A. Optical Coherence Tomography Analysis of Peripapillary Intrachoroidal Cavitation. PhD. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 2024. [Google Scholar]
- Dai, Y.; Jonas, J.B.; Huang, H.; Wang, M.; Sun, X. Microstructure of parapapillary atrophy: Beta zone and gamma zone. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2013–2018. [Google Scholar] [CrossRef] [PubMed]
- Jonas, J.B.; Jonas, S.B.; Jonas, R.A.; Holbach, L.; Dai, Y.; Sun, X.; Panda-Jonas, S. Parapapillary atrophy: Histological gamma zone and delta zone. PLoS ONE 2012, 7, e47237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.X.; Panda-Jonas, S.; Jonas, J.B. Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features. Prog. Retin. Eye Res. 2021, 83, 100933. [Google Scholar] [CrossRef] [PubMed]
- Tay, E.; Seah, S.K.; Chan, S.P.; Lim, A.T.; Chew, S.J.; Foster, P.J.; Aung, T. Optic disk ovality as an index of tilt and its relationship to myopia and perimetry. Am. J. Ophthalmol. 2005, 139, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chang, S.; Grinband, J.; Yannuzzi, L.A.; Freund, K.B.; Hoang, Q.V.; Girard, M.J. Optic nerve tortuosity and displacements during horizontal eye movements in healthy and highly myopic subjects. Br. J. Ophthalmol. 2022, 106, 1596–1602. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fisher, L.K.; Milea, D.; Jonas, J.B.; Girard, M.J. Predictions of Optic Nerve Traction Forces and Peripapillary Tissue Stresses Following Horizontal Eye Movements. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2044–2053. [Google Scholar] [CrossRef] [PubMed]
- Ehongo, A.; Bacq, N.; Kisma, N.; Dugauquier, A.; Alaoui Mhammedi, Y.; Coppens, K.; Bremer, F.; Leroy, K. Analysis of Peripapillary Intrachoroidal Cavitation and Myopic Peripapillary Distortions in Polar Regions by Optical Coherence Tomography. Clin. Ophthalmol. 2022, 16, 2617–2629. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, M.Y.; Shin, A.; Park, J.; Nagiel, A.; Lalane, R.A.; Schwartz, S.D.; Demer, J.L. Deformation of Optic Nerve Head and Peripapillary Tissues by Horizontal Duction. Am. J. Ophthalmol. 2017, 174, 85–94. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ehongo, A.; Dugauquier, A.; Kisma, N.; De Maertelaer, V.; Nana Wandji, B.; Tchatchou Tomy, W.; Alaoui Mhammedi, Y.; Coppens, K.; Leroy, K.; Bremer, F. Myopic (Peri)papillary Changes and Visual Field Defects. Clin. Ophthalmol. 2023, 17, 3295–3306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ehongo, A.; Bacq, N. Peripapillary Intrachoroidal Cavitation. J. Clin. Med. 2023, 12, 4712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ma, M.; Xiong, S.; Zhao, S.; Zheng, Z.; Sun, T.; Li, C. COVID-19 Home Quarantine Accelerated the Progression of Myopia in Children Aged 7 to 12 Years in China. Investig. Ophthalmol. Vis. Sci. 2021, 62, 37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dag, M.; Demirkilinc Biler, E.; Ceper, S.B.; Uretmen, O. Association between interpupillary distance and fusional convergence-divergence amplitudes. Eur. Eye Res. 2022, 2, 103–106. [Google Scholar] [CrossRef]
- Flitcroft, D.I.; He, M.; Jonas, J.B.; Jong, M.; Naidoo, K.; Ohno-Matsui, K.; Rahi, J.; Resnikoff, S.; Vitale, S.; Yannuzzi, L. IMI—Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies. Investig. Ophthalmol. Vis. Sci. 2019, 60, M20–M30, Erratum in: Investig. Ophthalmol. Vis. Sci. 2024, 65, 19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ohno-Matsui, K.; Wu, P.C.; Yamashiro, K.; Vutipongsatorn, K.; Fang, Y.; Cheung, C.M.G.; Lai, T.Y.Y.; Ikuno, Y.; Cohen, S.Y.; Gaudric, A.; et al. IMI Pathologic Myopia. Investig. Ophthalmol. Vis. Sci. 2021, 62, 5, Erratum in: Investig. Ophthalmol. Vis. Sci. 2021, 62, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sawada, Y.; Araie, M.; Shibata, H.; Ishikawa, M.; Iwata, T.; Yoshitomi, T. Optic Disc Margin Anatomic Features in Myopic Eyes with Glaucoma with Spectral-Domain OCT. Ophthalmology 2018, 125, 1886–1897. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Liu, X.; Wang, Y.; Wang, Q.; Zheng, M.; Chang, F.; Mao, X. Characteristics of the optic disc in young people with high myopia. BMC Ophthalmol. 2022, 22, 477. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kim, M.; Choung, H.K.; Lee, K.M.; Oh, S.; Kim, S.H. Longitudinal Changes of Optic Nerve Head and Peripapillary Structure during Childhood Myopia Progression on OCT: Boramae Myopia Cohort Study Report 1. Ophthalmology 2018, 125, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Moon, J.S.; Park, H.L.; Park, C.K. Three Dimensional Evaluation of Posterior Pole and Optic Nerve Head in Tilted Disc. Sci. Rep. 2018, 8, 1121. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ehongo, A.; Hasnaoui, Z.; Kisma, N.; Alaoui Mhammedi, Y.; Dugauquier, A.; Coppens, K.; Wellens, E.; de Maertelaere, V.; Bremer, F.; Leroy, K. Peripapillary intrachoroidal cavitation at the crossroads of peripapillary myopic changes. Int. J. Ophthalmol. 2023, 16, 2063–2070. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, W.J.; Kim, Y.J.; Kim, J.H.; Hwang, S.; Shin, S.H.; Lim, H.W. Changes in the optic nerve head induced by horizontal eye movements. PLoS ONE 2018, 13, e0204069, Erratum in: PLoS ONE 2019, 14, e0216861. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Demer, J.L. Optic Nerve Sheath as a Novel Mechanical Load on the Globe in Ocular Duction. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1826–1838. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Williams, A.L.; Bohnsack, B.L. Neural crest derivatives in ocular development: Discerning the eye of the storm. Birth Defects Res. C Embryo Today 2015, 105, 87–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jonas, J.B.; Xu, L. Parapapillary chorioretinal atrophy in normal-pressure glaucoma. Am. J. Ophthalmol. 1993, 115, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Lee, S.E.; Lim, H.B.; Kim, J.Y. Longitudinal changes in axial length in high myopia: A 4-year prospective study. Br. J. Ophthalmol. 2020, 104, 600–603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Chau, D.K.S.; Wang, Y.M.; Cheung, C.S.H.; Chan, H.N.; Shi, J.; Nip, K.M.; Tang, S.; Chan, R.C.F.; Lau, A.; et al. Prevalence and Characteristics of Peripapillary Gamma Zone in Children With Different Refractive Status: The Hong Kong Children Eye Study. Investig. Ophthalmol. Vis. Sci. 2023, 64, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gantz, L.; Shneor, E.; Doron, R. Agreement and inter-session repeatability of manual and automatic interpupillary distance measurements. J. Optom. 2021, 14, 299–314. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cheng, D.; Ruan, K.; Wu, M.; Qiao, Y.; Gao, W.; Lian, H.; Shen, M.; Bao, F.; Yang, Y.; Zhu, J.; et al. Characteristics of the Optic Nerve Head in Myopic Eyes Using Swept-Source Optical Coherence Tomography. Investig. Ophthalmol. Vis. Sci. 2022, 63, 20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bennett, A.G.; Rudnicka, A.R.; Edgar, D.F. Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch. Clin. Exp. Ophthalmol. 1994, 232, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, A.R.; Burk, R.O.; Edgar, D.F.; Fitzke, F.W. Magnification characteristics of fundus imaging systems. Ophthalmology 1998, 105, 2186–2192. [Google Scholar] [CrossRef] [PubMed]
- Delori, F.; Greenberg, J.P.; Woods, R.L.; Fischer, J.; Duncker, T.; Sparrow, J.; Smith, R.T. Quantitative measurements of autofluorescence with the scanning laser ophthalmoscope. Investig. Ophthalmol. Vis. Sci. 2011, 52, 9379–9390. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ctori, I.; Gruppetta, S.; Huntjens, B. The effects of ocular magnification on Spectralis spectral domain optical coherence tomography scan length. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Kirik, F.; Ersoz, M.G.; Atalay, F.; Ozdemir, H. Should we perform ocular magnification for lateral measurements in Heidelberg spectralis optical coherence tomography? Eur. J. Ophthalmol. 2024, 34, NP152–NP153. [Google Scholar] [CrossRef] [PubMed]
- Ehongo, A. Understanding Posterior Staphyloma in Pathologic Myopia: Current Overview, New Input, and Perspectives. Clin. Ophthalmol. 2023, 17, 3825–3853. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mapp, A.P.; Ono, H. The rhino-optical phenomenon: Ocular parallax and the visible field beyond the nose. Vision Res. 1986, 26, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Wu, Q.; Yi, Z.; Chen, C. Multimodal imaging of optic nerve head abnormalities in high myopia. Front. Neurol. 2024, 15, 1366593. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Parameter | Sample Size (n) | Mean ± SD | Range |
---|---|---|---|
Age (years) | 100 | 62.6 ± 13.7 | 20–83 |
Refractive error (diopter) | 83 | −1.54 ± 3.5 | −17.50 to +3.75 |
Axial length (mm) | 98 | 24.27 ± 1.6 | 21.42–29.81 |
Gamma peripapillary atrophy (µm) | 100 | 124.27 ± 224.4 | 0–1183 |
Ovality index | 98 | 0.88 ± 0.09 | 0.38–0.99 |
Interpupillary distance (mm) | 100 | 62.7 ± 3.7 | 55–73 |
Parameter | Myopic | Non-Myopic | Unclassified | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
n | Mean ± SD | Range | n | Mean ± SD | Range | n | Mean ± SD | Range | P1 | P2 | |
Age (years) | 52 | 59.06 ± 15.41 | 20–83 | 38 | 65.03 ± 10.66 | 42–83 | 10 | 72 ± 8.74 | 59–83 | 0.078 | 0.009 |
Refractive error (Diopter) | 45 | −4.03 ± 2.89 | −17.5 to −0.5 | 38 | 1.4 ± 1.13 | −0.37 to 3.75 | 0 | / | / | <0.001 | / |
Axial length (mm) | 52 | 25.26 ± 1.55 | 21.48–29.81 | 38 | 23.21 ± 0.83 | 21.42–25.12 | 8 | 22.89 ± 1.16 | 21.45–24.69 | <0.001 | <0.001 |
Gamma peripapillary atrophy (µm) | 52 | 215.31 ± 269.47 | 0–1183 | 38 | 11.50 ± 50.09 | 0–253 | 10 | 79.40 ± 168.39 | 0–436 | <0.001 | 0.066 |
Ovality index | 50 | 0.85 ± 0.11 | 0.38–0.99 | 38 | 0.91 ± 0.05 | 0.77–0.99 | 10 | 0.89 ± 0.08 | 0.70–0.99 | 0.006 | 0.345 |
Interpupillary distance (mm) | 52 | 63.38 ± 4.02 | 55–73 | 38 | 62.11 ± 3.56 | 55–70 | 10 | 62.10 ± 2.23 | 58–65 | 0.133 | 0.351 |
Parameter | γPPA Width > 0 µm n = 35 | γPPA Width = 0 µm n = 65 | |||||
---|---|---|---|---|---|---|---|
n | Mean ± SD | Range | n | Mean ± SD | Range | p | |
Age (years) | 35 | 62.26 ± 16.80 | 23–83 | 65 | 62.82 ± 11.97 | 20–81 | 0.696 |
Refractive error (Diopter) | 29 | −4.45 ± 3.35 | −17.5 to 0.5 | 54 | 0.02 ± 2.50 | −6.5 to 3.75 | <0.001 |
Axial length (mm) | 34 | 25.44 ± 1.57 | 21.45–29.81 | 64 | 23.65 ± 1.34 | 21.42–27.26 | <0.001 |
Gamma peripapillary atrophy (µm) | 35 | 355.06 ± 249.57 | 453–1183 | 65 | 0 ± 0 | 0–0 | <0.001 |
Ovality index | 33 | 0.82 ± 0.12 | 0.38–0.99 | 65 | 0.91 ± 0.05 | 0.77–0.99 | <0.001 |
Interpupillary distance (mm) | 35 | 62.94 ± 3.75 | 55–73 | 65 | 62.68 ± 3.75 | 55–73 | 0.604 |
γPPA | OI | IPD | AL | ||
---|---|---|---|---|---|
γPPA | Pearson Correlation | 1 | −0.694 ** | −0.028 | 0.547 ** |
p-Value | <0.001 | 0.782 | <0.001 | ||
OI | Pearson Correlation | −0.694 ** | 1 | 0.001 | −0.417 ** |
p-Value | <0.001 | 0.989 | <0.001 | ||
IPD | Pearson Correlation | −0.028 | 0.001 | 1 | 0.256 * |
p-Value | 0.782 | 0.989 | 0.011 | ||
AL | Pearson Correlation | 0.547 ** | −0.417 ** | 0.256 * | 1 |
p-Value | <0.001 | <0.001 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, S.; Ehongo, A. Interpupillary Distance and Peripapillary Myopic Changes: A Pilot Study in a Glaucomatous Cohort. J. Clin. Med. 2025, 14, 4895. https://doi.org/10.3390/jcm14144895
Butt S, Ehongo A. Interpupillary Distance and Peripapillary Myopic Changes: A Pilot Study in a Glaucomatous Cohort. Journal of Clinical Medicine. 2025; 14(14):4895. https://doi.org/10.3390/jcm14144895
Chicago/Turabian StyleButt, Sameer, and Adèle Ehongo. 2025. "Interpupillary Distance and Peripapillary Myopic Changes: A Pilot Study in a Glaucomatous Cohort" Journal of Clinical Medicine 14, no. 14: 4895. https://doi.org/10.3390/jcm14144895
APA StyleButt, S., & Ehongo, A. (2025). Interpupillary Distance and Peripapillary Myopic Changes: A Pilot Study in a Glaucomatous Cohort. Journal of Clinical Medicine, 14(14), 4895. https://doi.org/10.3390/jcm14144895