Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems
Abstract
1. Introduction
2. Rethinking Plasmonic Fundamentals for Planar and Interface-Engineered Optical Systems
3. MS Fundamentals Through a Forward-Looking Lens
4. Plasmonic Devices as Drivers of Extreme Performance

5. MS Photonic Devices as System-Level Disruptors
6. Hybrid Plasmonic and Photonic Architectures for Planar Optical Systems
7. Applications and Emerging Technologies That Will Drive Adoption
8. Core Challenges Driving the Research Strategy
9. Future Vision: Roadmap for Next-Generation Plasmonic and MS Photonics
10. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Picot-Clémente, J. Innovations and Challenges in Modern Optical Design. PhotonicsViews 2024, 21, 22–26. [Google Scholar] [CrossRef]
- Park, J.; Kang, H.; Huh, C.; Lee, M.J. Do Immersive Displays Influence Exhibition Attendees’ Satisfaction?: A Stimulus-Organism-Response Approach. Sustainability 2022, 14, 6344. [Google Scholar] [CrossRef]
- Klatt, S.; Smeeton, N.J. Immersive Screens Change Attention Width but Not Perception or Decision-Making Performance in Natural and Basic Tasks. Appl. Ergon. 2020, 82, 102961. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, S.; Arbabi, A.; Viegas, J. Compact Spectral Imaging: A Review of Miniaturized and Integrated Systems. Laser Photonics Rev. 2025, 19, e01042. [Google Scholar] [CrossRef]
- Chen, Q.; Zhou, J.; Pian, S.; Xu, J.; Li, X.; Li, B.; Lu, C.; Wang, Z.; Jiang, Q.; Qin, S.; et al. Hybrid Meta-Optics Enabled Compact Augmented Reality Display with Computational Image Reinforcement. ACS Photonics 2024, 11, 3794–3803. [Google Scholar] [CrossRef]
- Xin, Y.; Pandraud, G.; Otten, L.; Zhang, Y.; French, P. Surface Functionalization of SU-8 Vertical Waveguide for Biomedical Sensing: Bacteria Diagnosis. Proceedings 2018, 2, 1081. [Google Scholar] [CrossRef]
- Akkaş, T.; Reshadsedghi, M.; Şen, M.; Kılıç, V.; Horzum, N. The Role of Artificial Intelligence in Advancing Biosensor Technology: Past, Present, and Future Perspectives. Adv. Mater. 2025, 37, 2504796. [Google Scholar] [CrossRef]
- Sozos, K.; Bogris, A.; Bienstman, P.; Sarantoglou, G.; Deligiannidis, S.; Mesaritakis, C. High-Speed Photonic Neuromorphic Computing Using Recurrent Optical Spectrum Slicing Neural Networks. Commun. Eng. 2022, 1, 24. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, W.; Wu, S.; Tang, W.; Shu, Y.; Ma, K.; Zhang, B.; Zhou, P.; Wang, S. High-Speed Transition-Metal Dichalcogenides Based Schottky Photodiodes for Visible and Infrared Light Communication. ACS Nano 2022, 16, 19187–19198. [Google Scholar] [CrossRef]
- Efron, U. Spatial Light Modulators for Optical Computing and Information Processing. In Proceedings of the Twenty-Second Annual Hawaii International Conference on System Sciences, Kailua-Kona, HI, USA, 3–6 January 1989; Volume 1: Architecture Track, pp. 416–423. [Google Scholar]
- Khonina, S.N.; Butt, M.A.; Kazanskiy, N.L. A Review on Reconfigurable Metalenses Revolutionizing Flat Optics. Adv. Opt. Mater. 2024, 12, 2302794. [Google Scholar] [CrossRef]
- de Ceglia, D.; Alù, A.; Neshev, D.N.; Angelis, C.D. Analog Image Processing with Nonlinear Nonlocal Flat Optics. Opt. Mater. Express 2024, 14, 92–100. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat Optics with Designer Metasurfaces. Nat. Mater. 2014, 13, 139–150. [Google Scholar] [CrossRef]
- Odom, T.W.; Schatz, G.C. Introduction to Plasmonics. Chem. Rev. 2011, 111, 3667–3668. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, C.; Wu, K.; Chong, H.; Ye, H. Transparent Conductive Oxides and Their Applications in Near Infrared Plasmonics. Phys. Status Solidi A 2019, 216, 1700794. [Google Scholar] [CrossRef]
- Iwanaga, M.; Hu, Q.; Tang, Y. Metasurface Biosensors: Status and Prospects. Appl. Phys. Rev. 2025, 12, 021305. [Google Scholar] [CrossRef]
- Agrahari, R.; Dwivedi, S.; Jain, P.K.; Mahto, M. High Sensitive Metasurface Absorber for Refractive Index Sensing. IEEE Trans. Nanotechnol. 2023, 22, 328–335. [Google Scholar] [CrossRef]
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L.; Piramidowicz, R. Hybrid Metasurface Perfect Absorbers for Temperature and Biosensing Applications. Opt. Mater. 2022, 123, 111906. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, M.; Cheng, S.; Wang, J.; Yi, Y.; Li, B.; Tang, C.; Gao, F. Bilayer Graphene Metasurface with Dynamically Reconfigurable Terahertz Perfect Absorption. Curr. Appl. Phys. 2025, 80, 282–290. [Google Scholar] [CrossRef]
- Herkert, E.K.; Garcia-Parajo, M.F. Harnessing the Power of Plasmonics for in Vitro and in Vivo Biosensing. ACS Photonics 2025, 12, 1259–1275. [Google Scholar] [CrossRef]
- Guler, U.; Shalaev, V.M.; Boltasseva, A. Nanoparticle Plasmonics: Going Practical with Transition Metal Nitrides. Mater. Today 2015, 18, 227–237. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Recent Development in Metasurfaces: A Focus on Sensing Applications. Nanomaterials 2023, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jonsson, M.P. Dynamic Conducting Polymer Plasmonics and Metasurfaces. ACS Photonics 2023, 10, 571–581. [Google Scholar] [CrossRef]
- Hou, A.; Wang, Y.; Geng, F.; Zhang, Y.; Huang, C.; Zhou, L. Plasmonic Modulators Based on Enhanced Interaction between Graphene and Localized Transverse-Electric Plasmonic Mode. Opt. Express 2024, 32, 40730–40740. [Google Scholar] [CrossRef]
- Nordin, L.; Petluru, P.; Kamboj, A.; Muhowski, A.J.; Wasserman, D. Ultra-Thin Plasmonic Detectors. Optica 2021, 8, 1545–1551. [Google Scholar] [CrossRef]
- Cai, C.; Li, Y.; Li, M.; Qin, Y.; Zhou, Y. Phase and Amplitude Simultaneously Coding Metasurface with Multi-Frequency and Multifunctional Electromagnetic Modulations. Sci. Rep. 2024, 14, 20904. [Google Scholar] [CrossRef]
- Wang, S.; Deng, Z.-L.; Wang, Y.; Zhou, Q.; Wang, X.; Cao, Y.; Guan, B.-O.; Xiao, S.; Li, X. Arbitrary Polarization Conversion Dichroism Metasurfaces for All-in-One Full Poincaré Sphere Polarizers. Light Sci. Appl. 2021, 10, 24. [Google Scholar] [CrossRef]
- Butt, M.A. A Perspective on Plasmonic Metasurfaces: Unlocking New Horizons for Sensing Applications. Nanotechnology 2025, 36, 182501. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Lippi, G.L.; Mørk, J.; Wiersig, J.; Reitzenstein, S. Physics and Applications of High-β Micro- and Nanolasers. Adv. Opt. Mater. 2021, 9, 2100415. [Google Scholar] [CrossRef]
- Abdollahramezani, S.; Hemmatyar, O.; Taghinejad, M.; Taghinejad, H.; Kiarashinejad, Y.; Zandehshahvar, M.; Fan, T.; Deshmukh, S.; Eftekhar, A.A.; Cai, W.; et al. Dynamic Hybrid Metasurfaces. Nano Lett. 2021, 21, 1238–1245. [Google Scholar] [CrossRef]
- Rifat, A.A.; Rahmani, M.; Xu, L.; Miroshnichenko, A.E. Hybrid Metasurface Based Tunable Near-Perfect Absorber and Plasmonic Sensor. Materials 2018, 11, 1091. [Google Scholar] [CrossRef]
- Hopper, E.R.; Boukouvala, C.; Asselin, J.; Biggins, J.S.; Ringe, E. Opportunities and Challenges for Alternative Nanoplasmonic Metals: Magnesium and Beyond. J. Phys. Chem. C 2022, 126, 10630–10643. [Google Scholar] [CrossRef]
- Babicheva, V.E.; Boltasseva, A.; Lavrinenko, A.V. Transparent Conducting Oxides for Electro-Optical Plasmonic Modulators. Nanophotonics 2015, 4, 165–185. [Google Scholar] [CrossRef]
- Dirdal, C.A.; Jensen, G.U.; Angelskår, H.; Thrane, P.C.V.; Gjessing, J.; Ordnung, D.A. Towards High-Throughput Large-Area Metalens Fabrication Using UV-Nanoimprint Lithography and Bosch Deep Reactive Ion Etching. Opt. Express 2020, 28, 15542–15561. [Google Scholar] [CrossRef]
- Basu, P.; Verma, J.; Abhinav, V.; Ratnesh, R.K.; Singla, Y.K.; Kumar, V. Advancements in Lithography Techniques and Emerging Molecular Strategies for Nanostructure Fabrication. Int. J. Mol. Sci. 2025, 26, 3027. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A.; Kaźmierczak, A.; Piramidowicz, R. Plasmonic Sensor Based on Metal-Insulator-Metal Waveguide Square Ring Cavity Filled with Functional Material for the Detection of CO2 Gas. Opt. Express 2021, 29, 16584–16594. [Google Scholar] [CrossRef]
- Johns, P.; Beane, G.; Yu, K.; Hartland, G.V. Dynamics of Surface Plasmon Polaritons in Metal Nanowires. J. Phys. Chem. C 2017, 121, 5445–5459. [Google Scholar] [CrossRef]
- Gao, L.; Huo, Y.; Zang, K.; Paik, S.; Chen, Y.; Harris, J.S.; Zhou, Z. On-Chip Plasmonic Waveguide Optical Waveplate. Sci. Rep. 2015, 5, 15794. [Google Scholar] [CrossRef]
- Yu, H.; Peng, Y.; Yang, Y.; Li, Z.-Y. Plasmon-Enhanced Light–Matter Interactions and Applications. npj Comput. Mater. 2019, 5, 45. [Google Scholar] [CrossRef]
- Luther, J.M.; Jain, P.K.; Ewers, T.; Alivisatos, A.P. Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots. Nat. Mater. 2011, 10, 361–366. [Google Scholar] [CrossRef]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef]
- Li, Z.; Pestourie, R.; Lin, Z.; Johnson, S.G.; Capasso, F. Empowering Metasurfaces with Inverse Design: Principles and Applications. ACS Photonics 2022, 9, 2178–2192. [Google Scholar] [CrossRef]
- Tutgun, M.; Yılmaz, D.; Yeltik, A.; Turduev, M.; Kurt, H. Inverse Design of All-Dielectric Parallel-Plane Mirror Optical Resonator. Photonics Nanostruct. Fundam. Appl. 2020, 40, 100787. [Google Scholar] [CrossRef]
- Scholl, J.A.; García-Etxarri, A.; Koh, A.L.; Dionne, J.A. Observation of Quantum Tunneling between Two Plasmonic Nanoparticles. Nano Lett. 2013, 13, 564–569. [Google Scholar] [CrossRef]
- Barbiellini, B.; Das, S.; Renugopalakrishnan, V.; Somasundaran, P. Electromagnetic Field in Hybrid Quantum Plasmonic-Photonic Systems. Condens. Matter 2018, 3, 10. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Ghasemi, H.; Chen, G. Plasmonic Materials for Energy: From Physics to Applications. Mater. Today 2013, 16, 375–386. [Google Scholar] [CrossRef]
- Negm, A.; Howlader, M.M.R.; Belyakov, I.; Bakr, M.; Ali, S.; Irannejad, M.; Yavuz, M. Materials Perspectives of Integrated Plasmonic Biosensors. Materials 2022, 15, 7289. [Google Scholar] [CrossRef] [PubMed]
- Todorov, R.; Hristova-Vasileva, T.; Katrova, V.; Atanasova, A. Silver and Gold Containing Compounds of P-Block Elements As Perspective Materials for UV Plasmonics. ACS Omega 2023, 8, 14321–14341. [Google Scholar] [CrossRef]
- Baburin, A.S.; Merzlikin, A.M.; Baryshev, A.V.; Ryzhikov, I.A.; Panfilov, Y.V.; Rodionov, I.A. Silver-Based Plasmonics: Golden Material Platform and Application Challenges [Invited]. Opt. Mater. Express 2019, 9, 611–642. [Google Scholar] [CrossRef]
- Han, W.; Reiter, S.; Schlipf, J.; Mai, C.; Spirito, D.; Jose, J.; Wenger, C.; Fischer, I.A. Strongly Enhanced Sensitivities of CMOS Compatible Plasmonic Titanium Nitride Nanohole Arrays for Refractive Index Sensing under Oblique Incidence. Opt. Express 2023, 31, 17389–17407. [Google Scholar] [CrossRef]
- Gillibert, R.; Colas, F.; Yasukuni, R.; Picardi, G.; de la Chapelle, M.L. Plasmonic Properties of Aluminum Nanocylinders in the Visible Range. J. Phys. Chem. C 2017, 121, 2402–2409. [Google Scholar] [CrossRef]
- Kim, D.; Bang, J.; Won, P.; Kim, Y.; Jung, J.; Lee, J.; Kwon, J.; Lee, H.; Hong, S.; Jeon, N.L.; et al. Biocompatible Cost-Effective Electrophysiological Monitoring with Oxidation-Free Cu–Au Core–Shell Nanowire. Adv. Mater. Technol. 2020, 5, 2000661. [Google Scholar] [CrossRef]
- Jaffray, W.; Saha, S.; Shalaev, V.M.; Boltasseva, A.; Ferrera, M. Transparent Conducting Oxides: From All-Dielectric Plasmonics to a New Paradigm in Integrated Photonics. Adv. Opt. Photon. 2022, 14, 148–208. [Google Scholar] [CrossRef]
- Butt, M.A. Graphene in Photonic Sensing: From Fundamentals to Cutting-Edge Applications. Fundam. Res. 2025, in press. [Google Scholar] [CrossRef]
- Magno, G.; Yam, V.; Dagens, B. Integration of Plasmonic Structures in Photonic Waveguides Enables Novel Electromagnetic Functionalities in Photonic Circuits. Appl. Sci. 2023, 13, 12551. [Google Scholar] [CrossRef]
- Dregely, D.; Lindfors, K.; Dorfmüller, J.; Hentschel, M.; Becker, M.; Wrachtrup, J.; Lippitz, M.; Vogelgesang, R.; Giessen, H. Plasmonic Antennas, Positioning, and Coupling of Individual Quantum Systems. Phys. Status Solidi B 2012, 249, 666–677. [Google Scholar] [CrossRef]
- Butt, M.A.; Janaszek, B.; Piramidowicz, R. Lighting the Way Forward: The Bright Future of Photonic Integrated Circuits. Sens. Int. 2025, 6, 100326. [Google Scholar] [CrossRef]
- Martínez-Llinàs, J.; Henry, C.; Andrén, D.; Verre, R.; Käll, M.; Tassin, P. A Gaussian Reflective Metasurface for Advanced Wavefront Manipulation. Opt. Express 2019, 27, 21069–21082. [Google Scholar] [CrossRef]
- Chen, H.-T.; Taylor, A.J.; Yu, N. A Review of Metasurfaces: Physics and Applications. Rep. Prog. Phys. 2016, 79, 076401. [Google Scholar] [CrossRef]
- Kumar, K.; Vidal, B.; Garcia-Meca, C. Metasurface Based on Phase Change Materials for Electrically Reconfigurable THz Beam Steering in Copolarized Transmission Mode. Sci. Rep. 2025, 15, 40666. [Google Scholar] [CrossRef]
- Meinzer, N.; Barnes, W.L.; Hooper, I.R. Plasmonic Meta-Atoms and Metasurfaces. Nat. Photonics 2014, 8, 889–898. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef]
- Qin, F.; Ding, L.; Zhang, L.; Monticone, F.; Chum, C.C.; Deng, J.; Mei, S.; Li, Y.; Teng, J.; Hong, M.; et al. Hybrid Bilayer Plasmonic Metasurface Efficiently Manipulates Visible Light. Sci. Adv. 2016, 2, e1501168. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Wu, L.-S.; Mao, J.-F. Switchable Broadband/Narrowband Absorber Based on a Hybrid Metasurface of Graphene and Metal Structures. Opt. Express 2023, 31, 12220–12231. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Zheng, J.; Liao, E.; Syu, T.; Du, A. Modulating Both Amplitude and Phase in a Single-Spatial Light Modulator (SLM). In Proceedings of the Practical Holography XXXVI: Displays, Materials, and Applications, San Francisco, CA, USA, 22–27 January 2022; SPIE: Bellingham, WA, USA, 2022; Volume 12026, pp. 51–64. [Google Scholar]
- Rolland, J.P.; Davies, M.A.; Suleski, T.J.; Evans, C.; Bauer, A.; Lambropoulos, J.C.; Falaggis, K. Freeform Optics for Imaging. Optica 2021, 8, 161–176. [Google Scholar] [CrossRef]
- Yang, Y.; Forbes, A.; Cao, L. A Review of Liquid Crystal Spatial Light Modulators: Devices and Applications. Opto-Electron. Sci. 2023, 2, 230026–230029. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, H.; Zhang, S.; Yuan, W.; Min, C.; Yuan, X.; Zhang, Y. Controllable Split Polarization Singularities for Ultra-Precise Displacement Sensing. Photon. Res. 2024, 12, 1478–1484. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Exploring Diffractive Optical Elements and Their Potential in Free Space Optics and Imaging—A Comprehensive Review. Laser Photonics Rev. 2024, 18, 2400377. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Yang, W.; Ji, Z.; Jin, L.; Ma, X.; Song, Q.; Boltasseva, A.; Han, J.; Shalaev, V.M.; et al. High-Efficiency Broadband Achromatic Metalens for near-IR Biological Imaging Window. Nat. Commun. 2021, 12, 5560. [Google Scholar] [CrossRef]
- Wu, D.; Rajput, N.S.; Luo, X. Nanoimprint Lithography—The Past, the Present and the Future. Curr. Nanosci. 2016, 12, 712–724. [Google Scholar] [CrossRef]
- Hüttenhofer, L.; Golibrzuch, M.; Bienek, O.; Wendisch, F.J.; Lin, R.; Becherer, M.; Sharp, I.D.; Maier, S.A.; Cortés, E. Metasurface Photoelectrodes for Enhanced Solar Fuel Generation. Adv. Energy Mater. 2021, 11, 2102877. [Google Scholar] [CrossRef]
- Saleem, M.R.; Ali, R.; Khan, M.B.; Honkanen, S.; Turunen, J. Impact of Atomic Layer Deposition to Nanophotonic Structures and Devices. Front. Mater. 2014, 1, 18. [Google Scholar] [CrossRef]
- Guchhait, S.; Chatterjee, S.; Chakravarty, T.; Ghosh, N. A Metal-Insulator-Metal Waveguide-Based Plasmonic Refractive Index Sensor for the Detection of Nanoplastics in Water. Sci. Rep. 2024, 14, 21495. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Y.; Qu, D.; Li, C. MIM Waveguide System with Independently Tunable Double Resonances and Its Application for Two-Parameter Detection. Appl. Opt. 2022, 61, 7409–7414. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Metal-Insulator-Metal Waveguide Plasmonic Sensor System for Refractive Index Sensing Applications. Adv. Photonics Res. 2023, 4, 2300079. [Google Scholar] [CrossRef]
- Butt, M.A. Plasmonic Sensors Based on a Metal–Insulator–Metal Waveguide—What Do We Know So Far? Sensors 2024, 24, 7158. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Zhang, Y.K.; Zhang, T.Y.; Ma, H.F.; Cui, T.J. Broadband and Programmable Amplitude-Phase-Joint-Coding Information Metasurface. ACS Appl. Mater. Interfaces 2022, 14, 29431–29440. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, X.; Xu, Y.; Gu, J.; Li, Y.; Tian, Z.; Singh, R.; Zhang, S.; Han, J.; Zhang, W. Broadband Metasurface Holograms: Toward Complete Phase and Amplitude Engineering. Sci. Rep. 2016, 6, 32867. [Google Scholar] [CrossRef] [PubMed]
- Briggs, R.M.; Grandidier, J.; Burgos, S.P.; Feigenbaum, E.; Atwater, H.A. Efficient Coupling between Dielectric-Loaded Plasmonic and Silicon Photonic Waveguides. Nano Lett. 2010, 10, 4851–4857. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Genov, D.A.; Pile, D.F.P.; Zhang, X. A Hybrid Plasmonic Waveguide for Subwavelength Confinement and Long-Range Propagation. Nat. Photonics 2008, 2, 496–500. [Google Scholar] [CrossRef]
- García García, B.; Fernández-Manteca, M.G.; Zografopoulos, D.C.; Gómez-Galdós, C.; Ocampo-Sosa, A.A.; Rodríguez-Cobo, L.; Algorri, J.F.; Cobo, A. Plasmonic and Dielectric Metasurfaces for Enhanced Spectroscopic Techniques. Biosensors 2025, 15, 401. [Google Scholar] [CrossRef]
- Dhama, R.; Panahpour, A.; Pihlava, T.; Ghindani, D.; Caglayan, H. All-Optical Switching Based on Plasmon-Induced Enhancement of Index of Refraction. Nat. Commun. 2022, 13, 3114. [Google Scholar] [CrossRef]
- Dainese, P.; Chen, W.T.; Fan, J.; Lu, Y.-J.; Capasso, F. Flat Optics: Feature Issue Introduction. Opt. Express 2024, 32, 22563–22565. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Zhu, A.Y.; Capasso, F. Flat Optics with Dispersion-Engineered Metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620. [Google Scholar] [CrossRef]
- Soliman, A.; Williams, C.; Wilkinson, T.D. High Transmission Efficiency Hybrid Metal-Dielectric Metasurfaces for Mid-Infrared Spectroscopy. Nanomaterials 2025, 15, 1456. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, H.; Lin, S.; Wu, J.; Li, W.; Meng, F.; Yang, Y.; Huang, X.; Jia, B.; Kivshar, Y. Hybrid Anisotropic Plasmonic Metasurfaces with Multiple Resonances of Focused Light Beams. Nano Lett. 2021, 21, 8917–8923. [Google Scholar] [CrossRef]
- Boriskina, S.V.; Cooper, T.A.; Zeng, L.; Ni, G.; Tong, J.K.; Tsurimaki, Y.; Huang, Y.; Meroueh, L.; Mahan, G.; Chen, G. Losses in Plasmonics: From Mitigating Energy Dissipation to Embracing Loss-Enabled Functionalities. Adv. Opt. Photon. 2017, 9, 775–827. [Google Scholar] [CrossRef]
- He, F.; Fuentes-Domínguez, R.; Cousins, R.; Mellor, C.J.; Rocha, A.D.; Adams, Z.; Barton, J.K.; Gordon, G.S.D. Scalable Fabrication of Single- and Multi-Layer Planar Lenses on Fiber Imaging Probes. APL Photonics 2025, 10, 056114. [Google Scholar] [CrossRef]
- Cao, J.; Salhi, S.; Peltier, J.; Coudevylle, J.-R.; Edmond, S.; Villebasse, C.; Herth, E.; Vivien, L.; Alonso-Ramos, C.; Melati, D. Single-Layer Silicon Metalens for Broadband Achromatic Focusing and Wide Field of View. Sci. Rep. 2025, 15, 43343. [Google Scholar] [CrossRef]
- Coello, V.; Abdulkareem, M.A.; Garcia-Ortiz, C.E.; Sosa-Sánchez, C.T.; Téllez-Limón, R.; Peña-Gomar, M. Plasmonic Coupled Modes in a Metal–Dielectric Periodic Nanostructure. Micromachines 2023, 14, 1713. [Google Scholar] [CrossRef]
- Butt, M.A.; Piramidowicz, R. Orthogonal Mode Couplers for Plasmonic Chip Based on Metal–Insulator–Metal Waveguide for Temperature Sensing Application. Sci. Rep. 2024, 14, 3474. [Google Scholar] [CrossRef]
- Abbaszadeh-Azar, O.; Abedi, K. Design of a Low Power Silicon-Plasmonic Hybrid Electro-Optic Modulator Relied on ITO. Opt. Mater. 2022, 125, 112081. [Google Scholar] [CrossRef]
- Neira, A.D.; Wurtz, G.A.; Zayats, A.V. Superluminal and Stopped Light Due to Mode Coupling in Confined Hyperbolic Metamaterial Waveguides. Sci. Rep. 2015, 5, 17678. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Sun, W.; Zhou, Z.; Fu, P.; Li, H.; Li, Y. Waveguide Effective Plasmonics with Structure Dispersion. Nanophotonics 2022, 11, 1659–1676. [Google Scholar] [CrossRef]
- Duan, Q.; Liu, Y.; Chang, S.; Chen, H.; Chen, J. Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications. Sensors 2021, 21, 5262. [Google Scholar] [CrossRef]
- Nocerino, V.; Miranda, B.; Tramontano, C.; Chianese, G.; Dardano, P.; Rea, I.; De Stefano, L. Plasmonic Nanosensors: Design, Fabrication, and Applications in Biomedicine. Chemosensors 2022, 10, 150. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Oseledets, I.V.; Nikonorov, A.V.; Butt, M.A. Revolutionary Integration of Artificial Intelligence with Meta-Optics-Focus on Metalenses for Imaging. Technologies 2024, 12, 143. [Google Scholar] [CrossRef]
- Badloe, T.; Seong, J.; Rho, J. Trichannel Spin-Selective Metalenses. Nano Lett. 2023, 23, 6958–6965. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hu, Q.; Feng, Y. Reconfigurable High-Efficiency Power Dividers Using Waveguide Epsilon-Near-Zero Media for On-Demand Splitting. Photonics 2025, 12, 897. [Google Scholar] [CrossRef]
- Alfaraj, N.; Helmy, A.S. Silicon-Integrated Next-Generation Plasmonic Devices for Energy-Efficient Semiconductor Applications. Adv. Mater. Technol. 2025, 10, e00389. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon Lasers at Deep Subwavelength Scale. Nature 2009, 461, 629–632. [Google Scholar] [CrossRef]
- Khan, H.Z.; Zafar, J.; Jabbar, A.; Kazim, J.u.R.; Rehman, M.U.; Imran, M.A.; Abbasi, Q.H. Advancements in Metasurfaces for Polarization Control: A Comprehensive Survey. Next Res. 2025, 2, 100407. [Google Scholar] [CrossRef]
- Schulz, S.A.; Oulton, R.; Kenney, M.; Alù, A.; Staude, I.; Bashiri, A.; Fedorova, Z.; Kolkowski, R.; Koenderink, A.F.; Xiao, X.; et al. Roadmap on Photonic Metasurfaces. Appl. Phys. Lett. 2024, 124, 260701. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, Y.; Lu, L.; Ding, Y.; Cusano, A.; Fan, J.A.; Hu, Q.; Wang, K.; Xie, Z.; Liu, Z.; et al. Optical Meta-Waveguides for Integrated Photonics and Beyond. Light Sci. Appl. 2021, 10, 235. [Google Scholar] [CrossRef]
- Zia, R.; Schuller, J.A.; Chandran, A.; Brongersma, M.L. Plasmonics: The next Chip-Scale Technology. Mater. Today 2006, 9, 20–27. [Google Scholar] [CrossRef]
- Alnakhli, Z.; Liu, Z.; AlQatari, F.; Cao, H.; Li, X. UV-Assisted Nanoimprint Lithography: The Impact of the Loading Effect in Silicon on Nanoscale Patterns of Metalens. Nanoscale Adv. 2024, 6, 2954–2967. [Google Scholar] [CrossRef]
- Margalit, N.; Xiang, C.; Bowers, S.M.; Bjorlin, A.; Blum, R.; Bowers, J.E. Perspective on the Future of Silicon Photonics and Electronics. Appl. Phys. Lett. 2021, 118, 220501. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Z.; Wang, T.; Wang, Y.; Gao, K.; Wu, J.; Wang, J.; Qiu, J.; Tan, D. Ultra-Broadband All-Optical Nonlinear Activation Function Enabled by MoTe2/Optical Waveguide Integrated Devices. Nat. Commun. 2024, 15, 9047. [Google Scholar] [CrossRef] [PubMed]
- Sakib Rahman, M.S.; Ozcan, A. Integration of Programmable Diffraction with Digital Neural Networks. ACS Photonics 2024, 11, 2906–2922. [Google Scholar] [CrossRef]
- Hu, J.; Mengu, D.; Tzarouchis, D.C.; Edwards, B.; Engheta, N.; Ozcan, A. Diffractive Optical Computing in Free Space. Nat. Commun. 2024, 15, 1525. [Google Scholar] [CrossRef]
- de Abajo, F.J.G.; Basov, D.N.; Koppens, F.H.L.; Orsini, L.; Ceccanti, M.; Castilla, S.; Cavicchi, L.; Polini, M.; Gonçalves, P.A.D.; Costa, A.T.; et al. Roadmap for Photonics with 2D Materials. ACS Photonics 2025, 12, 3961–4095. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, Y.; Chen, J.; Lu, M.; Wang, X.; Zhang, Z.; Xiong, H.; Choo, J.; Chen, L. Plasmonic Nanomaterial-Enhanced Fluorescence and Raman Sensors: Multifunctional Platforms and Applications. Coord. Chem. Rev. 2024, 507, 215768. [Google Scholar] [CrossRef]
- Hossain, M.K. Detection of Surface Enhanced Raman Scattering Active Hotspot Using near Field Scanning Optical Microscopy. Sci. Rep. 2024, 14, 10559. [Google Scholar] [CrossRef]
- Hu, Z.; Gu, M.; Tian, Y.; Li, C.; Zhu, M.; Zhou, H.; Fang, B.; Hong, Z.; Jing, X. Review for Optical Metalens Based on Metasurfaces: Fabrication and Applications. Microsyst. Nanoeng. 2025, 11, 189. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Cai, Z.; Chen, Z.; Ding, Y.; Zheng, Z.; Ding, F. Recent Progress in Mechanically Reconfigurable Metasurfaces. APL Photonics 2025, 10, 080901. [Google Scholar] [CrossRef]
- Karim, M.E.; Choudhury, S.M. Reconfigurable Broadband Metasurface with Switchable Functionalities in the Visible Range. Opt. Mater. Express 2023, 13, 1409–1423. [Google Scholar] [CrossRef]
- Cetin, A.E.; Coskun, A.F.; Galarreta, B.C.; Huang, M.; Herman, D.; Ozcan, A.; Altug, H. Handheld High-Throughput Plasmonic Biosensor Using Computational on-Chip Imaging. Light Sci. Appl. 2014, 3, e122. [Google Scholar] [CrossRef]
- Tua, D.; Liu, R.; Yang, W.; Zhou, L.; Song, H.; Ying, L.; Gan, Q. Imaging-Based Intelligent Spectrometer on a Plasmonic Rainbow Chip. Nat. Commun. 2023, 14, 1902. [Google Scholar] [CrossRef]
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented Reality and Virtual Reality Displays: Emerging Technologies and Future Perspectives. Light Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef]
- Choi, M.-H.; Han, W.; Min, K.; Min, D.; Han, G.; Shin, K.-S.; Kim, M.; Park, J.-H. Recent Applications of Optical Elements in Augmented and Virtual Reality Displays: A Review. ACS Appl. Opt. Mater. 2024, 2, 1247–1268. [Google Scholar] [CrossRef]
- Yun, J.-G.; Kang, H.; Lee, K.; Jeong, Y.; Lee, E.; Kim, J.; Choi, M.; Koo, B.; Kim, D.; Choi, J.; et al. Compact Eye Camera with Two-Third Wavelength Phase-Delay Metalens. Nat. Commun. 2025, 16, 7299. [Google Scholar] [CrossRef]
- Yang, Y.; Seong, J.; Choi, M.; Park, J.; Kim, G.; Kim, H.; Jeong, J.; Jung, C.; Kim, J.; Jeon, G.; et al. Integrated Metasurfaces for Re-Envisioning a near-Future Disruptive Optical Platform. Light Sci. Appl. 2023, 12, 152. [Google Scholar] [CrossRef]
- Xu, D.; Xiong, X.; Wu, L.; Ren, X.-F.; Png, C.E.; Guo, G.-C.; Gong, Q.; Xiao, Y.-F. Quantum Plasmonics: New Opportunity in Fundamental and Applied Photonics. Adv. Opt. Photon. 2018, 10, 703–756. [Google Scholar] [CrossRef]
- Li, N.; Liu, K.; Sorger, V.J.; Sadana, D.K. Monolithic III–V on Silicon Plasmonic Nanolaser Structure for Optical Interconnects. Sci. Rep. 2015, 5, 14067. [Google Scholar] [CrossRef]
- Wu, C.; Huang, X.; Ji, Y.; Cheng, T.; Wang, J.; Chi, N.; Yu, S.; Chang-Hasnain, C.J. Addressable Structured Light System Using Metasurface Optics and an Individually Addressable VCSEL Array. Photon. Res. 2024, 12, 1129–1137. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.-J. Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays. Micromachines 2025, 16, 1026. [Google Scholar] [CrossRef] [PubMed]
- Montes McNeil, A.; Li, Y.; Zhang, A.; Moebius, M.; Liu, Y. Fundamentals and Recent Developments of Free-Space Optical Neural Networks. J. Appl. Phys. 2024, 136, 030701. [Google Scholar] [CrossRef]
- Bouillard, J.-S.G.; Dickson, W.; O’Connor, D.P.; Wurtz, G.A.; Zayats, A.V. Low-Temperature Plasmonics of Metallic Nanostructures. Nano Lett. 2012, 12, 1561–1565. [Google Scholar] [CrossRef]
- Yu, F.; Zhao, Z.; Chen, J.; Wang, J.; Jin, R.; Chen, J.; Wang, J.; Li, G.; Chen, X.; Lu, W. Reconfigurable Metasurface with Tunable and Achromatic Beam Deflections. Opt. Mater. Express 2022, 12, 49–58. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhu, A.Y.; Sisler, J.; Huang, Y.-W.; Yousef, K.M.A.; Lee, E.; Qiu, C.-W.; Capasso, F. Broadband Achromatic Metasurface-Refractive Optics. Nano Lett. 2018, 18, 7801–7808. [Google Scholar] [CrossRef]
- Liu, R.; Li, L.; Zhou, J. The Principle and Application of Achromatic Metalens. Micromachines 2025, 16, 660. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, M.; Crowley, D.; Gangi, N.; Begović, A.; Huang, Z.R. Silicon Photonics Foundry Fabricated, Slow-Light Enhanced, Low Power Thermal Phase Shifter. J. Appl. Phys. 2024, 136, 163101. [Google Scholar] [CrossRef]
- Becher, C.; Gao, W.; Kar, S.; Marciniak, C.D.; Monz, T.; Bartholomew, J.G.; Goldner, P.; Loh, H.; Marcellina, E.; Goh, K.E.J.; et al. 2023 Roadmap for Materials for Quantum Technologies. Mater. Quantum. Technol. 2023, 3, 012501. [Google Scholar] [CrossRef]
- Elsawy, M.; Kyrou, C.; Mikheeva, E.; Colom, R.; Duboz, J.-Y.; Kamali, K.Z.; Lanteri, S.; Neshev, D.; Genevet, P. Universal Active Metasurfaces for Ultimate Wavefront Molding by Manipulating the Reflection Singularities. Laser Photonics Rev. 2023, 17, 2200880. [Google Scholar] [CrossRef]
- Nakajima, M.; Tanaka, K.; Inoue, K.; Nakajima, K.; Hashimoto, T. Densely Parallelized Photonic Tensor Processor on Hybrid Waveguide/Free-Space-Optics. In Proceedings of the 2023 International Conference on Photonics in Switching and Computing (PSC), Mantova, Italy, 26–29 September 2023; pp. 1–3. [Google Scholar]
- Gupta, S.; Xavier, J. Neuromorphic Photonic On-Chip Computing. Chips 2025, 4, 34. [Google Scholar] [CrossRef]
- Cai, W.; White, J.S.; Brongersma, M.L. Compact, High-Speed and Power-Efficient Electrooptic Plasmonic Modulators. Nano Lett. 2009, 9, 4403–4411. [Google Scholar] [CrossRef] [PubMed]
- Heni, W.; Fedoryshyn, Y.; Baeuerle, B.; Josten, A.; Hoessbacher, C.B.; Messner, A.; Haffner, C.; Watanabe, T.; Salamin, Y.; Koch, U.; et al. Plasmonic IQ Modulators with Attojoule per Bit Electrical Energy Consumption. Nat. Commun. 2019, 10, 1694. [Google Scholar] [CrossRef]
- Huang, J.-A.; Luo, L.-B. Low-Dimensional Plasmonic Photodetectors: Recent Progress and Future Opportunities. Adv. Opt. Mater. 2018, 6, 1701282. [Google Scholar] [CrossRef]
- Kim, H.; Lee, J.; Lee, C.B.; Lee, Y.H. Recent Progress of Plasmonic Perovskite Photodetectors. Inorganics 2025, 13, 351. [Google Scholar] [CrossRef]
- Duempelmann, L.; Gallinet, B.; Novotny, L. Multispectral Imaging with Tunable Plasmonic Filters. ACS Photonics 2017, 4, 236–241. [Google Scholar] [CrossRef]
- Oshita, M.; Saito, S.; Kan, T. Electromechanically Reconfigurable Plasmonic Photodetector with a Distinct Shift in Resonant Wavelength. Microsyst. Nanoeng. 2023, 9, 26. [Google Scholar] [CrossRef]
- Wang, D.; Wang, W.; Knudson, M.P.; Schatz, G.C.; Odom, T.W. Structural Engineering in Plasmon Nanolasers. Chem. Rev. 2018, 118, 2865–2881. [Google Scholar] [CrossRef]
- Yang, A.; Odom, T.W. Breakthroughs in Photonics 2014: Advances in Plasmonic Nanolasers. IEEE Photonics J. 2015, 7, 1–6. [Google Scholar] [CrossRef]
- Wang, D.; Yang, A. Miniaturized Optics from Structured Nanoscale Cavities. Prog. Quantum Electron. 2024, 94, 100507. [Google Scholar] [CrossRef]
- Shahid, S.; Anisuzzaman Talukder, M. Beyond Periodicity: Tailoring Tamm Resonances in Plasmonic Nanohole Arrays for Multimodal Lasing. New J. Phys. 2025, 27, 013014. [Google Scholar] [CrossRef]
- Butt, M.A. Racetrack Ring Resonator-Based on Hybrid Plasmonic Waveguide for Refractive Index Sensing. Micromachines 2024, 15, 610. [Google Scholar] [CrossRef]
- Gorkunov, M.V.; Geivandov, A.R.; Mamonova, A.V.; Simdyankin, I.V.; Kasyanova, I.V.; Ezhov, A.A.; Artemov, V.V. Non-Mechanical Multiplexed Beam-Steering Elements Based on Double-Sided Liquid Crystal Metasurfaces. Photonics 2022, 9, 986. [Google Scholar] [CrossRef]
- Ullah, N.; Khalid, A.U.R.; Iqbal, S.; Imran, M.; Khan, M.I.; Laxmi, V.; Tian, Y.; Tian, X. All-Dielectric Coding Metasurface Designs for Spin-Selective Beam Shaping and Multichannel Optical Vortex Beam Manipulation. Results Phys. 2025, 73, 108265. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, J.; Fu, X.; Liu, X.; Liu, T.; Chu, Z.; Han, Y.; Qiu, T.; Sui, S.; Qu, S.; et al. Deep-Learning-Empowered Holographic Metasurface with Simultaneously Customized Phase and Amplitude. ACS Appl. Mater. Interfaces 2022, 14, 48303–48310. [Google Scholar] [CrossRef]
- Zou, Y.; Jin, H.; Zhu, R.; Zhang, T. Metasurface Holography with Multiplexing and Reconfigurability. Nanomaterials 2024, 14, 66. [Google Scholar] [CrossRef]
- Jiang, Q.; Jin, G.; Cao, L. When Metasurface Meets Hologram: Principle and Advances. Adv. Opt. Photon. 2019, 11, 518–576. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, X.; Chen, Y.; Liu, Q.; Li, X.; Wang, Y.; Liu, N.; Duan, H. 3D-Integrated Metasurfaces for Full-Colour Holography. Light Sci. Appl. 2019, 8, 86. [Google Scholar] [CrossRef]
- Jiang, K.; Feng, H.; Gu, M.; Jing, X.; Li, C. Research Progress on Tunable Absorbers for Various Wavelengths Based on Metasurfaces. Photonics 2025, 12, 968. [Google Scholar] [CrossRef]
- Pillai, V.V.; Ramasubramanian, B.; Sequerth, O.; Pilla, S.; Wang, T.; Mohanty, A.K.; Govindaraj, P.; Alhassan, S.M.; Salim, N.; Kingshott, P.; et al. Nanomaterial Advanced Smart Coatings: Emerging Trends Shaping the Future. Appl. Mater. Today 2025, 42, 102574. [Google Scholar] [CrossRef]
- Said, Z.; Pandey, A.K.; Tiwari, A.K.; Kalidasan, B.; Jamil, F.; Thakur, A.K.; Tyagi, V.V.; Sarı, A.; Ali, H.M. Nano-Enhanced Phase Change Materials: Fundamentals and Applications. Prog. Energy Combust. Sci. 2024, 104, 101162. [Google Scholar] [CrossRef]
- Chang, X.; Pivnenko, M.; Shrestha, P.; Wu, W.; Zhang, W.; Chu, D. Electrically Tuned Active Metasurface towards Metasurface-Integrated Liquid Crystal on Silicon (Meta-LCoS) Devices. Opt. Express 2023, 31, 5378–5387. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Q.; Zeng, R.; Chang, C.; Zhang, D.; Zhuang, S. Thermal Tuning Nanoprinting Based on Liquid Crystal Tunable Dual-Layered Metasurfaces for Optical Information Encryption. Opt. Express 2024, 32, 4639–4649. [Google Scholar] [CrossRef] [PubMed]
- Makarov, S.V.; Zalogina, A.S.; Tajik, M.; Zuev, D.A.; Rybin, M.V.; Kuchmizhak, A.A.; Juodkazis, S.; Kivshar, Y. Light-Induced Tuning and Reconfiguration of Nanophotonic Structures. Laser Photonics Rev. 2017, 11, 1700108. [Google Scholar] [CrossRef]
- Ko, J.H.; Yoo, Y.J.; Lee, Y.; Jeong, H.-H.; Song, Y.M. A Review of Tunable Photonics: Optically Active Materials and Applications from Visible to Terahertz. iScience 2022, 25, 104727. [Google Scholar] [CrossRef]
- He, S.; Yang, H.; Jiang, Y.; Deng, W.; Zhu, W. Recent Advances in MEMS Metasurfaces and Their Applications on Tunable Lens. Micromachines 2019, 10, 505. [Google Scholar] [CrossRef]
- Weigand, H.; Vogler-Neuling, V.V.; Escalé, M.R.; Pohl, D.; Richter, F.U.; Karvounis, A.; Timpu, F.; Grange, R. Enhanced Electro-Optic Modulation in Resonant Metasurfaces of Lithium Niobate. ACS Photonics 2021, 8, 3004–3009. [Google Scholar] [CrossRef]
- Khodadadi, M.; Nozhat, N.; Nasari, H. A Comprehensive Review on Hybrid Plasmonic Waveguides: Structures, Applications, Challenges, and Future Perspectives. Nanotechnol. Rev. 2025, 14, 20240137. [Google Scholar] [CrossRef]
- Sharma, T.; Zhang, Z.; Wang, J.; Cheng, Z.; Yu, K. Past, Present, and Future of Hybrid Plasmonic Waveguides for Photonics Integrated Circuits. Nanotechnol. Precis. Eng. 2024, 7, 045001. [Google Scholar] [CrossRef]
- Lu, G.-W.; Hong, J.; Qiu, F.; Spring, A.M.; Kashino, T.; Oshima, J.; Ozawa, M.; Nawata, H.; Yokoyama, S. High-Temperature-Resistant Silicon-Polymer Hybrid Modulator Operating at up to 200 Gbit S−1 for Energy-Efficient Datacentres and Harsh-Environment Applications. Nat. Commun. 2020, 11, 4224. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Elder, D.L.; Johnson, L.E.; de Coene, Y.; Heni, W.; Moor, D.; Hammond, S.R.; O’Malley, K.M.; Clays, K.; Leuthold, J.; et al. Ultrahigh Performance Cross-Linkable Organic Electro-Optic Material for Hybrid Modulators. Chem. Mater. 2025, 37. [Google Scholar] [CrossRef]
- Kieninger, C.; Kutuvantavida, Y.; Miura, H.; Kemal, J.N.; Zwickel, H.; Qiu, F.; Lauermann, M.; Freude, W.; Randel, S.; Yokoyama, S.; et al. Demonstration of Long-Term Thermally Stable Silicon-Organic Hybrid Modulators at 85 °C. Opt. Express 2018, 26, 27955–27964. [Google Scholar] [CrossRef]
- Zhao, X.; Jiao, Y.; Liang, J.; Lou, J.; Zhang, J.; Lv, J.; Du, X.; Shen, L.; Zheng, B.; Cai, T. Multifield-Controlled Terahertz Hybrid Metasurface for Switches and Logic Operations. Nanomaterials 2022, 12, 3765. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Mao, Y.-F.; Chen, J.; Wang, S.; Chen, H.-Z.; Zhang, Y.; Wang, S.-Y.; Chen, X.; Li, T.; et al. Stable, High-Performance Sodium-Based Plasmonic Devices in the near Infrared. Nature 2020, 581, 401–405. [Google Scholar] [CrossRef]
- Sun, K.; Li, J.; Ge, L.; Zhong, K.; Wang, Y.; Xu, D.; Yang, X.; Fu, W.; Yao, J. Graphene-Enhanced Hybrid Terahertz Metasurface Sensor for Ultrasensitive Nortriptyline Sensing and Detection. Opt. Express 2022, 30, 35749–35758. [Google Scholar] [CrossRef]
- Butt, M.A. Ultra-Sensitive Refractive Index Sensing Enabled by High-Q Hybrid Plasmonic Metasurface Absorbers. Opt. Laser Technol. 2025, 192, 113743. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Z.; Hao, Z.; DiMarco, C.; Maturavongsadit, P.; Hao, Y.; Lu, M.; Stein, A.; Wang, Q.; Hone, J.; et al. Optical Conductivity-Based Ultrasensitive Mid-Infrared Biosensing on a Hybrid Metasurface. Light Sci. Appl. 2018, 7, 67. [Google Scholar] [CrossRef]
- Zhao, P.; Lü, C.; Sun, S.; Wu, F. Plasmon–Exciton Strong Coupling in Low-Dimensional Materials: From Fundamentals to Hybrid Nanophotonic Platforms. Nanomaterials 2025, 15, 1463. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.; Zhang, C.; Zhang, Q.; Liu, Y.; Xia, H.; Chen, B.; Yu, Z.; Wang, C.; Zhou, Z.; et al. Self-Tunable Metasurface Photoelectric Hybrid Neural Network. Laser Photonics Rev. 2025, e02006. [Google Scholar] [CrossRef]
- Isnard, E.; Héron, S.; Lanteri, S.; Elsawy, M. Hybrid Model to Simulate Optical Systems Combining Metasurfaces and Classical Refractive Elements. Opt. Express 2025, 33, 52600–52613. [Google Scholar] [CrossRef]
- Aththanayake, A.; Lininger, A.; Strangi, C.; Griswold, M.A.; Strangi, G. Tunable Holographic Metasurfaces for Augmented and Virtual Reality. Nanophotonics 2025, 14, 3813–3823. [Google Scholar] [CrossRef]
- Ko, J.; Kim, G.; Kim, I.; Hwang, S.H.; Jeon, S.; Ahn, J.; Jeong, Y.; Ha, J.-H.; Heo, H.; Jeong, J.-H.; et al. Metasurface-Embedded Contact Lenses for Holographic Light Projection. Adv. Sci. 2024, 11, 2407045. [Google Scholar] [CrossRef]
- Luo, M.; Zhou, Y.; Zhao, X.; Guo, Z.; Li, Y.; Wang, Q.; Liu, J.; Luo, W.; Shi, Y.; Liu, A.Q.; et al. High-Sensitivity Optical Sensors Empowered by Quasi-Bound States in the Continuum in a Hybrid Metal–Dielectric Metasurface. ACS Nano 2024, 18, 6477–6486. [Google Scholar] [CrossRef]
- Li, H.; Shi, Z.; Zhang, H.; Qiu, S.; Zhou, Z.-K. Hybrid Metasurface Based on Si3N4 Nanopillar for Optical Sensing with Dual Channels. ACS Appl. Nano Mater. 2025, 8, 2965–2973. [Google Scholar] [CrossRef]
- Soma, G.; Ariu, K.; Karakida, S.; Tsubai, Y.; Tanemura, T. Subvolt High-Speed Free-Space Modulator with Electro-Optic Metasurface. Nat. Nanotechnol. 2025, 20, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, H.-X.; Liu, T.; Zhang, F. Hybrid-Phase Assisted Amplitude and Phase Control Using Full-Space Metasurface. Adv. Opt. Mater. 2024, 12, 2302153. [Google Scholar] [CrossRef]
- Luo, W.; Abbasi, S.A.; Li, X.; Ho, H.-P.; Yuan, W. Dynamic Tunable and Switchable Broadband Near-Infrared Absorption Modulator Based on Graphene-Hybrid Metasurface. Opt. Laser Technol. 2025, 180, 111460. [Google Scholar] [CrossRef]
- Liu, G.-D.; Zhai, X.; Xia, S.-X.; Lin, Q.; Zhao, C.-J.; Wang, L.-L. Toroidal Resonance Based Optical Modulator Employing Hybrid Graphene-Dielectric Metasurface. Opt. Express 2017, 25, 26045–26054. [Google Scholar] [CrossRef]
- Zeng, B.; Huang, Z.; Singh, A.; Yao, Y.; Azad, A.K.; Mohite, A.D.; Taylor, A.J.; Smith, D.R.; Chen, H.-T. Hybrid Graphene Metasurfaces for High-Speed Mid-Infrared Light Modulation and Single-Pixel Imaging. Light Sci. Appl. 2018, 7, 51. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L.; Butt, M.A. Grayscale Lithography and a Brief Introduction to Other Widely Used Lithographic Methods: A State-of-the-Art Review. Micromachines 2024, 15, 1321. [Google Scholar] [CrossRef]
- Holmes, S.J.; Mitchell, P.H.; Hakey, M.C. Manufacturing with DUV Lithography. IBM J. Res. Dev. 1997, 41, 7–19. [Google Scholar] [CrossRef]
- Totzeck, M.; Ulrich, W.; Göhnermeier, A.; Kaiser, W. Pushing Deep Ultraviolet Lithography to Its Limits. Nat. Photonics 2007, 1, 629–631. [Google Scholar] [CrossRef]
- Einck, V.J.; Torfeh, M.; McClung, A.; Jung, D.E.; Mansouree, M.; Arbabi, A.; Watkins, J.J. Scalable Nanoimprint Lithography Process for Manufacturing Visible Metasurfaces Composed of High Aspect Ratio TiO2 Meta-Atoms. ACS Photonics 2021, 8, 2400–2409. [Google Scholar] [CrossRef]
- Kim, W.; Yoon, G.; Kim, J.; Jeong, H.; Kim, Y.; Choi, H.; Badloe, T.; Rho, J.; Lee, H. Thermally-Curable Nanocomposite Printing for the Scalable Manufacturing of Dielectric Metasurfaces. Microsyst. Nanoeng. 2022, 8, 73. [Google Scholar] [CrossRef]
- Li, J.; Wang, S.; Li, X. Cross-Scale Structures Fabrication via Hybrid Lithography for Nanolevel Positioning. Microsyst. Nanoeng. 2025, 11, 163. [Google Scholar] [CrossRef]
- Khurgin, J.B.; Boltasseva, A. Reflecting upon the Losses in Plasmonics and Metamaterials. MRS Bull. 2012, 37, 768–779. [Google Scholar] [CrossRef]
- Chou Chau, Y.-F. Nanophotonic Materials and Devices: Recent Advances and Emerging Applications. Micromachines 2025, 16, 933. [Google Scholar] [CrossRef]
- Wu, P.; Li, X.; Xing, Y.; Wang, J.; Zheng, W.; Wang, Z.; Ma, Y. Broadband Achromatic Hybrid Metalens Module with 100° Field of View for Visible Imaging. Sensors 2025, 25, 3202. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H.; Cayll, D.; Behera, D.; Cullinan, M. Towards Repeatable, Scalable Graphene Integrated Micro-Nano Electromechanical Systems (MEMS/NEMS). Micromachines 2022, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.; Jeon, Y.; Yang, Y.; Badloe, T.; Rho, J. Cost-Effective and Environmentally Friendly Mass Manufacturing of Optical Metasurfaces Towards Practical Applications and Commercialization. Int. J. Precis. Eng. Manuf.-Green Tech. 2024, 11, 685–706. [Google Scholar] [CrossRef]
- Morciano, M.; Fasano, M.; Chiavazzo, E.; Mongibello, L. Trending Applications of Phase Change Materials in Sustainable Thermal Engineering: An up-to-Date Review. Energy Convers. Manag. X 2025, 25, 100862. [Google Scholar] [CrossRef]
- Islam, A.; Pandey, A.K.; Palam, K.D.P.; Bhutto, Y.A.; Saidur, R. Thermal Performance and Shape Stability Evaluation of Boron Nitride and Expanded Graphite Synergy in Beeswax-Based Composite Phase Change Material. Energy Storage 2025, 7, e70255. [Google Scholar] [CrossRef]
- Miller, D.A.B. Attojoule Optoelectronics for Low-Energy Information Processing and Communications. J. Light. Technol. 2017, 35, 346–396. [Google Scholar] [CrossRef]
- Dionne, J.A.; Sweatlock, L.A.; Atwater, H.A.; Polman, A. Plasmon Slot Waveguides: Towards Chip-Scale Propagation with Subwavelength-Scale Localization. Phys. Rev. B 2006, 73, 035407. [Google Scholar] [CrossRef]
- Zhang, B.; Bian, Y.; Ren, L.; Guo, F.; Tang, S.-Y.; Mao, Z.; Liu, X.; Sun, J.; Gong, J.; Guo, X.; et al. Hybrid Dielectric-Loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale. Sci. Rep. 2017, 7, 40479. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.M.I.; Areed, N.F.F.; El-Mikati, H.A.; Hameed, M.F.O.; Obayya, S.S.A. Low Loss Hybrid Plasmonic Photonic Crystal Waveguide for Optical Communication Applications. Opt. Quant. Electron. 2022, 54, 431. [Google Scholar] [CrossRef]
- Khonina, S.N.; Savelyev, D.A.; Degtyarev, S.A.; Azizian-Kalandaragh, Y. Metalens for Creation of the Longitudinally Polarized Photonic Needle. J. Phys. Conf. Ser. 2019, 1368, 022008. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Transforming High-Resolution Imaging: A Comprehensive Review of Advances in Metasurfaces and Metalenses. Mater. Today Phys. 2025, 50, 101628. [Google Scholar] [CrossRef]
- Home Page—Metalenz. 2022. Available online: https://metalenz.com/ (accessed on 9 December 2025).
- Home Page—Lumotive. Available online: https://lumotive.com/ (accessed on 9 December 2025).
- Lin, X.; Rivenson, Y.; Yardimci, N.T.; Veli, M.; Luo, Y.; Jarrahi, M.; Ozcan, A. All-Optical Machine Learning Using Diffractive Deep Neural Networks. Science 2018, 361, 1004–1008. [Google Scholar] [CrossRef]
- Cheng, K.; Deng, C.; Ye, F.; Li, H.; Shen, F.; Fan, Y.; Gong, Y. Metasurface-Based Image Classification Using Diffractive Deep Neural Network. Nanomaterials 2024, 14, 1812. [Google Scholar] [CrossRef]
- Liang, Z.; Xiang, C.; Xiao, S.; Qiu, J.; Li, J.; Liu, Q.; Zou, C.; Liu, T. Metasurface-Based All-Optical Diffractive Convolutional Neural Networks. arXiv 2025, arXiv:2512.05558. [Google Scholar]
- Zhou, B.; Li, E.; Bo, Y.; Wang, A.X. High-Speed Plasmonic-Silicon Modulator Driven by Epsilon-Near-Zero Conductive Oxide. J. Light. Technol. 2020, 38, 3338–3345. [Google Scholar] [CrossRef]
- Das, H.R.; Mondal, H. Plasmonic Integrated Electro-Absorption Modulator on an SiO2 Platform for Advanced Photonic Systems. Appl. Opt. 2025, 64, 7262–7270. [Google Scholar] [CrossRef] [PubMed]
- Cotrufo, M.; Sulejman, S.B.; Wesemann, L.; Rahman, M.A.; Bhaskaran, M.; Roberts, A.; Alù, A. Reconfigurable Image Processing Metasurfaces with Phase-Change Materials. Nat. Commun. 2024, 15, 4483. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Kim, H.J.; Rivero-Baleine, C.; Hu, J. Reconfigurable Metasurfaces towards Commercial Success. Nat. Photon. 2023, 17, 48–58. [Google Scholar] [CrossRef]
- Zarei, S. Programmable Diffractive Deep Neural Networks Enabled by Integrated Rewritable Metasurfaces. Sci. Rep. 2025, 15, 35624. [Google Scholar] [CrossRef]
- Zhang, W.; Pivnenko, M.; Chu, D. Fast-Speed Electrically Tunable Liquid Crystal Metasurface for 2π Phase Modulation at Normal and Oblique Angles of Incidence. Opt. Express 2025, 33, 8911–8923. [Google Scholar] [CrossRef]
- Herle, D.; Kiselev, A.; Villanueva, L.G.; Martin, O.J.F.; Quack, N. Broadband Mechanically Tunable Metasurface Reflectivity Modulator in the Visible Spectrum. ACS Photonics 2023, 10, 1882–1889. [Google Scholar] [CrossRef] [PubMed]
- Boes, A.; Strain, M.; Chang, L.; Nader, N. Hybrid and Heterogeneous Integration in Photonics: From Physics to Device Applications. Appl. Phys. Lett. 2025, 127, 130401. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, T.; Lee, G.-Y.; Kim, C.; Bang, J.; Jang, J.; Jeong, Y.; Lee, B. Metasurface Folded Lens System for Ultrathin Cameras. Sci. Adv. 2024, 10, eadr2319. [Google Scholar] [CrossRef]
- Lin, Q.; Fang, S.; Yu, Y.; Xi, Z.; Shao, L.; Li, B.; Li, M. Optical Multi-Beam Steering and Communication Using Integrated Acousto-Optics Arrays. Nat. Commun. 2025, 16, 4501. [Google Scholar] [CrossRef]
- Wang, J.; Song, R.; Li, X.; Yue, W.; Cai, Y.; Wang, S.; Yu, M. Beam Steering Technology of Optical Phased Array Based on Silicon Photonic Integrated Chip. Micromachines 2024, 15, 322. [Google Scholar] [CrossRef]
- Takashima, Y. Beam and Image Steering by MEMS Array for AR and Lidar Applications. In Proceedings of the 2022 International Symposium on Imaging, Sensing, and Optical Memory (ISOM) and the 13th International Conference on Optics-Photonics Design and Fabrication (ODF), Sapporo, Japan, 31 August–5 September 2022; Paper IWPK_OWP_03. Optica Publishing Group: Washington, DC, USA, 2022. [Google Scholar]
- Chen, R.T. Silicon Photonics for Optical Computing, Interconnects and Sensing. In Proceedings of the 2017 22nd Microoptics Conference (MOC), Tokyo, Japan, 19–22 November 2017; pp. 74–75. [Google Scholar]













| Dimension | Plasmonics | Metasurfaces (MSs) | Hybrid Plasmonic–MS/Plasmonic–Dielectric Systems |
|---|---|---|---|
| Core Physical Strength | Extreme subwavelength confinement; ultrafast electron–mediated response; strong nonlinearities [74,75,76,77]. | Complete phase, amplitude, and polarization control at planar interfaces; broadband functionality improving [78,79]. | Combines strong confinement (plasmonics) with low-loss routing and wavefront control (dielectric/MS) [30,80,81,82]. |
| Key Advantages | Enables nanometer-scale modulators, detectors, and quantum-scale hotspots; supports ENZ-based ultrafast switching [24,25,83]. | Enables flat optics, ultrathin lenses, programmable apertures; supports multifunctionality and complex wavefront shaping [13,84,85,11]. | Achieves high modulation efficiency with reduced loss; allows highly integrated and programmable photonics; enables compact optical processors [63,86,87]. |
| Main Limitations (Current) | Ohmic (absorption) loss; short propagation lengths; heat generation; material stability constraints [88]. | Fabrication scalability; limited broadband achromaticity; need for multi-layer integration for complex functions [89,90]. | Coupling mismatch between dielectric and plasmonic modes; thermal management; fabrication tolerance demands [55,91,92]. |
| Materials Outlook | Alternatives to Au/Ag: TiN (CMOS-compatible), Al (UV), Cu (low-cost), ITO (ENZ), graphene (tunable mid-IR) [50,93]. | High-index dielectrics (Si, TiO2); hybrid designs combining metallic and dielectric scatterers; phase-change materials for reconfigurability [11,18,28,62]. | ITO + Si, graphene + ITO, plasmonic inserts in Si waveguides; meta-waveguides with engineered dispersion and polarization control [94,95]. |
| Device-Level Examples | Plasmonic modulators, nanolasers, hotspots for sensing, ultrathin detectors [96,97]. | Metalenses, holographic processors, beam steering devices, MS-based neural networks [98,99]. | Hybrid ENZ modulators, MS-enabled compact waveguides, reconfigurable intelligent photonic surfaces [100,101]. |
| Performance Frontier | Femtosecond-scale modulation; deep subwavelength mode confinement; intense local fields for nonlinear processes [102]. | System-level optical functionality: multi-frequency control, phase–amplitude–polarization multiplexing; flat optical architectures for cameras and LiDAR [103,104]. | Best-of-both-worlds: high speed + low footprint + programmable wavefront control; pathways toward optical computing [105]. |
| Scalability Outlook | Requires new plasmonic materials with lower loss and CMOS compatibility [106]. | Moving toward mass production via nanoimprint, DUV lithography; multi-layer stacking likely [34,107]. | Depends on seamless integration in Si photonics; improved thermal handling and coupling engineering [108]. |
| Role in Future Optical Computing | Provides nonlinear activation, ultrafast switching, and strong light–matter interaction for deep photonic neural networks [57,109]. | Provides spatial transformations and diffractive computing layers (e.g., MS neural networks) [110,111]. | Forms complete photonic compute stacks: MS front-end for linear ops + plasmonic activation layers [112]. |
| Role in Imaging and Sensing | Raman enhancement, nanoscale detectors, localized field hotspots [113,114]. | Metalenses, reconfigurable holography, spectral filters and absorbers [115,116,117]. | On-chip structured illumination, MS-controlled plasmonic sensors, integrated spectrometers [118,119]. |
| Role in AR/VR and Compact Optics | Enhances sensing elements (photodetectors, modulators) [120,121]. | Enables ultrathin imaging stacks, folded metalenses, beam combiners for headsets [11,122]. | Compact, integrated emitter–MS–detector stacks for next-gen wearable optics [123]. |
| Application Sectors Poised for Disruption | High-speed interconnects, ultrafast computing nodes, quantum sources [124,125]. | Consumer imaging, LiDAR, 3D sensing, AR/VR displays, optical encryption [126,123,127]. | Full-stack systems: flat cameras, photonic processors, adaptive optical networks [128]. |
| Future Research Priorities | Low-loss materials, thermal management, quantum-plasmonic integration [46,129]. | Broadband achromatic operation, dynamic tunability, large-area manufacturing [130,131,132]. | Thermal engineering, mode-matching strategies, foundry-compatible fabrication [133]. |
| Long-Term Vision | Plasmonics: acts as nanoscale “processing nodes” embedded in larger photonic circuits [134]. | MSs: universal optical interfaces providing programmable wavefront control [135]. | Hybrid platforms: planar, scalable, computationally aware optical systems defining the next photonic paradigm [136,137]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Butt, M.A. Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems. Micromachines 2026, 17, 119. https://doi.org/10.3390/mi17010119
Butt MA. Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems. Micromachines. 2026; 17(1):119. https://doi.org/10.3390/mi17010119
Chicago/Turabian StyleButt, Muhammad A. 2026. "Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems" Micromachines 17, no. 1: 119. https://doi.org/10.3390/mi17010119
APA StyleButt, M. A. (2026). Plasmonics Meets Metasurfaces: A Vision for Next Generation Planar Optical Systems. Micromachines, 17(1), 119. https://doi.org/10.3390/mi17010119
