Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,128)

Search Parameters:
Keywords = operation safety risk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1967 KiB  
Article
Evaluation of Myocardial Protection in Prolonged Aortic Cross-Clamp Times: Del Nido and HTK Cardioplegia in Adult Cardiac Surgery
by Murat Yücel, Emre Demir Benli, Kemal Eşref Erdoğan, Muhammet Fethi Sağlam, Gökay Deniz, Hakan Çomaklı and Emrah Uğuz
Medicina 2025, 61(8), 1420; https://doi.org/10.3390/medicina61081420 - 6 Aug 2025
Abstract
Background and Objectives: Effective myocardial protection is essential for successful cardiac surgery outcomes, especially in complex and prolonged procedures. To this end, Del Nido (DN) and histidine-tryptophan-ketoglutarate (HTK) cardioplegia solutions are widely used; however, their comparative efficacy in adult surgeries with prolonged aortic [...] Read more.
Background and Objectives: Effective myocardial protection is essential for successful cardiac surgery outcomes, especially in complex and prolonged procedures. To this end, Del Nido (DN) and histidine-tryptophan-ketoglutarate (HTK) cardioplegia solutions are widely used; however, their comparative efficacy in adult surgeries with prolonged aortic cross-clamp (ACC) times remains unclear. This study aimed to compare the efficacy and safety of DN and HTK for myocardial protection during prolonged ACC times in adult cardiac surgery and to define clinically relevant thresholds. Materials and Methods: This retrospective study included a total of 320 adult patients who underwent cardiac surgery under cardiopulmonary bypass (CPB) with an aortic cross-clamp time ≥ 90 min. Data were collected from the medical records of elective adult cardiac surgery cases performed at a single center between 2019 and 2025. Patients were categorized into two groups based on the type of cardioplegia received: Del Nido (n = 160) and HTK (n = 160). The groups were compared using 1:1 propensity score matching. Clinical and biochemical outcomes—including troponin I (TnI), CK-MB, lactate levels, incidence of low cardiac output syndrome (LCOS), and need for mechanical circulatory support—were analyzed between the two cardioplegia groups. Subgroup analyses were performed according to ACC duration (90–120, 120–150, 150–180 and >180 min). The predictive threshold of ACC duration for each complication was determined by ROC analysis, followed by the analysis of independent predictors of each endpoint by multivariate logistic regression. Results: Intraoperative cardioplegia volume and transfusion requirements were lower in the DN group (p < 0.05). HTK was associated with lower TnI levels and less intra-aortic balloon pump (IABP) requirement at ACC times exceeding 180 min. Markers of myocardial injury were lower in patients with an ACC duration of 120–150 min in favor of HTK. The propensity for ventricular fibrillation after ACC was significantly lower in the DN group. Significantly lower postoperative sodium levels were observed in the HTK group. Prolonged ACC duration was an independent risk factor for LCOS (odds ratio [OR]: 1.023, p < 0.001), VIS > 15 (OR, 1.015; p < 0.001), IABP requirement (OR: 1.020, p = 0.002), and early mortality (OR: 1.016, p = 0.048). Postoperative ejection fraction (EF), troponin I, and CK-MB levels were associated with the development of LCOS and a VIS > 15. Furthermore, according to ROC analysis, HTK cardioplegia was able to tolerate ACC for up to a longer duration in terms of certain complications, suggesting a higher physiological tolerance to ischemia. Conclusions: ACC duration is a strong predictor of major adverse outcomes in adult cardiac surgeries. Although DN cardioplegia is effective and economically advantageous for shorter procedures, HTK may provide superior myocardial protection in operations with long ACC duration. This study supports the need to individualize cardioplegia choice according to ACC duration. Further prospective studies are needed to establish standard dosing protocols and to optimize cardioplegia selection according to surgical duration and complexity. Full article
Show Figures

Figure 1

35 pages, 8516 KiB  
Article
Study on Stress Monitoring and Risk Early Warning of Flexible Mattress Deployment in Deep-Water Sharp Bend Reaches
by Chu Zhang, Ping Li, Zebang Cui, Kai Wu, Tianyu Chen, Zhenjia Tian, Jianxin Hao and Sudong Xu
Water 2025, 17(15), 2333; https://doi.org/10.3390/w17152333 - 6 Aug 2025
Abstract
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 [...] Read more.
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 m/s—the risk of structural failures such as displacement, flipping, or tearing of the mattress becomes significant. To improve construction safety and stability, the study integrates numerical modeling and on-site strain monitoring to analyze the mechanical response of flexible mattresses during deployment. A three-dimensional finite element model based on the catenary theory was developed to simulate stress distributions under varying flow velocities and angles, revealing stress concentrations at the mattress’s upper edge and reinforcement junctions. Concurrently, a real-time monitoring system using high-precision strain sensors was deployed on critical shipboard components, with collected data analyzed through a remote IoT platform. The results demonstrate strong correlations between mattress strain, flow velocity, and water depth, enabling the identification of high-risk operational thresholds. The proposed monitoring and early-warning framework offers a practical solution for managing construction risks in extreme riverine environments and contributes to the advancement of intelligent construction management for underwater revetment works. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

17 pages, 5201 KiB  
Article
Construction Scheme Effects on Deformation Controls for Open-Top UBITs Underpassing Existing Stations
by Yanming Yao, Junhong Zhou, Mansheng Tan, Mingjie Jia and Honggui Di
Buildings 2025, 15(15), 2762; https://doi.org/10.3390/buildings15152762 - 5 Aug 2025
Abstract
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of [...] Read more.
Urban rail transit networks’ rapid expansions have led to increasing intersections between existing and new lines, particularly in dense urban areas where new stations must underpass existing infrastructure at zero distance. Deformation controls during construction are critical for maintaining the operational safety of existing stations, especially in soft soil conditions where construction-induced settlement poses significant risks to structural integrity. This study systematically investigates the influence mechanisms of different construction schemes on base plate deformation when an open-top UBIT (underground bundle composite pipe integrated by transverse pre-stressing) underpasses existing stations. Through precise numerical simulation using PLAXIS 3D, the research comparatively analyzed the effects of 12 pipe jacking sequences, 3 pre-stress levels (1116 MPa, 1395 MPa, 1674 MPa), and 3 soil chamber excavation schemes, revealing the mechanisms between the deformation evolution and soil unloading effects. The continuous jacking strategy of adjacent pipes forms an efficient support structure, limiting maximum settlement to 5.2 mm. Medium pre-stress level (1395 MPa) produces a balanced deformation pattern that optimizes structural performance, while excavating side chambers before the central chamber effectively utilizes soil unloading effects, achieving controlled settlement distribution with maximum values of −7.2 mm. The optimal construction combination demonstrates effective deformation control, ensuring the operational safety of existing station structures. These findings enable safer and more efficient urban underpassing construction. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 6084 KiB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Corner Case Dataset for Autonomous Vehicle Testing Based on Naturalistic Driving Data
by Jian Zhao, Wenxu Li, Bing Zhu, Peixing Zhang, Zhaozheng Hu and Jie Meng
Smart Cities 2025, 8(4), 129; https://doi.org/10.3390/smartcities8040129 - 5 Aug 2025
Abstract
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined [...] Read more.
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined as combinations of driving task and scenario elements. These scenarios are characterized by low probability, high risk, and a tendency to reveal functional limitations inherent to autonomous driving systems, triggering anomalous behavior. This study constructs a novel corner case dataset using naturalistic driving data, specifically tailored for autonomous vehicle testing. A scenario marginality quantification method is designed to analyze multi-source naturalistic driving data, enabling efficient extraction of corner cases. Heterogeneous scenarios are systematically transformed, resulting in a dataset characterized by diverse interaction behaviors and standardized formatting. The results indicate that the scenario marginality of the dataset constructed in this study is 2.78 times that of mainstream naturalistic driving datasets, and the scenarios exhibit considerable diversity. The trajectory and velocity fluctuations, quantified at 0.013 m and 0.021 m/s, respectively, are consistent with the kinematic characteristics of real-world driving scenarios. These results collectively demonstrate the dataset’s high marginality, diversity, and applicability. Full article
Show Figures

Figure 1

18 pages, 1832 KiB  
Article
On-Demand Maintenance Method Using Fault Prediction to Reduce Elevator Entrapment
by Tianshun Cui, Linlin Wu, Libin Wang, Zhiqun Luo, Yugang Dong and Qiang Wang
Appl. Sci. 2025, 15(15), 8644; https://doi.org/10.3390/app15158644 (registering DOI) - 5 Aug 2025
Abstract
With the rapid growth of elevator installations, conventional scheduled maintenance struggles to meet the dual demands of ensuring operational safety and cost control. This study proposes an innovative on-demand maintenance method that aligns with the Chinese policy directives on elevator maintenance reform. First, [...] Read more.
With the rapid growth of elevator installations, conventional scheduled maintenance struggles to meet the dual demands of ensuring operational safety and cost control. This study proposes an innovative on-demand maintenance method that aligns with the Chinese policy directives on elevator maintenance reform. First, we conduct a historical fault cause analysis to identify the root causes of elevator entrapment incidents. Next, we establish an entrapment prediction model based on our historical data. Then, we design an elevator entrapment risk index report according to the prediction results. Finally, we formulate an on-demand maintenance plan that combines insights from the report with the conclusions of the cause analysis. Field implementation and comparative experiments demonstrate that the proposed on-demand maintenance method outperforms the scheduled one. The result shows significant reductions in accident and maintenance workload, justifying the practical value of this approach for the industry. Full article
(This article belongs to the Special Issue Recent Advances and Innovation in Prognostics and Health Management)
Show Figures

Figure 1

15 pages, 1476 KiB  
Systematic Review
Intramedullary Nailing vs. Plate Fixation for Trochanteric Femoral Fractures: A Systematic Review and Meta-Analysis of Randomized Trials
by Ümit Mert, Maher Ghandour, Moh’d Yazan Khasawneh, Filip Milicevic, Ahmad Al Zuabi, Klemens Horst, Frank Hildebrand, Bertil Bouillon, Mohamad Agha Mahmoud and Koroush Kabir
J. Clin. Med. 2025, 14(15), 5492; https://doi.org/10.3390/jcm14155492 - 4 Aug 2025
Abstract
Background/Objectives: Trochanteric femoral fractures pose significant surgical challenges, particularly in elderly patients. Intramedullary nailing (IMN) and plate fixation (PF) are the primary operative strategies, yet their comparative efficacy and safety remain debated. This meta-analysis synthesizes randomized controlled trials (RCTs) to evaluate clinical, [...] Read more.
Background/Objectives: Trochanteric femoral fractures pose significant surgical challenges, particularly in elderly patients. Intramedullary nailing (IMN) and plate fixation (PF) are the primary operative strategies, yet their comparative efficacy and safety remain debated. This meta-analysis synthesizes randomized controlled trials (RCTs) to evaluate clinical, functional, perioperative, and biomechanical outcomes of IMN versus PF specifically in trochanteric fractures. Methods: A systematic search of six databases was conducted up to 20 May 2024, to identify RCTs comparing IMN and PF in adult patients with trochanteric femoral fractures. Data extraction followed PRISMA guidelines, and outcomes were pooled using random-effects models. Subgroup analyses examined the influence of fracture stability, implant type, and patient age. Risk of bias was assessed using the Cochrane RoB 2.0 tool. Results: Fourteen RCTs (n = 4603 patients) were included. No significant differences were found in reoperation rates, union time, implant cut-out, or mortality. IMN was associated with significantly reduced operative time (MD = −5.18 min), fluoroscopy time (MD = −32.92 s), and perioperative blood loss (MD = −111.68 mL). It also had a lower risk of deep infection. Functional outcomes and anatomical results were comparable. Subgroup analyses revealed fracture stability and nail type significantly modified operative time, and compression screws were associated with higher reoperation rates than IMN. Conclusions: For trochanteric femoral fractures, IMN and PF yield comparable results for most clinical outcomes, with IMN offering some advantages in surgical efficiency and perioperative morbidity, though functional outcomes were comparable. Implant selection and fracture stability influence outcomes, supporting individualized surgical decision making. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

14 pages, 1329 KiB  
Article
Lane-Changing Risk Prediction on Urban Expressways: A Mixed Bayesian Approach for Sustainable Traffic Management
by Quantao Yang, Peikun Li, Fei Yang and Wenbo Lu
Sustainability 2025, 17(15), 7061; https://doi.org/10.3390/su17157061 - 4 Aug 2025
Abstract
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an [...] Read more.
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an I-CH scoring-enhanced MMHC algorithm. This approach quantifies risk probabilities while accounting for driver decision dynamics and input data uncertainties—key gaps in conventional methods like time-to-collision metrics. Validation via the Asia network paradigm demonstrates 80.5% reliability in forecasting high-risk maneuvers. Crucially, we identify two sustainability-oriented operational thresholds: (1) optimal lane-change success occurs when trailing-vehicle speeds in target lanes are maintained at 1.0–3.0 m/s (following-gap < 4.0 m) or 3.0–6.0 m/s (gap ≥ 4.0 m), and (2) insertion-angle change rates exceeding 3.0°/unit-time significantly elevate transition probability. These evidence-based parameters enable traffic management systems to proactively mitigate collision risks by 13.26% while optimizing flow continuity. By converting behavioral insights into adaptive control strategies, this research advances resilient transportation infrastructure and low-carbon mobility through congestion reduction. Full article
Show Figures

Figure 1

11 pages, 258 KiB  
Article
Occupational and Nonoccupational Chainsaw Injuries in the United States: 2018–2022
by Judd H. Michael and Serap Gorucu
Safety 2025, 11(3), 75; https://doi.org/10.3390/safety11030075 - 4 Aug 2025
Abstract
Chainsaws are widely used in various occupational settings, including forestry, landscaping, farming, and by homeowners for tasks like tree felling, brush clearing, and firewood cutting. However, the use of chainsaws poses significant risks to operators and bystanders. This research quantified and compared occupational [...] Read more.
Chainsaws are widely used in various occupational settings, including forestry, landscaping, farming, and by homeowners for tasks like tree felling, brush clearing, and firewood cutting. However, the use of chainsaws poses significant risks to operators and bystanders. This research quantified and compared occupational and nonoccupational injuries caused by contact with chainsaws and related objects during the period from 2018 to 2022. The emergency department and OSHA (Occupational Safety and Health Administration) data were used to characterize the cause and nature of the injuries. Results suggest that for this five-year period an estimated 127,944 people were treated in U.S. emergency departments for chainsaw-related injuries. More than 200 non-fatal and 57 fatal occupational chainsaw-involved injuries were found during the same period. Landscaping and forestry were the two industries where most of the occupational victims were employed. Upper and lower extremities were the most likely injured body parts, with open wounds from cuts being the most common injury type. The majority of fatal injuries were caused by falling objects such as trees and tree limbs while using a chainsaw. Our suggestions to reduce injuries include proper training and wearing personal protective equipment, as well as making sure any bystanders are kept in a safety zone away from trees being cut. Full article
Show Figures

Figure 1

15 pages, 966 KiB  
Article
Long-Term Follow-Up of Left Atrial Appendage Exclusion: Results of the V-CLIP Multi-Center Post-Market Study
by Elias Zias, Katherine G. Phillips, Marc Gerdisch, Scott Johnson, Ahmed El-Eshmawi, Kenneth Saum, Michael Moront, Michael Kasten, Chanderdeep Singh, Gautam Bhatia, Hiroo Takayama and Ralph Damiano
J. Clin. Med. 2025, 14(15), 5473; https://doi.org/10.3390/jcm14155473 - 4 Aug 2025
Viewed by 24
Abstract
Background: Cardiac surgery patients with pre- or post-operative atrial fibrillation are at an increased risk for thromboembolic stroke, often due left atrial appendage (LAA) thrombus. Surgical LAA exclusion (LAAE) can be performed and must be complete to avoid increased thrombus formation. Methods [...] Read more.
Background: Cardiac surgery patients with pre- or post-operative atrial fibrillation are at an increased risk for thromboembolic stroke, often due left atrial appendage (LAA) thrombus. Surgical LAA exclusion (LAAE) can be performed and must be complete to avoid increased thrombus formation. Methods: This prospective, multi-center, post-market study (NCT05101993) evaluated the long-term safety and performance of the epicardial V-shape AtriClip device. Patients ≥18 years who had received V-shape AtriClip devices during non-emergent cardiac surgery consented to a prospective 12-month follow-up visit and LAA imaging. The primary performance was LAAE without residual left atrium-LAA communication, assessed by imaging at the last follow-up visit. The primary safety was device- or implant procedure-related serious adverse events (SAEs) (death, major bleeding, surgical site infection, pericardial effusion requiring intervention, myocardial infarction) within 30 days. Results: Of 155 patients from 11 U.S. centers, 151 patients had evaluable imaging. Complete LAAE was obtained in all patients. Primary performance in the intent-to-treat population was met, with 97% (95% CI 93.52%, 99.29%; p = 0.0001) complete LAAE. Primary safety was met, with 100% (95% CI 97.75%, 100%; p < 0.0001) of patients free from pre-defined SAEs within 30 days. One device-related SAE was reported, which resolved intraprocedurally. Conclusions: AtriClip V-Clip showed safe and successful LAAE through 12 months of follow-up. Full article
(This article belongs to the Special Issue Cardiac Surgery: Clinical Advances)
Show Figures

Graphical abstract

13 pages, 2517 KiB  
Article
A Framework for the Dynamic Mapping of Precipitations Using Open-Source 3D WebGIS Technology
by Marcello La Guardia, Antonio Angrisano and Giuseppe Mussumeci
Geographies 2025, 5(3), 40; https://doi.org/10.3390/geographies5030040 - 4 Aug 2025
Viewed by 47
Abstract
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts [...] Read more.
Climate change represents one of the main challenges of this century. The hazards generated by this process are various and involve territorial assets all over the globe. Hydrogeological risk represents one of these aspects, and the violence of rain precipitations has led experts to focus their interest on the study of geotechnical assets in relation to these dangerous weather events. At the same time, geospatial representation in 3D WebGIS based on open-source solutions led specialists to employ this kind of technology to remotely analyze and monitor territorial events considering different sources of information. This study considers the construction of a 3D WebGIS framework for the real-time management of geospatial information developed with open-source technologies applied to the dynamic mapping of precipitation in the metropolitan area of Palermo (Italy) based on real-time weather station acquisitions. The structure considered is a WebGIS platform developed with Cesium.js JavaScript libraries, the Postgres database, Geoserver and Mapserver geospatial servers, and the Anaconda Python platform for activating real-time data connections using Python scripts. This framework represents a basic geospatial digital twin structure useful to municipalities, civil protection services, and firefighters for land management and for activating any preventive operations to ensure territorial safety. Furthermore, the open-source nature of the platform favors the free diffusion of this solution, avoiding expensive applications based on property software. The components of the framework are available and shared using GitHub. Full article
Show Figures

Figure 1

22 pages, 5136 KiB  
Article
Application of UAVs to Support Blast Design for Flyrock Mitigation: A Case Study from a Basalt Quarry
by Józef Pyra and Tomasz Żołądek
Appl. Sci. 2025, 15(15), 8614; https://doi.org/10.3390/app15158614 (registering DOI) - 4 Aug 2025
Viewed by 74
Abstract
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in [...] Read more.
Blasting operations in surface mining pose a risk of flyrock, which is a critical safety concern for both personnel and infrastructure. This study presents the use of unmanned aerial vehicles (UAVs) and photogrammetric techniques to improve the accuracy of blast design, particularly in relation to controlling burden values and reducing flyrock. The research was conducted in a basalt quarry in Lower Silesia, where high rock fracturing complicated conventional blast planning. A DJI Mavic 3 Enterprise UAV was used to capture high-resolution aerial imagery, and 3D models were created using Strayos software. These models enabled precise analysis of bench face geometry and burden distribution with centimeter-level accuracy. The results showed a significant improvement in identifying zones with improper burden values and allowed for real-time corrections in blasthole design. Despite a ten-fold reduction in the number of images used, no loss in model quality was observed. UAV-based surveys followed software-recommended flight paths, and the application of this methodology reduced the flyrock range by an average of 42% near sensitive areas. This approach demonstrates the operational benefits and enhanced safety potential of integrating UAV-based photogrammetry into blasting design workflows. Full article
(This article belongs to the Special Issue Advanced Blasting Technology for Mining)
Show Figures

Figure 1

42 pages, 5770 KiB  
Review
Echoes from Below: A Systematic Review of Cement Bond Log Innovations Through Global Patent Analysis
by Lim Shing Wang, Muhammad Haarith Firdaous and Pg Emeroylariffion Abas
Inventions 2025, 10(4), 67; https://doi.org/10.3390/inventions10040067 - 2 Aug 2025
Viewed by 227
Abstract
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of [...] Read more.
Maintaining well integrity is essential in the oil and gas industry to prevent environmental hazards, operational risks, and economic losses. Cement bond log (CBL) tools are essential in evaluating cement bonding and ensuring wellbore stability. This study presents a patent landscape review of CBL technologies, based on 3473 patent documents from the Lens.org database. After eliminating duplicates and irrelevant entries, 167 granted patents were selected for in-depth analysis. These were categorized by technology type (wave, electrical, radiation, neutron, and other tools) and by material focus (formation, casing, cement, and borehole fluid). The findings reveal a dominant focus on formation evaluation (59.9%) and a growing reliance on wave-based (22.2%) and other advanced tools (25.1%), indicating a shift toward high-precision diagnostics. Geographically, 75% of granted patents were filed through the U.S. Patent and Trademark Office, and 97.6% were held by companies, underscoring the dominance of corporate innovation and the minimal presence of academia and individuals. The review also identifies notable patents that reflect significant technical innovations and discusses their role in advancing diagnostic capabilities. These insights emphasize the need for broader collaboration and targeted research to advance well integrity technologies in line with industry goals for operational performance and safety. Full article
Show Figures

Figure 1

21 pages, 2077 KiB  
Article
Quantitative Risk Assessment of Liquefied Natural Gas Bunkering Hoses in Maritime Operations: A Case of Shenzhen Port
by Yimiao Gu, Yanmin Zeng and Hui Shan Loh
J. Mar. Sci. Eng. 2025, 13(8), 1494; https://doi.org/10.3390/jmse13081494 - 2 Aug 2025
Viewed by 236
Abstract
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, [...] Read more.
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, particularly hazards associated with vapor cloud dispersion caused by bunkering hose releases. This study employs the Phast software developed by DNV to systematically simulate LNG release scenarios during STS operations, integrating real-world meteorological data and storage conditions. The dynamic effects of transfer flow rates, release heights, and release directions on vapor cloud dispersion are quantitatively analyzed under daytime and nighttime conditions. The results demonstrate that transfer flow rate significantly regulates dispersion range, with recommendations to limit the rate below 1500 m3/h and prioritize daytime operations to mitigate risks. Release heights exceeding 10 m significantly amplify dispersion effects, particularly at night (nighttime dispersion area at a height of 20 m is 3.5 times larger than during the daytime). Optimizing release direction effectively suppresses dispersion, with vertically downward releases exhibiting minimal impact. Horizontal releases require avoidance of downwind alignment, and daytime operations are prioritized to reduce lateral dispersion risks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 111
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

Back to TopTop