Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things
Abstract
1. Introduction
- We propose a domain knowledge-driven threat source detection and localization method tailored for the PIoT. The method enhances the accuracy and interpretability of threat detection and localization by incorporating power system-specific knowledge, providing a practical and application-focused defense strategy that aligns with the operational realities of PIoT environments.
- We design a multi-level PIoT threat feature engineering module. The framework effectively tackles the challenges of integrating heterogeneous data and adapting domain-specific features by leveraging the diverse communication protocols, multimodal data sources, and temporal dynamics of the PIoT.
- We validate the proposed method through comprehensive experiments in real-world operational environments. The results demonstrate the method’s robustness, scalability, and practical value in enhancing the cybersecurity resilience of the PIoT.
2. Related Works
3. Methodology
3.1. Overall Architecture
3.2. Multi-Level PIoT Threat Feature Engineering
3.2.1. Electrical Characteristics
3.2.2. Network Traffic
3.2.3. Threat Behavior
Apr 18 18:49:20 SCT230A sshd[19603]: Accepted password for sysadmin from 172.20.7.93 port 48134 ssh2
<*> <*> <*> <*> sshd[*]: Accepted password for <*> from <*> port <*> ssh2.
RTU failed to respond from IP
["RTU", "failed", "to", "respond", "from", "IP"].
3.3. Design of Threat Detection and Localization Model
3.4. MITRE ATT&CK-Based Threat Source Detection and Localization
4. Experiments
4.1. Dataset Description
4.2. Experimental Settings
4.3. Hyperparameter Tuning
4.4. Experimental Results
4.4.1. Experimental Evaluation of Threat Source Detection
4.4.2. Experimental Evaluation of Attack-Stage Localization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bedi, G.; Venayagamoorthy, G.K.; Singh, R.; Brooks, R.R.; Wang, K.C. Review of Internet of Things (IoT) in electric power and energy systems. IEEE Internet Things J. 2018, 5, 847–870. [Google Scholar] [CrossRef]
- Song, F.; Zhu, M.; Zhou, Y.; You, I.; Zhang, H. Smart collaborative tracking for ubiquitous power IoT in edge-cloud interplay domain. IEEE Internet Things J. 2019, 7, 6046–6055. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Fan, J.; Wang, X.; Wang, Q. Power IoT security protection architecture based on zero trust framework. In Proceedings of the 2021 IEEE 5th International Conference on Cryptography, Security and Privacy (CSP), Zhuhai, China, 8–10 January 2021; IEEE: Toulouse, France, 2021; pp. 166–170. [Google Scholar]
- Sarjan, H.; Ameli, A.; Ghafouri, M. Cyber-security of industrial internet of things in electric power systems. IEEE Access 2022, 10, 92390–92409. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Sikdar, B. Detection of Malicious Command Injection Attacks Against Static Var Compensators in Smart Grids. IEEE Trans. Smart Grid 2024, 15, 6142–6157. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Sikdar, B. Unified Detection of Attacks Involving Injection of False Control Commands and Measurements in Transmission Systems of Smart Grids. IEEE Trans. Smart Grid 2022, 13, 1598–1610. [Google Scholar] [CrossRef]
- Wali, S.; Farrukh, Y.A.; Khan, I.; Hamilton, J.A. Covert penetrations: Analyzing and defending scada systems from stealth and hijacking attacks. Comput. Secur. 2025, 156, 104449. [Google Scholar] [CrossRef]
- Diaba, S.Y.; Elmusrati, M. Proposed algorithm for smart grid DDoS detection based on deep learning. Neural Netw. 2023, 159, 175–184. [Google Scholar] [CrossRef]
- Acarali, D.; Rao, K.R.; Rajarajan, M.; Chema, D.; Ginzburg, M. Modelling smart grid IT-OT dependencies for DDoS impact propagation. Comput. Secur. 2022, 112, 102528. [Google Scholar] [CrossRef]
- Reda, H.T.; Anwar, A.; Mahmood, A. Comprehensive survey and taxonomies of false data injection attacks in smart grids: Attack models, targets, and impacts. Renew. Sustain. Energy Rev. 2022, 163, 112423. [Google Scholar] [CrossRef]
- Li, Y.; Wei, X.; Li, Y.; Dong, Z.; Shahidehpour, M. Detection of false data injection attacks in smart grid: A secure federated deep learning approach. IEEE Trans. Smart Grid 2022, 13, 4862–4872. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Lu, Z. Graph-based detection for false data injection attacks in power grid. Energy 2023, 263, 125865. [Google Scholar] [CrossRef]
- Qaddos, A.; Yaseen, M.U.; Al-Shamayleh, A.S.; Imran, M.; Akhunzada, A.; Alharthi, S.Z. A novel intrusion detection framework for optimizing IoT security. Sci. Rep. 2024, 14, 21789. [Google Scholar] [CrossRef]
- Zhang, J.; Pan, L.; Han, Q.L.; Chen, C.; Wen, S.; Xiang, Y. Deep Learning Based Attack Detection for Cyber-Physical System Cybersecurity: A Survey. IEEE/CAA J. Autom. Sin. 2022, 9, 377–391. [Google Scholar] [CrossRef]
- Abshari, D.; Sridhar, M. A Survey of Anomaly Detection in Cyber-Physical Systems. arXiv 2025, arXiv:2502.13256. [Google Scholar]
- Krzysztoń, E.; Rojek, I.; Mikołajewski, D. A Comparative Analysis of Anomaly Detection Methods in IoT Networks: An Experimental Study. Appl. Sci. 2024, 14, 11545. [Google Scholar] [CrossRef]
- Bakhsh, S.A.; Khan, M.A.; Ahmed, F.; Alshehri, M.S.; Ali, H.; Ahmad, J. Enhancing IoT network security through deep learning-powered Intrusion Detection System. Internet Things 2023, 24, 100936. [Google Scholar] [CrossRef]
- Holubenko, V.; Gaspar, D.; Leal, R.; Silva, P. Autonomous intrusion detection for IoT: A decentralized and privacy preserving approach. Int. J. Inf. Secur. 2025, 24, 7. [Google Scholar] [CrossRef]
- Huang, X.; Khetan, A.; Cvitkovic, M.; Karnin, Z. Tabtransformer: Tabular data modeling using contextual embeddings. arXiv 2020, arXiv:2012.06678. [Google Scholar]
- Imrana, Y.; Xiang, Y.; Ali, L.; Abdul-Rauf, Z. A bidirectional LSTM deep learning approach for intrusion detection. Expert Syst. Appl. 2021, 185, 115524. [Google Scholar] [CrossRef]
- Sheng, C.; Zhou, W.; Ma, W.; Zhu, X.; Wen, S.; Xiang, Y. Network Traffic Fingerprinting for IIoT Device Identification: A Survey. IEEE Trans. Ind. Inform. 2025, 21, 3541–3554. [Google Scholar] [CrossRef]
- Zhong, M.; Lin, M.; Zhang, C.; Xu, Z. A survey on graph neural networks for intrusion detection systems: Methods, trends and challenges. Comput. Secur. 2024, 141, 103821. [Google Scholar] [CrossRef]
- Bala, B.; Behal, S. AI techniques for IoT-based DDoS attack detection: Taxonomies, comprehensive review and research challenges. Comput. Sci. Rev. 2024, 52, 100631. [Google Scholar] [CrossRef]
- Zohourian, A.; Dadkhah, S.; Molyneaux, H.; Neto, E.C.P.; Ghorbani, A.A. IoT-PRIDS: Leveraging packet representations for intrusion detection in IoT networks. Comput. Secur. 2024, 146, 104034. [Google Scholar] [CrossRef]
- Eskandari, M.; Janjua, Z.H.; Vecchio, M.; Antonelli, F. Passban IDS: An Intelligent Anomaly-Based Intrusion Detection System for IoT Edge Devices. IEEE Internet Things J. 2020, 7, 6882–6897. [Google Scholar] [CrossRef]
- Dong, Y.; Li, Q.; Wu, K.; Li, R.; Zhao, D.; Tyson, G.; Peng, J.; Jiang, Y.; Xia, S.; Xu, M. {HorusEye}: A realtime {IoT} malicious traffic detection framework using programmable switches. In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9–11 August 2023; pp. 571–588. [Google Scholar]
- Wang, Z.; Li, J.; Yang, S.; Luo, X.; Li, D.; Mahmoodi, S. A lightweight IoT intrusion detection model based on improved BERT-of-Theseus. Expert Syst. Appl. 2024, 238, 122045. [Google Scholar] [CrossRef]
- Kuznetsov, O.; Zakharov, D.; Frontoni, E.; Maranesi, A. AttackNet: Enhancing biometric security via tailored convolutional neural network architectures for liveness detection. Comput. Secur. 2024, 141, 103828. [Google Scholar] [CrossRef]
- Khan, M.M.; Alkhathami, M. Anomaly detection in IoT-based healthcare: Machine learning for enhanced security. Sci. Rep. 2024, 14, 5872. [Google Scholar] [CrossRef]
- Liang, W.; Hu, Y.; Zhou, X.; Pan, Y.; Kevin, I.; Wang, K. Variational few-shot learning for microservice-oriented intrusion detection in distributed industrial IoT. IEEE Trans. Ind. Inform. 2021, 18, 5087–5095. [Google Scholar] [CrossRef]
- Zukaib, U.; Cui, X.; Zheng, C.; Hassan, M.; Shen, Z. Meta-IDS: Meta-learning based smart intrusion detection system for internet of medical things (IoMT) network. IEEE Internet Things J. 2024, 11, 23080–23095. [Google Scholar] [CrossRef]
- Diana, L.; Dini, P.; Paolini, D. Overview on Intrusion Detection Systems for Computers Networking Security. Computers 2025, 14, 87. [Google Scholar] [CrossRef]
- Cui, R.; Wang, J.; Wang, Y.; Wang, S.; Zhang, S.; Si, Y. Fault diagnosis of ship power grid based on attentional feature fusion and multi-scale 1D convolution. Electr. Power Syst. Res. 2025, 228, 111232. [Google Scholar] [CrossRef]
- Yan, H.; Ma, H.; Wen, M.; Dang, S.; Xu, H. Multi-Feature Fusion-Based Mechanical Fault Diagnosis for On-Load Tap Changers in Smart Grid with Electric Vehicles. IEEE Sens. J. 2021, 21, 1559–1568. [Google Scholar] [CrossRef]
- Guarino, F.; Vitale, F.; Flammini, L.; Faramondi, L.; Mazzocca, N.; Setola, R. A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection. IEEE Trans. Ind.-Cyber-Phys. Syst. 2023, 2, 1–13. [Google Scholar] [CrossRef]
- Dong, X.; Jing, Z.; Dai, Y.; Wang, P.; Chen, Z. Failure prediction and replacement strategies for smart electricity meters based on field failure observation. Sensors 2022, 22, 9804. [Google Scholar] [CrossRef] [PubMed]
- Gibert, D.; Planes, J.; Mateu, C.; Le, Q. Fusing feature engineering and deep learning: A case study for malware classification. Expert Syst. Appl. 2022, 207, 117957. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Gorishniy, Y.; Rubachev, I.; Khrulkov, V.; Babenko, A. Revisiting deep learning models for tabular data. Adv. Neural Inf. Process. Syst. 2021, 34, 18932–18943. [Google Scholar]
- Arik, S.Ö.; Pfister, T. Tabnet: Attentive interpretable tabular learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; Volume 35, pp. 6679–6687. [Google Scholar]
- Chen, X.; Li, C.; Wang, D.; Wen, S.; Zhang, J.; Nepal, S.; Xiang, Y.; Ren, K. Android HIV: A study of repackaging malware for evading machine-learning detection. IEEE Trans. Inf. Forensics Secur. 2019, 15, 987–1001. [Google Scholar] [CrossRef]
- Zhu, X.; Wen, S.; Camtepe, S.; Xiang, Y. Fuzzing: A Survey for Roadmap. ACM Comput. Surv. 2022, 54, 1–36. [Google Scholar] [CrossRef]
Feature Group | Specific Features |
---|---|
Current Features | , , , , , , , |
Voltage Features | , , , , , , , , , , |
, , , , , , , , , | |
Power Features | , , , |
Frequency Features | f, |
Feature Group | Specific Features |
---|---|
Protocol Features | session_duration, protocol_type, function_code, connection_flag, src_bytes, dst_bytes, device_id, wrong_fragment, urgent, checksum |
Packet Payload Features | payload_entropy, value_min, value_max, value_mean, value_std, out_of_range_count, error_code_count, unauthorized_command_count |
Temporal Traffic Features | count, srv_count, request_rate, response_rate, avg_response_time, max_response_time, request_interval_mean, request_interval_std, retransmission_rate, burstiness |
Device Traffic Features | dst_host_count, dst_host_srv_count, dst_host_error_rate, dst_host_auth_fail_rate, dst_host_unusual_service_rate |
Device Status Features | device_type, operating_system, device_serial_number, device_model, device_manufacturer, cpu_usage, memory_usage, open_socket_count, file_descriptor_count, process_count |
Temporal Context Features | hour_of_day, day_of_week, is_peak_hour, season |
Merged Category | Original Tactics | Description |
---|---|---|
Preparation | Reconnaissance, Resource Development | Activities to gather information and acquire or prepare necessary resources before an attack. |
Initial Compromise | Initial Access, Execution | Methods to breach defenses and execute the malicious payload on the target system. |
Persistence and Evasion | Persistence, Defense Evasion, Credential Access | Techniques to establish long-term access, avoid detection, and obtain or misuse credentials. |
Lateral Movement | Discovery, Lateral Movement | Actions to explore the internal network and move laterally between systems. |
Control and Collection | Command and Control, Collection | Establishing communication channels with compromised hosts and gathering valuable data. |
Exfiltration and Impact | Exfiltration, Impact | Transferring stolen data out or disrupting, altering, or destroying systems to cause damage. |
Parameter | Search Space | Selected Value |
---|---|---|
Embedding dimension d | {32, 64, 128, 256} | 64 |
Attention heads H | {2, 4, 8, 12, 16} | 8 |
BiLSTM hidden size h | {64, 128, 256, 512} | 128 |
Learning rate | {1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3} | 1 × 10−3 |
Weight decay | {0, 1 × 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3} | 1 × 10−5 |
Batch size | {64, 128, 256} | 256 |
Model Structure | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
MLP | 86.0 ± 0.53 | 83.0 ± 0.62 | 80.0 ± 0.47 | 81.0 ± 0.58 |
1D CNN [38] | 88.3 ± 0.49 | 85.9 ± 0.51 | 83.7 ± 0.56 | 84.8 ± 0.54 |
FT-Transformer [39] | 91.2 ± 0.44 | 89.5 ± 0.41 | 87.2 ± 0.46 | 88.3 ± 0.42 |
TabNet [40] | 89.0 ± 0.57 | 87.0 ± 0.48 | 84.0 ± 0.63 | 85.0 ± 0.52 |
Ours | 93.0 ± 0.41 | 91.0 ± 0.45 | 89.0 ± 0.43 | 90.0 ± 0.39 |
Model Configuration | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Full Model | 95.8 ± 0.43 | 95.5 ± 0.46 | 94.6 ± 0.41 | 95.2 ± 0.40 |
Remove electrical characteristic features | 91.2 ± 0.49 | 90.7 ± 0.53 | 89.8 ± 0.44 | 90.5 ± 0.47 |
Remove network traffic features | 90.5 ± 0.52 | 89.8 ± 0.48 | 88.7 ± 0.51 | 89.6 ± 0.50 |
Remove threat behavioral features | 92.3 ± 0.47 | 91.8 ± 0.45 | 90.9 ± 0.46 | 91.6 ± 0.42 |
Replace TabTransformer with MLP | 89.7 ± 0.50 | 89.1 ± 0.46 | 87.5 ± 0.49 | 88.6 ± 0.48 |
Replace TabTransformer with 1D CNN | 90.8 ± 0.47 | 90.1 ± 0.49 | 88.9 ± 0.51 | 89.5 ± 0.45 |
Replace TabTransformer with FT-Transformer | 92.4 ± 0.44 | 91.7 ± 0.46 | 90.3 ± 0.48 | 91.0 ± 0.43 |
Replace BiLSTM with unidirectional LSTM | 90.2 ± 0.46 | 89.5 ± 0.48 | 88.9 ± 0.50 | 89.5 ± 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, Z.; Guo, J.; Xu, J.; Sun, Y.; Liang, W. Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things. Electronics 2025, 14, 2725. https://doi.org/10.3390/electronics14132725
Gu Z, Guo J, Xu J, Sun Y, Liang W. Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things. Electronics. 2025; 14(13):2725. https://doi.org/10.3390/electronics14132725
Chicago/Turabian StyleGu, Zhimin, Jing Guo, Jiangtao Xu, Yunxiao Sun, and Wei Liang. 2025. "Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things" Electronics 14, no. 13: 2725. https://doi.org/10.3390/electronics14132725
APA StyleGu, Z., Guo, J., Xu, J., Sun, Y., & Liang, W. (2025). Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things. Electronics, 14(13), 2725. https://doi.org/10.3390/electronics14132725