Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (670)

Search Parameters:
Keywords = open power system data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 211
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

22 pages, 4707 KiB  
Article
Dynamic Performance Design and Validation in Large, IBR-Heavy Synthetic Grids
by Jongoh Baek and Adam B. Birchfield
Energies 2025, 18(15), 3953; https://doi.org/10.3390/en18153953 - 24 Jul 2025
Viewed by 171
Abstract
Cross-validation and open research on future electric grids, particularly in their stability modeling and dynamic performance, can greatly benefit from high-fidelity, publicly available test cases, since access to dynamic response models of actual grid models is often limited due to legitimate security concerns. [...] Read more.
Cross-validation and open research on future electric grids, particularly in their stability modeling and dynamic performance, can greatly benefit from high-fidelity, publicly available test cases, since access to dynamic response models of actual grid models is often limited due to legitimate security concerns. This paper presents a methodology for designing and validating the dynamic performance of large, IBR-heavy synthetic grids, that is, realistic but fictitious test cases. The methodology offers a comprehensive framework for creating dynamic models for both synchronous generators (SGs) and inverter-based resources (IBRs), focusing on realism, controllability, and flexibility. For realistic dynamic performance, the parameters in each dynamic model are sampled based on statistical data from benchmark actual grids, considering power system dynamics such as frequency and voltage control, as well as oscillation response. The paper introduces system-wide governor design, which improves the controllability of parameters in dynamic models, resulting in a more realistic frequency response. As an example, multiple case studies on a 2000-bus Texas synthetic grid are shown; these represent realistic dynamic performance under different transmission conditions in terms of frequency, voltage control, and oscillation response. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

23 pages, 4912 KiB  
Article
A Dynamic Analysis of Oscillating Water Column Systems: Design of a 16 kW Wells Turbine for Coastal Energy Generation in Ecuador
by Brayan Ordoñez-Saca, Mayken Espinoza-Andaluz, Carlos Vallejo-Cervantes, Julio Barzola-Monteses, Marcos Guamán-Macias and Christian Aldaz-Trujillo
Processes 2025, 13(8), 2349; https://doi.org/10.3390/pr13082349 - 24 Jul 2025
Viewed by 225
Abstract
The work presents the design of an Oscillating Water Column (OWC) system with a nominal capacity of 16 kW, proposed as a contribution to reducing the energy gap in Ecuador, where electricity demand surpasses supply. The province of Santa Elena was selected as [...] Read more.
The work presents the design of an Oscillating Water Column (OWC) system with a nominal capacity of 16 kW, proposed as a contribution to reducing the energy gap in Ecuador, where electricity demand surpasses supply. The province of Santa Elena was selected as a promising site due to its favorable wave conditions and coastal location. The design process involved identifying areas with high wave energy potential, conducting a brief mathematical modeling analysis, and defining the parameters required for the system. Computational Fluid Dynamics (CFD) simulations were carried out in two stages: In the first stage, OpenFOAM was used to evaluate wave behavior, specifically flow velocity and pressure, before the water enters the generation chamber. In the second stage, a different CFD tool was used, incorporating the output data from OpenFOAM to simulate the energy conversion process inside the Wells turbine. This analysis focused on how the turbine captures and transforms the wave energy into usable power. The results show that, under ideal conditions, the system achieves an average power output of 11 kW. These findings suggest that implementing this type of system in coastal regions of Ecuador is both viable and beneficial for local energy development. Full article
(This article belongs to the Special Issue Advances in Hydraulic Machinery and Systems)
Show Figures

Figure 1

41 pages, 9748 KiB  
Article
Wind Turbine Fault Detection Through Autoencoder-Based Neural Network and FMSA
by Welker Facchini Nogueira, Arthur Henrique de Andrade Melani and Gilberto Francisco Martha de Souza
Sensors 2025, 25(14), 4499; https://doi.org/10.3390/s25144499 - 19 Jul 2025
Viewed by 317
Abstract
Amid the global shift toward clean energy, wind power has emerged as a critical pillar of the modern energy matrix. To improve the reliability and maintainability of wind farms, this work proposes a novel hybrid fault detection approach that combines expert-driven diagnostic knowledge [...] Read more.
Amid the global shift toward clean energy, wind power has emerged as a critical pillar of the modern energy matrix. To improve the reliability and maintainability of wind farms, this work proposes a novel hybrid fault detection approach that combines expert-driven diagnostic knowledge with data-driven modeling. The framework integrates autoencoder-based neural networks with Failure Mode and Symptoms Analysis, leveraging the strengths of both methodologies to enhance anomaly detection, feature selection, and fault localization. The methodology comprises five main stages: (i) the identification of failure modes and their observable symptoms using FMSA, (ii) the acquisition and preprocessing of SCADA monitoring data, (iii) the development of dedicated autoencoder models trained exclusively on healthy operational data, (iv) the implementation of an anomaly detection strategy based on the reconstruction error and a persistence-based rule to reduce false positives, and (v) evaluation using performance metrics. The approach adopts a fault-specific modeling strategy, in which each turbine and failure mode is associated with a customized autoencoder. The methodology was first validated using OpenFAST 3.5 simulated data with induced faults comprising normal conditions and a 1% mass imbalance fault on a blade, enabling the verification of its effectiveness under controlled conditions. Subsequently, the methodology was applied to a real-world SCADA data case study from wind turbines operated by EDP, employing historical operational data from turbines, including thermal measurements and operational variables such as wind speed and generated power. The proposed system achieved 99% classification accuracy on simulated data detect anomalies up to 60 days before reported failures in real operational conditions, successfully identifying degradations in components such as the transformer, gearbox, generator, and hydraulic group. The integration of FMSA improves feature selection and fault localization, enhancing both the interpretability and precision of the detection system. This hybrid approach demonstrates the potential to support predictive maintenance in complex industrial environments. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

33 pages, 112557 KiB  
Article
Enhanced Tumor Diagnostics via Cyber-Physical Workflow: Integrating Morphology, Morphometry, and Genomic MultimodalData Analysis and Visualization in Digital Pathology
by Marianna Dimitrova Kucarov, Niklolett Szakállas, Béla Molnár and Miklos Kozlovszky
Sensors 2025, 25(14), 4465; https://doi.org/10.3390/s25144465 - 17 Jul 2025
Viewed by 252
Abstract
The rapid advancement of genomic technologies has significantly transformed biomedical research and clinical applications, particularly in oncology. Identifying patient-specific genetic mutations has become a crucial tool for early cancer detection and personalized treatment strategies. Detecting tumors at the earliest possible stage provides critical [...] Read more.
The rapid advancement of genomic technologies has significantly transformed biomedical research and clinical applications, particularly in oncology. Identifying patient-specific genetic mutations has become a crucial tool for early cancer detection and personalized treatment strategies. Detecting tumors at the earliest possible stage provides critical insights beyond traditional tissue analysis. This paper presents a novel cyber-physical system that combines high-resolution tissue scanning, laser microdissection, next-generation sequencing, and genomic analysis to offer a comprehensive solution for early cancer detection. We describe the methodologies for scanning tissue samples, image processing of the morphology of single cells, quantifying morphometric parameters, and generating and analyzing real-time genomic metadata. Additionally, the intelligent system integrates data from open-access genomic databases for gene-specific molecular pathways and drug targets. The developed platform also includes powerful visualization tools, such as colon-specific gene filtering and heatmap generation, to provide detailed insights into genomic heterogeneity and tumor foci. The integration and visualization of multimodal single-cell genomic metadata alongside tissue morphology and morphometry offer a promising approach to precision oncology. Full article
Show Figures

Figure 1

33 pages, 534 KiB  
Review
Local AI Governance: Addressing Model Safety and Policy Challenges Posed by Decentralized AI
by Bahrad A. Sokhansanj
AI 2025, 6(7), 159; https://doi.org/10.3390/ai6070159 - 17 Jul 2025
Viewed by 908
Abstract
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly [...] Read more.
Policies and technical safeguards for artificial intelligence (AI) governance have implicitly assumed that AI systems will continue to operate via massive power-hungry data centers operated by large companies like Google and OpenAI. However, the present cloud-based AI paradigm is being challenged by rapidly advancing software and hardware technologies. Open-source AI models now run on personal computers and devices, invisible to regulators and stripped of safety constraints. The capabilities of local-scale AI models now lag just months behind those of state-of-the-art proprietary models. Wider adoption of local AI promises significant benefits, such as ensuring privacy and autonomy. However, adopting local AI also threatens to undermine the current approach to AI safety. In this paper, we review how technical safeguards fail when users control the code, and regulatory frameworks cannot address decentralized systems as deployment becomes invisible. We further propose ways to harness local AI’s democratizing potential while managing its risks, aimed at guiding responsible technical development and informing community-led policy: (1) adapting technical safeguards for local AI, including content provenance tracking, configurable safe computing environments, and distributed open-source oversight; and (2) shaping AI policy for a decentralized ecosystem, including polycentric governance mechanisms, integrating community participation, and tailored safe harbors for liability. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

22 pages, 1906 KiB  
Article
Explainable and Optuna-Optimized Machine Learning for Battery Thermal Runaway Prediction Under Class Imbalance Conditions
by Abir El Abed, Ghalia Nassreddine, Obada Al-Khatib, Mohamad Nassereddine and Ali Hellany
Thermo 2025, 5(3), 23; https://doi.org/10.3390/thermo5030023 - 15 Jul 2025
Viewed by 297
Abstract
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power [...] Read more.
Modern energy storage systems for both power and transportation are highly related to lithium-ion batteries (LIBs). However, their safety depends on a potentially hazardous failure mode known as thermal runaway (TR). Predicting and classifying TR causes can widely enhance the safety of power and transportation systems. This paper presents an advanced machine learning method for forecasting and classifying the causes of TR. A generative model for synthetic data generation was used to handle class imbalance in the dataset. Hyperparameter optimization was conducted using Optuna for four classifiers: Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), tabular network (TabNet), and Extreme Gradient Boosting (XGBoost). A three-fold cross-validation approach was used to guarantee a robust evaluation. An open-source database of LIB failure events is used for model training and testing. The XGBoost model outperforms the other models across all TR categories by achieving 100% accuracy and a high recall (1.00). Model results were interpreted using SHapley Additive exPlanations analysis to investigate the most significant factors in TR predictors. The findings show that important TR indicators include energy adjusted for heat and weight loss, heater power, average cell temperature upon activation, and heater duration. These findings guide the design of safer battery systems and preventive monitoring systems for real applications. They can help experts develop more efficient battery management systems, thereby improving the performance and longevity of battery-operated devices. By enhancing the predictive knowledge of temperature-driven failure mechanisms in LIBs, the study directly advances thermal analysis and energy storage safety domains. Full article
Show Figures

Figure 1

21 pages, 1118 KiB  
Review
Integrating Large Language Models into Robotic Autonomy: A Review of Motion, Voice, and Training Pipelines
by Yutong Liu, Qingquan Sun and Dhruvi Rajeshkumar Kapadia
AI 2025, 6(7), 158; https://doi.org/10.3390/ai6070158 - 15 Jul 2025
Viewed by 1031
Abstract
This survey provides a comprehensive review of the integration of large language models (LLMs) into autonomous robotic systems, organized around four key pillars: locomotion, navigation, manipulation, and voice-based interaction. We examine how LLMs enhance robotic autonomy by translating high-level natural language commands into [...] Read more.
This survey provides a comprehensive review of the integration of large language models (LLMs) into autonomous robotic systems, organized around four key pillars: locomotion, navigation, manipulation, and voice-based interaction. We examine how LLMs enhance robotic autonomy by translating high-level natural language commands into low-level control signals, supporting semantic planning and enabling adaptive execution. Systems like SayTap improve gait stability through LLM-generated contact patterns, while TrustNavGPT achieves a 5.7% word error rate (WER) under noisy voice-guided conditions by modeling user uncertainty. Frameworks such as MapGPT, LLM-Planner, and 3D-LOTUS++ integrate multi-modal data—including vision, speech, and proprioception—for robust planning and real-time recovery. We also highlight the use of physics-informed neural networks (PINNs) to model object deformation and support precision in contact-rich manipulation tasks. To bridge the gap between simulation and real-world deployment, we synthesize best practices from benchmark datasets (e.g., RH20T, Open X-Embodiment) and training pipelines designed for one-shot imitation learning and cross-embodiment generalization. Additionally, we analyze deployment trade-offs across cloud, edge, and hybrid architectures, emphasizing latency, scalability, and privacy. The survey concludes with a multi-dimensional taxonomy and cross-domain synthesis, offering design insights and future directions for building intelligent, human-aligned robotic systems powered by LLMs. Full article
Show Figures

Figure 1

11 pages, 615 KiB  
Entry
Partially Ordered Sets in Socio-Economic Data Analysis
by Marco Fattore and Lucio De Capitani
Encyclopedia 2025, 5(3), 100; https://doi.org/10.3390/encyclopedia5030100 - 11 Jul 2025
Viewed by 296
Definition
A partially ordered set (or a poset, for short) is a set endowed with a partial order relation, i.e., with a reflexive, anti-symmetric, and transitive binary relation. As mathematical objects, posets have been intensively studied in the last century, [...] Read more.
A partially ordered set (or a poset, for short) is a set endowed with a partial order relation, i.e., with a reflexive, anti-symmetric, and transitive binary relation. As mathematical objects, posets have been intensively studied in the last century, coming to play essential roles in pure mathematics, logic, and theoretical computer science. More recently, they have been increasingly employed in data analysis, multi-criteria decision-making, and social sciences, particularly for building synthetic indicators and extracting rankings from multidimensional systems of ordinal data. Posets naturally represent systems and phenomena where some elements can be compared and ordered, while others cannot be and are then incomparable. This makes them a powerful data structure to describe collections of units assessed against multidimensional variable systems, preserving the nuanced and multi-faceted nature of the underlying domains. Moreover, poset theory collects the proper mathematical tools to treat ordinal data, fully respecting their non-numerical nature, and to extract information out of order relations, providing the proper setting for the statistical analysis of multidimensional ordinal data. Currently, their use is expanding both to solve open methodological issues in ordinal data analysis and to address evaluation problems in socio-economic sciences, from multidimensional poverty, well-being, or quality-of-life assessment to the measurement of financial literacy, from the construction of knowledge spaces in mathematical psychology and education theory to the measurement of multidimensional ordinal inequality/polarization. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
Show Figures

Figure 1

25 pages, 9813 KiB  
Article
Digital Twin Approach for Fault Diagnosis in Photovoltaic Plant DC–DC Converters
by Pablo José Hueros-Barrios, Francisco Javier Rodríguez Sánchez, Pedro Martín Sánchez, Carlos Santos-Pérez, Ariya Sangwongwanich, Mateja Novak and Frede Blaabjerg
Sensors 2025, 25(14), 4323; https://doi.org/10.3390/s25144323 - 10 Jul 2025
Viewed by 290
Abstract
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar [...] Read more.
This article presents a hybrid fault diagnosis framework for DC–DC converters in photovoltaic (PV) systems, combining digital twin (DT) modelling and detection with machine learning anomaly classification. The proposed method addresses both hardware faults such as open and short circuits in insulated-gate bipolar transistors (IGBTs) and diodes and sensor-level false data injection attacks (FDIAs). A five-dimensional DT architecture is employed, where a virtual entity implemented using FMI-compliant FMUs interacts with a real-time emulated physical plant. Fault detection is performed by comparing the real-time system behaviour with DT predictions, using dynamic thresholds based on power, voltage, and current sensors errors. Once a discrepancy is flagged, a second step classifier processes normalized time-series windows to identify the specific fault type. Synthetic training data are generated using emulation models under normal and faulty conditions, and feature vectors are constructed using a compact, interpretable set of statistical and spectral descriptors. The model was validated using OPAL-RT Hardware in the Loop emulations. The results show high classification accuracy, robustness to environmental fluctuations, and transferability across system configurations. The framework also demonstrates compatibility with low-cost deployment hardware, confirming its practical applicability for fault diagnosis in real-world PV systems. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

11 pages, 1302 KiB  
Article
Design of a Transformer-GRU-Based Satellite Power System Status Detection Algorithm
by Guoqi Xie, Xinhao Yang, Jiayu Zhao and Zhou Huang
Batteries 2025, 11(7), 256; https://doi.org/10.3390/batteries11070256 - 8 Jul 2025
Viewed by 273
Abstract
The health state of satellite power systems plays a critical role in ensuring the normal operation of satellite platforms. This paper proposes an improved Transformer-GRU-based algorithm for satellite power status detection, which characterizes the operational condition of power systems by utilizing voltage and [...] Read more.
The health state of satellite power systems plays a critical role in ensuring the normal operation of satellite platforms. This paper proposes an improved Transformer-GRU-based algorithm for satellite power status detection, which characterizes the operational condition of power systems by utilizing voltage and temperature data from battery packs. The proposed method enhances the original Transformer architecture through an integrated attention network mechanism that dynamically adjusts attention weights to strengthen feature spatial correlations. A gated recurrent unit (GRU) network with cyclic structures is innovatively adopted to replace the conventional Transformer decoder, enabling efficient computation while maintaining temporal dependencies. Experimental results on satellite power system status detection demonstrate that the modified Transformer-GRU model achieves superior detection performance compared to baseline approaches. This research provides an effective solution for enhancing the reliability of satellite power management systems and opens new research directions for future advancements in space power system monitoring technologies. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Graphical abstract

18 pages, 4682 KiB  
Article
Optimizing EV Charging Station Carrying Capacity Considering Coordinated Multi-Flexibility Resources
by Yalu Fu, Yushen Gong, Chao Shi, Chaoming Zheng, Guangzeng You and Wencong Xiao
World Electr. Veh. J. 2025, 16(7), 381; https://doi.org/10.3390/wevj16070381 - 7 Jul 2025
Viewed by 308
Abstract
The rapid growth of electric vehicles (EVs) poses significant challenges to the safe operation of charging stations and distribution networks. Variations in charging power across different EV manufacturers lead to substantial load fluctuations at charging stations. In some tourist cities in China, charging [...] Read more.
The rapid growth of electric vehicles (EVs) poses significant challenges to the safe operation of charging stations and distribution networks. Variations in charging power across different EV manufacturers lead to substantial load fluctuations at charging stations. In some tourist cities in China, charging loads can surge at specific times, yet existing research mainly focuses on optimizing station location and basic capacity configuration, neglecting sudden peak load management. To address this, we propose a method that enhances charging station carrying capacity (CSCC) by coordinating multi-flexibility resources. This method optimizes the configuration of soft open points (SOPs) to enable flexible interconnections between feeders and incorporates elastic load scheduling for data centers. An optimization model is developed to coordinate these flexible resources, thereby improving the CSCC. Case studies demonstrate that this approach effectively increases CSCC at lower costs, facilitates the utilization of renewable energy, and enhances the overall system economy. The results validate the feasibility and effectiveness of the proposed approach, offering new insights for urban grid planning and EV charging stations optimization. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
Show Figures

Figure 1

22 pages, 696 KiB  
Article
Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things
by Zhimin Gu, Jing Guo, Jiangtao Xu, Yunxiao Sun and Wei Liang
Electronics 2025, 14(13), 2725; https://doi.org/10.3390/electronics14132725 - 7 Jul 2025
Viewed by 314
Abstract
Although the Power Internet of Things (PIoT) significantly improves operational efficiency by enabling real-time monitoring, intelligent control, and predictive maintenance across the grid, its inherently open and deeply interconnected cyber-physical architecture concurrently introduces increasingly complex and severe security threats. Existing IoT security solutions [...] Read more.
Although the Power Internet of Things (PIoT) significantly improves operational efficiency by enabling real-time monitoring, intelligent control, and predictive maintenance across the grid, its inherently open and deeply interconnected cyber-physical architecture concurrently introduces increasingly complex and severe security threats. Existing IoT security solutions are not fully adapted to the specific requirements of power systems, such as safety-critical reliability, protocol heterogeneity, physical/electrical context awareness, and the incorporation of domain-specific operational knowledge unique to the power sector. These limitations often lead to high false positives (flagging normal operations as malicious) and false negatives (failing to detect actual intrusions), ultimately compromising system stability and security response. To address these challenges, we propose a domain knowledge-driven threat source detection and localization method for the PIoT. The proposed method combines multi-source features—including electrical-layer measurements, network-layer metrics, and behavioral-layer logs—into a unified representation through a multi-level PIoT feature engineering framework. Building on advances in multimodal data integration and feature fusion, our framework employs a hybrid neural architecture combining the TabTransformer to model structured physical and network-layer features with BiLSTM to capture temporal dependencies in behavioral log sequences. This design enables comprehensive threat detection while supporting interpretable and fine-grained source localization. Experiments on a real-world Power Internet of Things (PIoT) dataset demonstrate that the proposed method achieves high detection accuracy and enables the actionable attribution of attack stages aligned with the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework. The proposed approach offers a scalable and domain-adaptable foundation for security analytics in cyber-physical power systems. Full article
Show Figures

Figure 1

41 pages, 2392 KiB  
Review
How Beyond-5G and 6G Makes IIoT and the Smart Grid Green—A Survey
by Pal Varga, Áron István Jászberényi, Dániel Pásztor, Balazs Nagy, Muhammad Nasar and David Raisz
Sensors 2025, 25(13), 4222; https://doi.org/10.3390/s25134222 - 6 Jul 2025
Viewed by 593
Abstract
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. [...] Read more.
The convergence of next-generation wireless communication technologies and modern energy infrastructure presents a promising path toward sustainable and intelligent systems. This survey explores how beyond-5G and 6G communication technologies can support the greening of Industrial Internet of Things (IIoT) systems and smart grids. It highlights the critical challenges in achieving energy efficiency, interoperability, and real-time responsiveness across different domains. The paper reviews key enablers such as LPWAN, wake-up radios, mobile edge computing, and energy harvesting techniques for green IoT, as well as optimization strategies for 5G/6G networks and data center operations. Furthermore, it examines the role of 5G in enabling reliable, ultra-low-latency data communication for advanced smart grid applications, such as distributed generation, precise load control, and intelligent feeder automation. Through a structured analysis of recent advances and open research problems, the paper aims to identify essential directions for future research and development in building energy-efficient, resilient, and scalable smart infrastructures powered by intelligent wireless networks. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

16 pages, 941 KiB  
Article
Physics-Informed Neural Networks for Enhanced State Estimation in Unbalanced Distribution Power Systems
by Petros Iliadis, Stefanos Petridis, Angelos Skembris, Dimitrios Rakopoulos and Elias Kosmatopoulos
Appl. Sci. 2025, 15(13), 7507; https://doi.org/10.3390/app15137507 - 3 Jul 2025
Viewed by 623
Abstract
State estimation in distribution power systems is increasingly challenged by the proliferation of distributed energy resources (DERs), bidirectional power flows, and the growing complexity of unbalanced network topologies. Physics-Informed Neural Networks (PINNs) offer a compelling solution by integrating machine learning with the physical [...] Read more.
State estimation in distribution power systems is increasingly challenged by the proliferation of distributed energy resources (DERs), bidirectional power flows, and the growing complexity of unbalanced network topologies. Physics-Informed Neural Networks (PINNs) offer a compelling solution by integrating machine learning with the physical laws that govern power system behavior. This paper introduces a PINN-based framework for state estimation in unbalanced distribution systems, leveraging available data and embedded physical knowledge to improve accuracy, computational efficiency, and robustness across diverse operating scenarios. The proposed method is evaluated on four IEEE test feeders—IEEE 13, 34, 37, and 123—using synthetic datasets generated via OpenDSS to emulate realistic operating scenarios, and demonstrates significant improvements over baseline models. Notably, the PINN achieves up to a 97% reduction in current estimation errors while maintaining high voltage prediction accuracy. Extensive simulations further assess model performance under noisy inputs and partial observability, where the PINN consistently outperforms conventional data-driven approaches. These results highlight the method’s ability to generalize under uncertainty, accelerate convergence, and preserve physical consistency in simulated real-world conditions without requiring large volumes of labeled training data. Full article
(This article belongs to the Special Issue Advanced Smart Grid Technologies, Applications and Challenges)
Show Figures

Figure 1

Back to TopTop