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Abstract

State estimation in distribution power systems is increasingly challenged by the prolifera-
tion of distributed energy resources (DERs), bidirectional power flows, and the growing
complexity of unbalanced network topologies. Physics-Informed Neural Networks (PINNs)
offer a compelling solution by integrating machine learning with the physical laws that
govern power system behavior. This paper introduces a PINN-based framework for
state estimation in unbalanced distribution systems, leveraging available data and embed-
ded physical knowledge to improve accuracy, computational efficiency, and robustness
across diverse operating scenarios. The proposed method is evaluated on four IEEE test
feeders—IEEE 13, 34, 37, and 123—using synthetic datasets generated via OpenDSS to
emulate realistic operating scenarios, and demonstrates significant improvements over
baseline models. Notably, the PINN achieves up to a 97% reduction in current estimation
errors while maintaining high voltage prediction accuracy. Extensive simulations further
assess model performance under noisy inputs and partial observability, where the PINN
consistently outperforms conventional data-driven approaches. These results highlight
the method’s ability to generalize under uncertainty, accelerate convergence, and preserve
physical consistency in simulated real-world conditions without requiring large volumes
of labeled training data.

Keywords: physics-informed neural network; state estimation; distribution networks;
unbalanced power systems; data-driven modeling

1. Introduction
State estimation (SE) is a foundational function in power system monitoring and

control, enabling operators to infer the complete state of the grid—typically bus voltage
magnitudes and angles—from limited and potentially noisy measurements [1]. In distri-
bution power systems, accurate state estimation has become increasingly critical with the
proliferation of distributed energy resources (DERs), electric vehicles, and other smart grid
technologies that introduce bidirectional power flows, stochastic behaviors, and operational
uncertainties [2].

Traditionally, state estimation (SE) in power systems has been performed using the
weighted least squares (WLS) method, a widely adopted approach due to its simplicity and
robustness for transmission networks [3]. However, applying WLS to distribution systems—
known as distribution system state estimation (DSSE)—faces significant challenges. These
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arise from characteristics unique to distribution networks, such as radial or weakly meshed
topologies, lack of real-time measurements, low resistance-to-reactance (R/X) ratios, and
sparse measurement infrastructure [4,5]. Additionally, distribution systems are typically
unbalanced and require full three-phase modeling to capture their operating conditions
accurately. Conventional SE approaches, which often assume balanced conditions, can
produce inaccurate results when applied to these networks. The increasing integration
of distributed energy resources (DERs) further complicates observability and introduces
higher variability into the system [6,7]. These challenges have led to the development of
specialized DSSE methods, including branch current-based state estimation, node voltage-
based approaches, and methods leveraging pseudo-measurements derived from historical
load data or load forecasts [8]. Despite these efforts, conventional DSSE methods fre-
quently suffer from reduced accuracy and increased computational burden as network
complexity scales.

In response, researchers have turned to machine learning (ML) approaches that can
directly learn the mapping from measurements to system states. Enabled by advances in
smart meters and phasor measurement units (PMUs), ML models offer faster inference
and adaptability [9]. In response, researchers have turned to machine learning (ML)
approaches that can directly learn the mapping from measurements to system states.
Enabled by advances in smart meters and phasor measurement units (PMUs), ML models
offer faster inference and adaptability [10]. However, purely data-driven methods often
fail to incorporate the underlying physical principles of power systems, potentially leading
to physically implausible results, especially when confronted with scenarios outside their
training distributions [11]. Moreover, they require large volumes of labeled training data,
which may not be available across diverse distribution network configurations.

Physics-Informed Neural Networks (PINNs) present a promising alternative that
bridges the gap between purely data-driven and physics-based methods [12]. PINNs
incorporate the governing equations of physical systems—such as the power flow
equations—directly into the training objective of a neural network. This is achieved by
augmenting the loss function with residuals of these equations, penalizing deviations from
physical laws during training. By enforcing physical consistency, PINNs can generalize bet-
ter in data-scarce settings, yielding solutions that conform to known operational constraints
even in the absence of extensive labeled datasets [13].

Originally developed for solving partial differential equations in fluid mechanics
and continuum physics, PINNs have been successfully adapted for several power system
tasks. In the domain of power system dynamics and stability, PINNs have been applied to
transient stability analysis, offering computational advantages over traditional numerical
integration methods [13,14]. In the realm of power flow analysis, PINNs have shown
promise for accelerating AC power flow calculations. A study by Eeckhout et al. [11]
proposed an improved PINN-based AC power flow model for distribution networks
that incorporates physical line losses, resulting in higher accuracy and increased learning
potential. The authors demonstrated that their physics-informed approach outperformed
conventional methods and exhibited strong prediction capabilities for scenarios outside the
training set, addressing a substantial deficiency of purely model-free techniques.

The recent literature has increasingly focused on integrating physical modeling with
machine learning to enhance SE in power systems [15]. PINNs have been explored for
power systems by researchers like Misyris et al. [16], who demonstrated that embedding
the AC power flow equations into neural networks enables better generalization under
sparse measurement conditions. Falas et al. [2] proposed a PINN framework for accel-
erating state estimation tasks in distribution systems, reducing convergence time while
maintaining physical consistency. The study demonstrated impressive results, achieving up
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to an 11% increase in accuracy, 75% reduction in the standard deviation of results, and 30%
faster convergence, as validated through comprehensive experiments on the IEEE 14-bus
system. Similarly, in [17], Zamzam and Sidiropoulos introduced physics-aware models that
maintain observability even with limited data, addressing challenges typical in real-world
networks. Tran et al. [18] further advanced this line of work by proposing a decentralized
pruned physics-aware neural network (D-P2N2), which combines physical topology in-
formation and decentralized learning to improve scalability, computational efficiency, and
accuracy in large-scale distribution grids. Other approaches, such as those by Ostrometzky
et al. [19], highlight the ability of PINNs to maintain robustness under partial observability
and measurement noise. These methods represent a shift from black-box learning to hybrid
modeling, leveraging prior knowledge to mitigate overfitting and improve extrapolation in
unseen operational regimes [20].

Graph-based architectures have also emerged as powerful tools for modeling electrical
networks [21]. Donon et al. [22] and Lin et al. [8] developed message-passing neural
networks tailored for power flow problems, capturing network topology and improving
accuracy in both state estimation and power flow prediction. Building on this, Pagnier and
Chertkov [23] introduced Physics-Informed Graphical Neural Networks (PIGNNs) that
incorporate Kirchhoff’s laws directly into graph-based architectures, improving reliability
in low-measurement regimes. More recently, Ngo et al. [24] proposed a hybrid GNN-
PINN framework for three-phase unbalanced systems, offering improved scalability and
accuracy in complex distribution networks. These advances collectively demonstrate that
combining physical laws with deep learning not only addresses the limitations of purely
data-driven models—such as lack of physical interpretability and poor generalization—but
also provides a promising foundation for state estimation in increasingly complex and
unbalanced distribution systems.

Despite the promising progress in recent studies, several critical research gaps re-
main in the application of PINNs to distribution system state estimation. Most existing
works are either limited to transmission-level systems or assume simplified balanced con-
ditions [2,10,22], overlooking the unique challenges posed by unbalanced, three-phase
distribution networks. Furthermore, comprehensive benchmarking across multiple test
feeders is often lacking [11,17,19], and performance under realistic conditions—such as
measurement noise and partial observability—is not often explored in depth [11,24]. This
paper addresses these gaps by developing a PINN-based framework specifically tailored
for unbalanced distribution systems and systematically evaluating it on four IEEE bench-
mark feeders: IEEE13, IEEE34, IEEE37, and IEEE123. In contrast to previous studies that
focus on balanced or transmission-level systems, the proposed approach explicitly han-
dles multi-phase unbalanced networks and is validated across diverse grid topologies
and operating conditions. The model’s performance is assessed not only in noise-free
conditions but also under corrupted inputs and incomplete measurement scenarios—two
realistic challenges often overlooked in prior PINN applications. Comparative analysis
against baseline machine learning models highlights the superior accuracy, robustness, and
generalization capabilities of the proposed PINN approach, providing valuable insights
into its practical applicability for real-world distribution network monitoring.

2. Materials and Methods
The overall methodology consists of four main stages: (1) dataset generation via

OpenDSS simulations with randomized load conditions; (2) robust preprocessing and
normalization of complex quantities; (3) training of the PINN model using a combined
voltage- and physics-based loss; and (4) evaluation across multiple test feeders under
varying conditions including noise and partial observability.
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2.1. State Estimation in Distribution Power Systems

This section provides the mathematical formulation of the state estimation problem in
unbalanced distribution systems, laying the foundation for the PINN approach developed
in this work. By formalizing the relationship between nodal power injections and bus
voltages, we clarify the physical model that underpins the data generation process and
informs the physics-based loss function used during PINN training.

In conventional DSSE, the system state comprises the complex voltage phasors at
each bus. These are inferred from available measurements—such as power flows, voltage
magnitudes, current values, or pseudo-measurements derived from historical data—using
power flow equations and statistical estimation methods. These measurements are typically
gathered from SCADA systems, smart meters, or forecasting models. In this work, however,
we assume full knowledge of power injections per phase derived from simulated load
profiles, which serve as direct inputs to the PINN.

In unbalanced three-phase distribution networks, the physical relationships between
voltages and power injections must be modeled per phase. The complex power injection at
bus i, phase ϕ ∈ {a, b, c}, is given by:

Sφ
i = Vφ

i ·
(

∑
i

∑
ψ

Yφψ
ij ·Vψ

j

)∗

(1)

where Sφ
i is the complex power injection, Vφ

i is the complex voltage at bus i—phase φ, and
Yφψ

ij is the element of the three-phase nodal admittance matrix coupling phase φ of bus i
with phase ψ of bus j. The active and reactive power components are obtained from the
real and imaginary parts:

Pφ
i = Re

{
Sφ

i

}
, Qφ

i = Im
{

Sφ
i

}
(2)

These equations are nonlinear in V and must be solved iteratively in traditional SE
methods. Instead, the proposed PINN model learns an approximation of the inverse
mapping S → V directly from simulated data.

2.2. PINN Architecture

The proposed Physics-Informed Neural Network (PINN) architecture for distribution
system state estimation is designed to predict the complex bus voltages—comprising
both magnitudes and angles—based on complex power injections at each bus. Although
the physical quantities involved are complex-valued, the network operates entirely on
real-valued tensors by decomposing all complex inputs and outputs into their real and
imaginary parts. The architecture comprises the following key components, schematically
presented in Figure 1:

• Input Layer: The input to the network consists of the complex power injections
S = P + jQ at each bus. These are decomposed into their real and imaginary parts
and concatenated to form a real-valued input vector of size 2N, where N is the number
of buses in the network.

• Hidden Layers: The core of the model consists of two fully connected hidden layers,
each with 256 neurons and hyperbolic tangent (Tanh) activation functions. This con-
figuration was selected based on preliminary hyperparameter tuning, which showed
that 256 neurons per layer provided a favorable trade-off between model capacity and
computational efficiency. The use of Tanh activations further supports the network’s
ability to capture complex nonlinear mappings while ensuring smooth gradients
for optimization.
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• Output Layer: The network outputs a real-valued vector of size 2N, which is in-
terpreted as the real and imaginary parts of the estimated complex bus voltages.
Specifically, the first N entries correspond to Re(V) and the next N entries to Im(V).

By representing complex variables as concatenated real-valued vectors, this architec-
ture enables efficient training using standard real-valued deep learning frameworks while
preserving the underlying structure of complex-valued power system quantities.

Figure 1. Implemented architecture for the state estimation neural network.

The key innovation in the PINN approach is the physics-informed loss function that
combines data-fitting terms with physics-based constraints. The total loss is formulated as:

Ltotal = Lvoltage + λLcurrent (3)

where Lvoltage measures how well the estimated voltages match the available measurements,
Lcurrent encodes the physics constraints by evaluating consistency with current injections,
and λ is a regularization parameter (or weighting coefficient) that controls the trade-off
between data fidelity and physics consistency. This approach falls under the broader
category of physics-based regularization [19,25], where physical knowledge is integrated
as a soft constraint into the learning process. It enables the neural network to generalize
better by leveraging both measurements and domain knowledge, making it particularly
effective in power system applications.

The voltage loss Lvoltage quantifies the discrepancy between estimated and measured
voltage states using the Mean Squared Error (MSE):

Lvoltage =
1
m

m

∑
i = 1

⌈
Vi − V̂i

⌉2 (4)

where m is the number of measurements, Vi is the measured voltage, and V̂i is the predicted
voltage phasor at node i.

The physics-based current loss Lcurrent enforces adherence to power flow equations by
ensuring that the predicted voltages lead to consistent current injections. More specifically,
the predicted voltages based on the power injections are utilized to calculate the currents
that emerge using the equation:

Î = Y·V̂ (5)

where Î is the estimated current injection vector and Y is the network admittance matrix
encapsulating the specific topology and impedance of each node. These estimated currents
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are then compared against the true current injections obtained from the simulation dataset
using Mean Absolute Error (MAE):

Lcurrent =
1
m

m

∑
i = 1

⌈
Ii − Îi

⌉
(6)

All computations are performed in the complex domain, and vectorized operations
are used to ensure computational efficiency. Due to the numerical sensitivity of power
system calculations and the wide dynamic range of involved quantities, double-precision
arithmetic is often required to ensure stability and accuracy, especially when working in
the complex domain.

In this work, the weighting coefficient λ that balances the data-driven voltage loss
and the physics-based current loss is treated as a constant, manually tuned through trial-
and-error to achieve stable training and optimal performance across test cases. While this
fixed weighting strategy is simple and effective, future extensions could adopt dynamic
or adaptive weighting schemes that adjust λ during training. Such approaches, including
curriculum learning, uncertainty-aware weighting, or bilevel optimization, have been
shown in other domains to improve convergence and robustness by gradually emphasizing
the physics term as the model becomes more accurate. This flexibility could enhance the
PINN’s adaptability to different network sizes, observability conditions, and noise levels.

2.3. Training

Training the PINN for distribution system state estimation involves a structured
pipeline consisting of data preprocessing, optimization, and evaluation. The full dataset
is first randomly partitioned into training and test subsets, typically using an 80/20 split.
Preprocessing steps, including normalization, are applied only to the training set to avoid
data leakage and ensure fair evaluation of generalization.

All complex-valued inputs and targets are normalized to stabilize training and prevent
numerical instabilities. This is especially important to mitigate exploding values, which
can occur during the initial epochs due to inaccurate current estimates derived from poorly
initialized voltage states. A robust normalization technique is applied separately to the
real and imaginary parts of the data. For a given complex tensor x = xre + jxim, the
normalized components are computed as:

xre,norm =
xre − µre

σre
, xim,norm =

xim − µim
σim

(7)

where µre, µim are the means, and σre, σim are the standard deviations of the real and
imaginary parts, respectively, computed across the batch.

Although this normalization is based on the standard z-score approach, it incorpo-
rates several important modifications to enhance robustness for complex-valued power
system data:

• The standard deviations are clamped from below using a small multiple of the corre-
sponding mean absolute value to avoid division by near-zero values that could lead
to numerical instability.

• The resulting normalized values are clipped to a predefined range (e.g., [−10, 10]) to
limit the influence of outliers and prevent gradient explosions.

• The process is applied independently to each component of the complex values, which
is not typical in standard real-valued z-score normalization.

These enhancements make the method more reliable for use in physics-informed
training where both scale sensitivity and complex-valued operations are involved.
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The network parameters are optimized using the Adam algorithm [26], a first-order
gradient-based optimizer. The learning rate is adjusted dynamically using a “reduce on
plateau” scheduler, which reduces the learning rate when the validation loss ceases to
improve. Specifically, if the loss does not decrease for a defined number of epochs (patience),
the learning rate η is updated according to:

ηnew = ηold × f actor (8)

where f actor is a multiplicative constant (e.g., 0.5). This adaptive strategy allows the
model to make large updates when learning is active and finer updates as it approaches
convergence. To further enhance stability, gradient norms are clipped to a maximum value
of 1.0 during backpropagation.

Key hyperparameters—including the learning rate, batch size, number of training
epochs, and the regularization factor λ between data and physics losses—are manually
tuned to achieve a good balance between data fitting and physical consistency. During
training, the model state with the lowest total validation loss is checkpointed and used for
final evaluation.

2.4. Case Studies and Simulations

To evaluate the performance of the proposed PINN-based state estimation approach, a
series of simulation studies were conducted on standard IEEE test feeders [27], spanning a
wide range of network sizes and levels of complexity. The selected systems include the IEEE
13-bus, 34-bus, 37-bus, and 123-bus feeders. These networks represent increasingly large
and unbalanced low-voltage and medium-voltage distribution systems, offering a robust
benchmark for assessing the accuracy, scalability, and robustness of the proposed method.

For each test system, synthetic datasets were generated using OpenDSS simulations
accessed through its Python interface (OpenDSSDirect 0.9.1). A custom simulation script
was developed to introduce realistic variability by randomly perturbing the real and
reactive power demands of all loads. Specifically, uniformly distributed scaling factors
in the range [0.8, 1.2] were applied independently to P and Q values, emulating diverse
operating conditions. For each scenario, the resulting complex nodal voltages V, current
injections I, and apparent power injections S were extracted and stored. This process was
repeated for 10,000 randomized load configurations per network, yielding rich datasets
suitable for supervised training and evaluation of the PINN. The complex nodal admittance
matrix Y was also extracted once at the beginning of the simulation process and reused for
all scenarios.

To thoroughly assess the robustness and generalization ability of the model, the case
studies cover the following scenarios:

1. Normal Operation: Base-case operation with nominal loading and full measurement
availability, used to benchmark accuracy under ideal conditions.

2. Limited Observability: Scenarios with sparse sensor deployment, where voltage and
power measurements are only available at a subset of buses, testing the model’s
extrapolation capability.

These comprehensive simulations provide insight into the behavior of the PINN
across practical operating conditions and potential real-world challenges encountered in
distribution system monitoring.
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2.5. Performance Metrics

To assess the performance of the selected models, we employ widely used evaluation
metrics that capture different aspects of accuracy and reliability. These metrics evaluate
both absolute and relative deviations between the estimated and true values:

MAE =
1
n

n

∑
i = 1

|yi − ŷi| (9)

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷi)
2 (10)

where yi and ŷi denote the true and predicted values, respectively, and n is the number
of test samples. MAE corresponds to the ↕1-norm of the error vector, providing a linear
penalty for deviations. RMSE corresponds to the ↕2-norm, emphasizing larger errors due to
the squaring operation [28]. Together, these metrics enable robust quantitative comparison
of model performance across scenarios and test systems.

3. Results and Discussion
To evaluate the performance of the proposed PINN-based state estimation algorithm,

two scenarios are considered:

• Baseline—a model trained without incorporating physical constraints (no current loss);
• PINN—a model trained with the current loss term to enforce physical consistency.

To ensure consistency across experiments, the same set of hyperparameters was used
for training all models. Table 1 summarizes the key training configurations applied in this
work. The models were trained using the Adam optimizer, which offers adaptive learning
rate adjustment and typically ensures faster convergence for deep networks. A modest
architecture was employed, consisting of two hidden layers with 256 units each and tanh
activation functions, balancing model expressiveness and overfitting risk. The total dataset
comprised 10,000 time-indexed samples, split into training and testing subsets using an
80–20 ratio. The learning rate was initially set to 0.01 and adjusted dynamically during
training through a scheduler with a patience of 50 epochs and a reduction factor of 0.5 when
no improvement was observed. Training lasted up to 2000 epochs, although early stopping
was effectively managed through the scheduler. Finally, the weights of the composite loss
terms—associated with voltage and current equations—were set empirically, with λ values
on the order of 0.001 to balance physical consistency and prediction accuracy.

Table 1. Summary of training hyperparameters used for all models.

Hyperparameter Value

Optimizer Adam
Activation Function Tanh

Hidden Layers 2
Hidden Units Per Layer 256

Timestamps 10,000

Scheduler
Learning Rate (Initial) 0.01

Patience 50 epochs
Factor 0.5

Epochs 2000
Train–Test Split 0.8–0.2
λ Loss Weights ~0.001
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Initially, both models are evaluated under noise-free conditions. They are trained
using identical hyperparameters, and the resulting performance on the test set is presented
in Table 2. As shown, the PINN significantly outperforms the baseline by leveraging the
physics-based constraint, leading to substantially lower current estimation errors while
maintaining or improving voltage accuracy. This demonstrates that, under the same
training conditions, the PINN is capable of learning the underlying physical behavior of the
network and generating voltage estimates that yield highly accurate current predictions.

Table 2. Test set results.

Baseline PINN Improvement (%)

MAE MAE MAE

Voltage Current Voltage Current Voltage Current

IEEE13 0.28 24.04 0.18 0.62 37.28 97.43
IEEE34 2.03 17.45 1.73 3.1 14.82 82.27
IEEE37 0.85 7.34 0.29 0.43 66.2 94.07

IEEE123 0.28 5.46 0.21 0.45 22.92 91.72

RMSE RMSE RMSE

Voltage Current Voltage Current Voltage Current

IEEE13 0.44 52.6 0.28 1.12 37.13 97.87
IEEE34 2.87 52.92 2.47 7.7 13.77 85.45
IEEE37 1.06 26.45 0.39 0.56 63.67 97.88

IEEE123 0.37 21.8 0.28 0.64 22.44 97.07

In addition to the test set performance, the training behavior of the models provides
further insights. Figure 2 illustrates the training metrics over the first 100 epochs for each
network. It is evident that the PINN exhibits significantly faster convergence compared to
the baseline model. In all cases, the PINN rapidly reduces both voltage and current errors
within the first few epochs, indicating more efficient learning of the system’s underlying
physics. In contrast, the baseline model demonstrates a slower, more gradual reduction in
error, requiring many more epochs to approach comparable levels of accuracy. This acceler-
ated convergence of the PINN underlines the benefit of embedding domain knowledge
directly into the learning process. By enforcing physical constraints during training, the
model not only learns faster but also generalizes more robustly. Moreover, this advantage
becomes increasingly pronounced as the network size scales up. Observing the progression
from IEEE13 to IEEE123, the gap between the baseline and PINN performance—particularly
in terms of current loss (red curves)—widens substantially. The expanding area between
the solid and dashed red lines signifies the growing benefit of physics integration in larger,
more complex systems, where conventional data-driven approaches struggle to efficiently
capture the nonlinear interactions inherent in distribution networks.

To qualitatively assess the model’s performance, we examine a randomly selected
timestamp from the test set corresponding to the IEEE 13-bus system—the smallest test
case considered. Table 3 reports the actual and predicted values of voltage magnitude,
voltage angle, current magnitude, and current angle for each bus. As observed, the model
demonstrates excellent accuracy in estimating voltage magnitudes and angles across all
buses. In terms of current estimation, the performance remains satisfactory, though some
deviations are observed—primarily in buses where the actual current injections are zero.
This is expected, as minor numerical deviations can yield large relative or angular errors
when current magnitudes are near zero, due to the amplification of small differences in
both magnitude and phase when dividing or taking angles of near-zero complex numbers.
However, these errors are of limited practical significance, as the corresponding current
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injections are negligible in absolute terms and have minimal impact on the overall system
behavior. This issue can be mitigated by explicitly incorporating prior knowledge about
load and zero-injection buses, e.g., via masking or regularization.

Figure 2. Training metrics for the first 100 epochs for each network: (a) IEEE13, (b) IEEE34, (c) IEEE37,
and (d) IEEE123.

Table 3. Results from IEEE13 for a random timestamp. Cells with poor ANN predictions are
highlighted for clarity.

Bus
Voltage Magnitude Voltage Angle (◦) Current Magnitude Current Angle (◦)

Actual Pred. Actual Pred. Actual Pred. Actual Pred.

SOURCEBUS.1 66,395 66,395 29.99 29.99 16.01 13.77 2.91 5.36
SOURCEBUS.2 66,396 66,396 −90.01 −90.01 18.23 18.07 −105.82 −106.19
SOURCEBUS.3 66,393 66,393 149.99 149.99 20.03 18.26 123.36 118.33

650.1 2402 2402 −0.01 −0.01 0.00 10.42 0.00 −7.95
650.2 2402 2402 −120.01 −120.01 0.00 16.40 −123.69 169.79
650.3 2402 2402 119.99 119.99 0.00 27.15 −122.01 −161.62

RG60.1 2551 2551 −0.01 −0.01 0.00 64.43 −78.12 179.55
RG60.2 2522 2522 −120.01 −120.01 0.00 4.62 −29.39 −47.97
RG60.3 2566 2567 119.98 119.98 0.00 16.11 135.27 61.51

633.1 2466 2466 −2.34 −2.34 0.00 0.83 −87.61 178.95
633.2 2501 2501 −121.57 −121.57 0.00 0.47 0.00 95.57
633.3 2449 2449 117.80 117.80 0.00 0.28 0.00 −90.84
634.1 278 279 −2.85 −2.84 618.29 613.84 138.59 138.72
634.2 284 284 −121.97 −121.97 511.60 512.50 18.87 18.85
634.3 278 278 117.28 117.28 516.61 515.37 −95.81 −95.51
675.1 2400 2400 −5.21 −5.20 197.29 197.28 154.11 153.39
675.2 2543 2543 −122.15 −122.14 34.56 34.40 15.33 14.10
675.3 2363 2364 116.15 116.16 173.16 173.51 −101.59 −101.83



Appl. Sci. 2025, 15, 7507 11 of 16

Table 3. Cont.

Bus
Voltage Magnitude Voltage Angle (◦) Current Magnitude Current Angle (◦)

Actual Pred. Actual Pred. Actual Pred. Actual Pred.

611.3 2364 2365 115.90 115.90 62.92 62.19 −85.62 −85.59
632.1 2472 2472 −2.31 −2.30 0.00 1.22 90.00 20.20
632.2 2506 2506 −121.53 −121.53 0.00 2.08 −153.43 −98.98
632.3 2455 2455 117.82 117.82 0.00 1.13 −101.31 82.33
670.1 2453 2453 −3.16 −3.16 8.91 8.93 144.83 148.14
670.2 2513 2514 −121.69 −121.69 36.60 37.72 24.81 26.42
670.3 2424 2424 117.19 117.19 52.56 52.94 −93.79 −93.99
671.1 2414 2414 −4.95 −4.94 150.08 160.71 151.18 143.44
671.2 2537 2537 −121.99 −121.98 150.08 126.94 31.21 39.13
671.3 2370 2371 116.13 116.13 150.14 203.73 −88.81 −87.49
680.1 2414 2415 −4.95 −4.94 0.00 0.50 104.04 −80.56
680.2 2537 2537 −121.99 −121.98 0.00 0.08 −36.87 −67.06
680.3 2370 2371 116.13 116.14 0.00 0.67 0.00 89.30
645.3 2450 2450 117.86 117.86 0.00 0.91 0.00 −130.72
645.2 2485 2485 −121.70 −121.70 75.67 76.26 22.66 23.06
646.3 2445 2445 117.90 117.90 64.04 63.29 −122.26 −122.20
646.2 2481 2481 −121.78 −121.77 64.04 63.31 57.74 57.81
692.1 2413 2414 −4.95 −4.95 46.16 59.28 105.75 160.54
692.2 2537 2537 −121.99 −121.99 0.00 28.87 90.00 −3.53
692.3 2370 2370 116.13 116.14 46.16 11.77 −74.25 44.47
684.1 2408 2409 −4.97 −4.96 0.00 0.37 −135.00 −16.60
684.3 2367 2368 116.04 116.04 0.00 0.70 180.00 149.88
652.1 2394 2395 −4.91 −4.90 66.88 67.02 143.55 143.79

To evaluate the robustness of the models under noisy input conditions, a new dataset
was generated consisting of 1000 simulation points for each test network. Gaussian noise
was then added to the input power injections at each node to simulate measurement
uncertainty. The results, summarized in Table 4, demonstrate that the PINN consistently
outperforms the baseline model across all networks and noise levels, particularly in terms
of current estimation accuracy. Even as noise increases, the PINN maintains relatively low
error metrics and high improvement percentages, highlighting its ability to learn physically
consistent representations that generalize well under data perturbations. For instance, in
the IEEE37 network under 5% input noise, the PINN reduces the current RMSE by over
94% (from 59.65 to 3.35) compared to the baseline, while the voltage RMSE shows a minor
increase of about 13% (from 6.08 to 6.87). In contrast, the baseline model exhibits a steep
degradation in performance, especially for larger networks and higher noise levels. These
findings underline the inherent advantage of physics-informed training in ensuring model
reliability under realistic, imperfect conditions.

A similar benchmarking procedure was conducted to evaluate the performance of
the models under conditions of partial observability, simulating scenarios with missing
measurements. To achieve this, a random subset of the input data (i.e., power injections)
was masked, corresponding to 10% and 20% dropout rates, respectively. This emulates
the practical challenge of incomplete or faulty metering in distribution networks. The
results, presented in Table 5, confirm that the PINN retains a significant advantage over
the baseline model, particularly in current estimation. Even as the proportion of missing
inputs increases, the PINN maintains relatively low MAE and RMSE values, suggesting
that its ability to incorporate physical constraints enables more reliable extrapolation under
sparse data conditions. For instance, in the IEEE123 network with 20% input dropout, the
PINN achieves a 94.05% reduction in current RMSE compared to the baseline. In contrast,
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the baseline model exhibits sharp increases in both voltage and current errors, especially in
larger networks. Although some performance deterioration is observed in certain cases,
the PINN consistently yields better overall state estimates than the baseline. These results
demonstrate the superior robustness and generalization capability of the PINN under
reduced observability—a critical feature for real-world deployment where sensor coverage
is often limited.

Table 4. Performance metrics under noisy data input.

Noise Level (%) Network

Baseline PINN Improvement (%)

MAE MAE MAE

V I V I V I

0

IEEE13 0.26 23.44 0.17 0.60 35.13 97.43
IEEE34 1.30 16.78 1.18 2.93 9.83 82.56
IEEE37 0.78 7.27 0.22 0.42 72.27 94.22

IEEE123 0.14 5.32 0.13 0.44 7.05 91.82

1

IEEE13 1.06 38.27 1.23 2.03 −16.04 94.70
IEEE34 9.44 20.36 9.95 3.84 −5.40 81.14
IEEE37 1.32 7.96 1.22 0.70 7.58 91.21

IEEE123 0.74 5.45 0.79 0.48 −6.76 91.19

5

IEEE13 4.93 144.92 5.88 9.43 −19.27 93.49
IEEE34 43.24 58.34 46.07 12.48 −6.54 78.61
IEEE37 5.10 17.14 5.80 2.72 −13.73 84.13

IEEE123 3.49 7.72 3.74 0.98 −7.16 87.31

RMSE RMSE RMSE

V I V I V I

0

IEEE13 0.39 50.94 0.25 1.08 35.63 97.89
IEEE34 1.90 50.94 1.70 7.32 10.14 85.64
IEEE37 0.97 26.26 0.28 0.54 70.87 97.95

IEEE123 0.20 21.09 0.17 0.62 14.52 97.08

1

IEEE13 1.47 80.58 1.73 3.32 −17.69 95.88
IEEE34 12.44 60.80 13.19 8.86 −6.03 85.43
IEEE37 1.58 28.36 1.44 0.86 8.86 96.97

IEEE123 0.92 21.57 0.98 0.69 −6.52 96.80

5

IEEE13 6.87 306.76 8.20 15.48 −19.36 94.95
IEEE34 57.09 173.26 61.25 26.98 −7.29 84.43
IEEE37 6.08 59.65 6.87 3.35 −12.99 94.38

IEEE123 4.33 29.98 4.67 1.60 −7.85 94.66

The presented results confirm the effectiveness of the PINN approach across a range of
distribution network configurations and operational scenarios. Compared to the baseline
model, the PINN achieves consistently significantly lower voltage and current estimation
errors across all test feeders. In noise-free conditions, the proposed model reduces current
MAE by up to 97.4% and voltage RMSE by up to 63.7%, demonstrating strong fidelity to
the underlying power system behavior. Under noisy conditions (e.g., 5% perturbation), the
PINN maintains robust performance, achieving over 95% improvement in current RMSE for
the IEEE 37-bus system. Similarly, in scenarios with partial observability—where up to 20%
of the input power injections are masked—the model still yields over 93% improvement in
current RMSE for large-scale feeders such as IEEE123. In some cases, the PINN exhibits
slightly higher voltage errors compared to the baseline, resulting in negative improvement
percentages. This is expected, as the addition of the physics-based loss prioritizes current
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consistency, which may occasionally compromise voltage accuracy. Nevertheless, the
observed trade-off remains small and is outweighed by the substantial improvements in
current estimation, which is a critical aspect of physically meaningful state estimation.

Table 5. Performance metrics under masked out input.

Drop Out (%) Network

Baseline PINN Improvement (%)

MAE MAE MAE

V I V I V I

0

IEEE13 0.26 23.44 0.17 0.60 35.13 97.43
IEEE34 1.30 16.78 1.18 2.93 9.83 82.56
IEEE37 0.78 7.27 0.22 0.42 72.27 94.22

IEEE123 0.14 5.32 0.13 0.44 7.05 91.82

10

IEEE13 17.14 370.93 20.25 29.11 −18.13 92.15
IEEE34 113.53 185.43 112.42 52.19 0.98 71.85
IEEE37 20.84 45.31 22.17 8.38 −6.34 81.50

IEEE123 9.65 20.70 9.53 2.79 1.26 86.50

20

IEEE13 22.49 467.47 28.03 42.08 −24.67 91.00
IEEE34 143.65 228.49 139.73 65.94 2.73 71.14
IEEE37 30.65 52.01 33.07 9.69 −7.87 81.36

IEEE123 12.27 28.25 12.38 3.85 −0.92 86.36

RMSE RMSE RMSE

V I V I V I

0

IEEE13 0.39 50.94 0.25 1.08 35.63 97.89
IEEE34 1.90 50.94 1.70 7.32 10.14 85.64
IEEE37 0.97 26.26 0.28 0.54 70.87 97.95

IEEE123 0.20 21.09 0.17 0.62 14.52 97.08

10

IEEE13 26.52 858.17 31.53 60.24 −18.88 92.98
IEEE34 160.84 562.22 157.61 141.12 2.01 74.90
IEEE37 25.63 154.60 27.25 10.33 −6.33 93.32

IEEE123 12.35 81.65 12.47 4.97 −1.01 93.92

20

IEEE13 32.06 984.24 40.42 76.33 −26.08 92.24
IEEE34 196.07 668.34 189.65 164.34 3.27 75.41
IEEE37 34.88 179.37 37.98 11.84 −8.89 93.40

IEEE123 15.25 111.74 15.55 6.65 −1.99 94.05

In addition to its predictive accuracy, the PINN shows faster convergence compared
to the baseline model, rapidly minimizing both voltage and current loss within the first
few training epochs. This accelerated learning suggests that the inclusion of physics-based
constraints not only improves generalization but also guides the model more efficiently
through the solution space. Moreover, the qualitative assessment on the IEEE13 system
confirms the model’s ability to replicate the complex voltage and current profiles with high
precision, even at buses with near-zero injections, where angle and relative errors are prone
to instability.

These results collectively highlight the practical utility of the PINN framework for
real-world distribution system state estimation. Its ability to generalize under uncertainty,
and maintain physical consistency and scale across different network sizes suggests strong
potential for deployment in modern grid monitoring and control systems—particularly in
settings where measurement infrastructure is sparse or noisy.
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4. Conclusions
The present study presented a comprehensive framework for applying PINNs to state

estimation in unbalanced distribution power systems. By embedding physical constraints—
specifically current consistency derived from power flow equations—directly into the
training process, the proposed method effectively integrates the strengths of data-driven
learning and physical modeling. Evaluation across four IEEE benchmark feeders (13, 34,
37, and 123 buses) demonstrates that the PINN consistently outperforms baseline neural
networks trained without physical supervision. Specifically, the model achieves up to a
97.9% reduction in current RMSE and up to a 66.2% reduction in voltage MAE, while also
exhibiting up to a 95% improvement under 5% noise and over a 93% improvement in
current estimation under 20% input dropout, showcasing its robustness under realistic,
imperfect conditions.

In addition to its accuracy, the PINN demonstrates rapid convergence—reducing
both voltage and current errors significantly within the first 20 epochs—and provides fast
inference during deployment through a single forward pass. These attributes make it
highly suitable for real-time applications in distribution system monitoring.

Future research directions include incorporating prior knowledge about load and zero-
injection buses, either through masking mechanisms or structured supervision, to further
improve prediction quality in poorly observable areas. Additional enhancements may come
from dynamic or adaptive loss weighting schemes, which allow the network to balance
data fidelity and physics consistency during training. Another promising direction involves
extending the framework to jointly estimate network topology and line impedances by
treating the admittance matrix as a learnable parameter, provided that appropriate sparsity
constraints and structural priors are introduced. Furthermore, future work may explore
architectures that directly predict both voltages and currents, rather than reconstructing
currents from voltages via physical constraints. Such formulations could leverage richer
supervision signals and potentially yield further improvements in performance.

The proposed PINN approach offers a scalable, interpretable, and high-performing
solution for distribution system state estimation, paving the way toward more intelligent,
resilient, and data-efficient energy networks. However, it is important to note that the
current study is based entirely on synthetic datasets generated through OpenDSS simu-
lations. Although these datasets were designed to reflect realistic operational variability,
the introduced noise and observability constraints do not fully capture the complexities
of actual measurement noise and field conditions. As such, the conclusions regarding
real-world applicability should be interpreted in the context of simulated environments.
Future work will aim to validate the framework using real measurement data to further
assess its practical deployment potential.
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