Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,541)

Search Parameters:
Keywords = open clusters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
49 pages, 5495 KiB  
Review
A Map of the Research About Lighting Systems in the 1995–2024 Time Frame
by Gaetanino Paolone, Andrea Piazza, Francesco Pilotti, Romolo Paesani, Jacopo Camplone and Paolino Di Felice
Computers 2025, 14(8), 313; https://doi.org/10.3390/computers14080313 (registering DOI) - 1 Aug 2025
Abstract
Lighting Systems (LSs) are a key component of modern cities. Across the years, thousands of articles have been published on this topic; nevertheless, a map of the state of the art of the extant literature is lacking. The present review reports on an [...] Read more.
Lighting Systems (LSs) are a key component of modern cities. Across the years, thousands of articles have been published on this topic; nevertheless, a map of the state of the art of the extant literature is lacking. The present review reports on an analysis of the network of the co-occurrences of the authors’ keywords from 12,148 Scopus-indexed articles on LSs published between 1995 and 2024. This review addresses the following research questions: (RQ1) What are the major topics explored by scholars in connection with LSs within the 1995–2024 time frame? (RQ2) How do they group together? The investigation leveraged VOSviewer, an open-source software largely used for performing bibliometric analyses. The number of thematic clusters returned by VOSviewer was determined by the value of the minimum number of occurrences needed for the authors’ keywords to be admitted into the business analysis. If such a number is not properly chosen, the consequence is a set of clusters that do not represent meaningful patterns of the input dataset. In the present study, to overcome this issue, the threshold value balanced the score of four independent clustering validity indices against the authors’ judgment of a meaningful partition of the input dataset. In addition, our review delved into the impact that the use/non-use of a thesaurus of the authors’ keywords had on the number and composition of the thematic clusters returned by VOSviewer and, ultimately, on how this choice affected the correctness of the interpretation of the clusters. The study adhered to a well-known protocol, whose implementation is reported in detail. Thus, the workflow is transparent and replicable. Full article
Show Figures

Figure 1

24 pages, 3328 KiB  
Review
Ergonomic and Psychosocial Risk Factors and Their Relationship with Productivity: A Bibliometric Analysis
by Gretchen Michelle Vuelvas-Robles, Julio César Cano-Gutiérrez, Jesús Everardo Olguín-Tiznado, Claudia Camargo-Wilson, Juan Andrés López-Barreras and Melissa Airem Cázares-Manríquez
Safety 2025, 11(3), 74; https://doi.org/10.3390/safety11030074 (registering DOI) - 1 Aug 2025
Abstract
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles [...] Read more.
This study analyzes the relationship between ergonomic and psychosocial risk factors and labor productivity using a bibliometric approach through a general analysis and one that includes inclusion criteria such as English language, open access, and primary research publications to identify only those articles that explicitly address the relationship between ergonomic and psychosocial risk factors and labor productivity. It is recognized that both physical and psychosocial conditions of the work environment directly influence workers’ health and organizational performance. For this purpose, a bibliometric review was conducted in academic databases, including Scopus, Web of Science, ScienceDirect, and Taylor & Francis, resulting in the selection of 4794 relevant articles for general analysis. Additionally, 116 relevant articles were selected based on the inclusion criteria. Tools and methodologies, such as Rayyan, Excel, VOSviewer 1.6.20, and PRISMA, were used to classify the studies and identify trends, collaboration networks, and geographical distribution. The results reveal a sustained growth in scientific production, with clusters on occupational safety and health, work environment factors, and the characteristics of the population, approach, and methodologies used in the studies. Likewise, Procedia Manufacturing, International Journal of Occupational Safety and Ergonomics, and Ergonomics stand out as the main sources of publication, while countries such as Sweden, Poland, and the United States lead the scientific production in this field. In addition, the network of co-occurrence of keywords evidences a comprehensive approach that articulates physical or ergonomic and psychosocial risk factors with organizational performance, while the network of authors shows consolidated collaborations and studies focused on analyzing the relationship between physical demands and musculoskeletal disorders from advanced ergonomic approaches. Full article
Show Figures

Figure 1

22 pages, 3025 KiB  
Article
Exploring the Spatial Association Between Spatial Categorical Data Using a Fuzzy Geographically Weighted Colocation Quotient Method
by Ling Li, Lian Duan, Meiyi Li and Xiongfa Mai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 296; https://doi.org/10.3390/ijgi14080296 - 29 Jul 2025
Viewed by 94
Abstract
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to [...] Read more.
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to define the scale effect, which can lead to scale sensitivity and discontinuity results. To address these limitations, this study introduces the Fuzzy Geographically Weighted Colocation Quotient (FGWCLQ) method. By integrating fuzzy theory, FGWCLQ replaces binary distance cutoffs with continuous membership functions, providing a more flexible and stable approach to spatial association mining. Using Point of Interest (POI) data from the Beijing urban area, FGWCLQ was applied to explore both intra- and inter-category spatial association patterns among star hotels, transportation facilities, and tourist attractions at different fuzzy neighborhoods. The results indicate that FGWCLQ can reliably discover global prevalent spatial associations among diverse facility types and visualize the spatial heterogeneity at various spatial scales. Compared to the deterministic GWCLQ method, FGWCLQ delivers more stable and robust results across varying spatial scales and generates more continuous association surfaces, which enable clear visualization of hierarchical clustering. Empirical findings provide valuable insights for optimizing the location of star hotels and supporting decision-making in urban planning. The method is available as an open-source Matlab package, providing a practical tool for diverse spatial association investigations. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

32 pages, 12348 KiB  
Article
Advances in Unsupervised Parameterization of the Seasonal–Diurnal Surface Wind Vector
by Nicholas J. Cook
Meteorology 2025, 4(3), 21; https://doi.org/10.3390/meteorology4030021 - 29 Jul 2025
Viewed by 85
Abstract
The Offset Elliptical Normal (OEN) mixture model represents the seasonal–diurnal surface wind vector for wind engineering design applications. This study upgrades the parameterization of OEN by accounting for changes in format of the global database of surface observations, improving performance by eliminating manual [...] Read more.
The Offset Elliptical Normal (OEN) mixture model represents the seasonal–diurnal surface wind vector for wind engineering design applications. This study upgrades the parameterization of OEN by accounting for changes in format of the global database of surface observations, improving performance by eliminating manual supervision and extending the scope of the model to include skewness. The previous coordinate transformation of binned speed and direction, used to evaluate the joint probability distributions of the wind vector, is replaced by direct kernel density estimation. The slow process of sequentially adding additional components is replaced by initializing all components together using fuzzy clustering. The supervised process of sequencing each mixture component through time is replaced by a fully automated unsupervised process using pattern matching. Previously reported departures from normal in the tails of the fuzzy-demodulated OEN orthogonal vectors are investigated by directly fitting the bivariate skew generalized t distribution, showing that the small observed skew is likely real but that the observed kurtosis is an artefact of the demodulation process, leading to a new Offset Skew Normal mixture model. The supplied open-source R scripts fully automate parametrization for locations in the NCEI Integrated Surface Hourly global database of wind observations. Full article
Show Figures

Figure 1

26 pages, 3038 KiB  
Article
Profiling Hydrophilic Cucurbita pepo Seed Extracts: A Study of European Cultivar Variability
by Adina-Elena Grasu, Roman Senn, Christiane Halbsguth, Alexander Schenk, Veronika Butterweck and Anca Miron
Plants 2025, 14(15), 2308; https://doi.org/10.3390/plants14152308 - 26 Jul 2025
Viewed by 168
Abstract
Cucurbita pepo (CP) seeds are traditionally used to alleviate lower urinary tract symptoms associated with benign prostatic hyperplasia and overactive bladder. While these effects are often attributed to lipophilic constituents, recent studies have highlighted the therapeutic potential of oil-free hydroethanolic extracts. However, their [...] Read more.
Cucurbita pepo (CP) seeds are traditionally used to alleviate lower urinary tract symptoms associated with benign prostatic hyperplasia and overactive bladder. While these effects are often attributed to lipophilic constituents, recent studies have highlighted the therapeutic potential of oil-free hydroethanolic extracts. However, their composition remains insufficiently characterized, considering the species’ significant phenotypic and phytochemical variability. This study aimed to characterize the phytochemical profile of hydrophilic hydroethanolic seed extracts from ten CP cultivars originating from different European regions, with a focus on compositional variability. The elemental composition, along with primary and secondary metabolites, was analyzed using established spectroscopic and chromatographic methods. The extracts showed considerable variation in protein (45.39 to 114.58 mg/g dw) and free amino acid content (46.51 to 111.10 mg/g dw), as well as differences in elemental composition. Principal component analysis revealed distinct clustering patterns, with several samples displaying metabolite profiles comparable to the Cucurbita pepo var. styriaca variety currently recommended by the European Pharmacopoeia (Ph. Eur.) and the Committee on Herbal Medicinal Products (HMPC). These findings open the possibility of using other CP varieties as alternative sources for extract preparation and offer novel insights into the composition of less explored hydrophilic extracts derived from CP seeds. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

30 pages, 2922 KiB  
Article
Interaction Mechanism and Coupling Strategy of Higher Education and Innovation Capability in China Based on Interprovincial Panel Data from 2010 to 2022
by Shaoshuai Duan and Fang Yin
Sustainability 2025, 17(15), 6797; https://doi.org/10.3390/su17156797 - 25 Jul 2025
Viewed by 428
Abstract
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and [...] Read more.
The sustainable development of higher education exhibits a strong and measurable association with the level of regional innovation capacity. Drawing on panel data covering 31 provincial-level administrative regions in China from 2010 to 2022, we construct evaluation frameworks for both higher education and regional innovation capacity using the entropy weight method. These are complemented by kernel density estimation, spatial autocorrelation analysis, Dagum Gini coefficient decomposition, and the Obstacle Degree Model. Together, these tools enable a comprehensive investigation into the spatiotemporal evolution and driving mechanisms of coupling coordination dynamics between the two systems. The results indicate the following: (1) Both higher education and regional innovation capacity indices exhibit steady growth, accompanied by a clear temporal gradient differentiation. (2) The coupling coordination degree shows an overall upward trend, with significant inter-regional disparities, notably “higher in the east and low in the west”. (3) The spatial distribution of the coupling coordination degree reveals positive spatial autocorrelation, with provinces exhibiting similar levels tending to form spatial clusters, most commonly of the low–low or high–high type. (4) The spatial heterogeneity is pronounced, with inter-regional differences driving overall imbalance. (5) Key obstacles hindering regional innovation include inadequate R&D investment, limited trade openness, and weak technological development. In higher education sectors, limitations stem from insufficient social service benefits and efficiency of flow. This study recommends promoting the synchronized advancement of higher education and regional innovation through region-specific development strategies, strengthening institutional infrastructure, and accurately identifying and addressing key barriers. These efforts are essential to fostering high-quality, coordinated regional development. Full article
Show Figures

Figure 1

18 pages, 1137 KiB  
Article
Exploring Social Water Research: Quantitative Network Analysis as Assistance for Qualitative Social Research
by Magdalena Riedl and Peter Schulz
Water 2025, 17(15), 2208; https://doi.org/10.3390/w17152208 - 24 Jul 2025
Viewed by 313
Abstract
This paper presents a meta-analysis of social research on water, offering a novel methodological contribution to the study of emerging interdisciplinary research fields. We propose and implement a mixed methods framework that integrates quantitative network analysis with qualitative research, aiming to enhance both [...] Read more.
This paper presents a meta-analysis of social research on water, offering a novel methodological contribution to the study of emerging interdisciplinary research fields. We propose and implement a mixed methods framework that integrates quantitative network analysis with qualitative research, aiming to enhance both to give access to new emerging empirical fields and enhance the analytical depth of empirical social research. Drawing on a dataset of publications from the Web of Science over four distinct time intervals, we identify thematic clusters through keyword co-occurrence networks that reveal the evolving structure and internal dynamics of the field. Our findings show a clear trend toward increasing interdisciplinarity, responsiveness to global events, and contemporary challenges such as the emergence of COVID-19 and the continued centrality of topics related to water management and evaluation. By uncovering latent structures, our approach not only maps the field’s development but also lays the foundation for targeted qualitative analysis of articles representative of identified clusters. This methodological design contributes to the broader discourse on mixed methods research in the social sciences by demonstrating how computational tools can enhance the transparency and reliability of qualitative inquiry without sacrificing its interpretive richness. Furthermore, this study opens new avenues for critically reflecting on the epistemic culture of social water research, particularly in relation to its proximity to applied science and governance-oriented perspectives. The proposed method holds potential relevance for both academic researchers and decision makers in the water sector, offering a means to systematically access dispersed knowledge and identify underrepresented subfields. Overall, the study showcases the potential of mixed methods designs for navigating and structuring complex interdisciplinary research landscapes. Full article
Show Figures

Figure A1

21 pages, 2399 KiB  
Article
An HUL Assessment for Small Cultural Heritage Sites in Urban Areas: Framework, Methodology, and Empirical Research
by Shiyang Zhang, Haochen Sun, Muye Jiang and Jingrui Zhao
Land 2025, 14(8), 1513; https://doi.org/10.3390/land14081513 - 23 Jul 2025
Viewed by 272
Abstract
The research is grounded in the perspective of urban historical landscape (HUL), exploring the connections between cultural heritage and a broader urban context, as well as the general public and communities. It also focuses on small cultural heritage sites (SCHSs) in urban areas [...] Read more.
The research is grounded in the perspective of urban historical landscape (HUL), exploring the connections between cultural heritage and a broader urban context, as well as the general public and communities. It also focuses on small cultural heritage sites (SCHSs) in urban areas that have been overlooked in previous studies. By integrating various types of data, an assessment framework and methodology comprising six dimensions and 24 indicators were established and applied to the empirical research of 30 SCHSs in the Beijing section of the Grand Canal. The empirical research demonstrated the operability, effectiveness, and flexibility of the HUL assessment for SCHSs. The research findings are as follows. (1) The method provides differentiated recommendations for the formulation of tailored policies and planning management schemes based on heritage types, conservation levels, and the urban districts in which they are located. (2) The comprehensive quality of the open spaces where SCHSs are situated is critical for the cognition of the general public and community residents. (3) The overall conservation of the community areas containing SCHSs is highly significant, and the linkage between social development levels and cultural resources enhances public cognition of the SCHSs. (4) Cluster analysis offers guidance for the refined improvement of different SCHSs. The research aims to establish an action-oriented assessment framework, with a dimensional framework responding to the requirements of HULs and allowing for indicator flexibility. This study is significant for supporting the conservation and utilization of SCHSs in urban areas and for promoting their sustainable development. Full article
Show Figures

Figure 1

11 pages, 452 KiB  
Review
Lysergic Acid Amide (LSA), an LSD Analog: Systematic Review of Pharmacological Effects, Adverse Outcomes, and Therapeutic Potentials
by Paula S. C. C. Castro, Kae Leopoldo, Maria Olivia Pozzolo Pedro, Juliana Takitane, Henrique Silva Bombana, André Brooking Negrão, Jaqueline R. Scholz and João Maurício Castaldelli-Maia
Pharmacy 2025, 13(4), 98; https://doi.org/10.3390/pharmacy13040098 - 21 Jul 2025
Viewed by 719
Abstract
Objective: To systematically review the scientific literature on lysergic acid amide (LSA), focusing on its physical, neurobiological, and social effects, as well as its potential risks and therapeutic uses. Methods: A systematic review was conducted across PubMed, Google Scholar, and Web [...] Read more.
Objective: To systematically review the scientific literature on lysergic acid amide (LSA), focusing on its physical, neurobiological, and social effects, as well as its potential risks and therapeutic uses. Methods: A systematic review was conducted across PubMed, Google Scholar, and Web of Science up to December 2023, using keywords such as “ergine,” “lysergic acid amide,” and “legal high.” Studies were included if they reported original human data on the physical, neurobiological, psychological, or social effects of LSA; seventeen studies were included. Animal studies, in vitro research, and non-original articles were excluded. Two independent reviewers screened and selected the studies, with a third resolving discrepancies. Data were extracted using a standardized form. The review followed PRISMA guidelines and was prospectively registered on the Open Science Framework. Results: LSA is primarily consumed through preparations made from the seeds of Convolvulaceae plants. Reported effects include euphoria, hallucinations, nausea, and anxiety. Severe adverse outcomes, such as psychosis, hypertension, and hospitalization, have also been documented. Some evidence suggests its potential therapeutic application for cluster headaches. However, variability in dosing and misinformation on digital platforms heighten the risks associated with LSA use. Conclusions: LSA poses significant health risks, exacerbated by online misinformation and variability in its effects, and a lack of scientific studies. Further research is essential to clarify its pharmacological profile, establish guidelines for safe use, and raise public awareness about its dangers. Full article
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 225
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

43 pages, 190510 KiB  
Article
From Viewing to Structure: A Computational Framework for Modeling and Visualizing Visual Exploration
by Kuan-Chen Chen, Chang-Franw Lee, Teng-Wen Chang, Cheng-Gang Wang and Jia-Rong Li
Appl. Sci. 2025, 15(14), 7900; https://doi.org/10.3390/app15147900 - 15 Jul 2025
Viewed by 254
Abstract
This study proposes a computational framework that transforms eye-tracking analysis from statistical description to cognitive structure modeling, aiming to reveal the organizational features embedded in the viewing process. Using the designers’ observation of a traditional Chinese landscape painting as an example, the study [...] Read more.
This study proposes a computational framework that transforms eye-tracking analysis from statistical description to cognitive structure modeling, aiming to reveal the organizational features embedded in the viewing process. Using the designers’ observation of a traditional Chinese landscape painting as an example, the study draws on the goal-oriented nature of design thinking to suggest that such visual exploration may exhibit latent structural tendencies, reflected in patterns of fixation and transition. Rather than focusing on traditional fixation hotspots, our four-dimensional framework (Region, Relation, Weight, Time) treats viewing behavior as structured cognitive networks. To operationalize this framework, we developed a data-driven computational approach that integrates fixation coordinate transformation, K-means clustering, extremum point detection, and linear interpolation. These techniques identify regions of concentrated visual attention and define their spatial boundaries, allowing for the modeling of inter-regional relationships and cognitive organization among visual areas. An adaptive buffer zone method is further employed to quantify the strength of connections between regions and to delineate potential visual nodes and transition pathways. Three design-trained participants were invited to observe the same painting while performing a think-aloud task, with one participant selected for the detailed demonstration of the analytical process. The framework’s applicability across different viewers was validated through consistent structural patterns observed across all three participants, while simultaneously revealing individual differences in their visual exploration strategies. These findings demonstrate that the proposed framework provides a replicable and generalizable method for systematically analyzing viewing behavior across individuals, enabling rapid identification of both common patterns and individual differences in visual exploration. This approach opens new possibilities for discovering structural organization within visual exploration data and analyzing goal-directed viewing behaviors. Although this study focuses on method demonstration, it proposes a preliminary hypothesis that designers’ gaze structures are significantly more clustered and hierarchically organized than those of novices, providing a foundation for future confirmatory testing. Full article
(This article belongs to the Special Issue New Insights into Computer Vision and Graphics)
Show Figures

Figure 1

16 pages, 3151 KiB  
Article
An Open Dataset of Neural Networks for Hypernetwork Research
by David Kurtenbach and Lior Shamir
Electronics 2025, 14(14), 2831; https://doi.org/10.3390/electronics14142831 - 15 Jul 2025
Viewed by 377
Abstract
Despite the transformative potential of AI, the concept of neural networks that can produce other neural networks by generating model weights (hypernetworks) has been largely understudied. One of the possible reasons is the lack of available research resources that can be used for [...] Read more.
Despite the transformative potential of AI, the concept of neural networks that can produce other neural networks by generating model weights (hypernetworks) has been largely understudied. One of the possible reasons is the lack of available research resources that can be used for the purpose of hypernetwork research. Here we describe a dataset of neural networks, designed for the purpose of hypernetwork research. The dataset includes 104 LeNet-5 neural networks trained for binary image classification separated into 10 classes, such that each class contains 1000 different neural networks that can identify a certain ImageNette V2 class from all other classes. A computing cluster of over 104 cores was used to generate the dataset. Basic classification results show that the neural networks can be classified with accuracy of 72.0%, indicating that the differences between the neural networks can be identified by supervised machine learning algorithms. The ultimate purpose of the dataset is to enable hypernetwork research. The dataset and the code that generates it are open and accessible to the public. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

25 pages, 12949 KiB  
Article
Enhanced Landslide Visualization and Trace Identification Using LiDAR-Derived DEM
by Jie Lv, Chengzhuo Lu, Minjun Ye, Yuting Long, Wenbing Li and Minglong Yang
Sensors 2025, 25(14), 4391; https://doi.org/10.3390/s25144391 - 14 Jul 2025
Viewed by 393
Abstract
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR [...] Read more.
In response to the inability of traditional remote sensing technology to accurately capture the micro-topographic features of landslide surfaces in vegetated areas under complex terrain conditions, this paper proposes a method for enhanced landslide terrain display and trace recognition based on airborne LiDAR technology. Firstly, a high-precision LiDAR-DEM is constructed using preprocessed LiDAR point cloud data, and visual images are generated using visualization methods, including hillshade, slope, openness, and Sky View Factor (SVF). Secondly, pixel-level image fusion methods are applied to the visual images to obtain enhanced display images of the landslide terrain. Finally, a threshold is determined through a fractal model, and the Mean-Shift algorithm is utilized for clustering and denoising to extract landslide traces. The results indicate that employing pixel-level image fusion technology, which combines the advantageous features of multiple terrain visualization images, effectively enhances the display of landslide micro-topography. Moreover, based on the enhanced display images, the fractal model and the Mean-Shift algorithm are applied for denoising to extract landslide traces. Compared to orthophotos, this method can effectively and accurately extract landslide traces. The findings of this study provide valuable references for the enhanced display and trace recognition of landslide terrain in densely vegetated areas within complex mountainous areas, thereby providing technical support for emergency investigations of landslide disasters. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

18 pages, 5741 KiB  
Article
Research on Design Strategy for Zero-Carbon Touristic Apartment Openings Based on Building Life Cycle
by Yiru Wang, Fangyuan Wang, Yang Yang, Xun Sun and Dekun Dong
Buildings 2025, 15(14), 2427; https://doi.org/10.3390/buildings15142427 - 10 Jul 2025
Viewed by 194
Abstract
The timeshare is gradually becoming an essential global tourism operation model, especially in rural areas of China, where the leisure industry is developing rapidly. Meanwhile, the environmental issues of the rapidly growing timeshare-related building production have received widespread attention. The existing research on [...] Read more.
The timeshare is gradually becoming an essential global tourism operation model, especially in rural areas of China, where the leisure industry is developing rapidly. Meanwhile, the environmental issues of the rapidly growing timeshare-related building production have received widespread attention. The existing research on zero-carbon buildings considers carbon emissions as a constant value and cannot adapt to the impact of user changes during the operation phase. Constructing a low-carbon design applicable to timeshare is significant for controlling carbon emissions in the construction industry and responding to the environmental crisis. The practical carbon emissions of touristic apartments depend on the requirement changes in different customer clusters. The timeshare theory reflects the requirement change in different customer clusters based on the timeshare property ownership change. This paper focuses on a dynamic design strategy for zero-carbon building openings to reduce practical carbon emissions. Firstly, this research clarifies the primary customer clusters and conducts a touristic apartment unit model by timeshare property ownership. Then, this research clarifies the changes in customer requirements to analyze the spatial function changes in the operating phase. Finally, the study identifies six dynamic carbon emission indicators, such as the window-to-wall ratio, ventilation rate, and effective daylight area, and through passive design methods, provides 13 variable devices applied in the operating phase to control dynamic carbon emission indicators by customers. This paper also offers a flexible method to effectively decrease and accurately control carbon emissions by reducing the possible device utility. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 4083 KiB  
Article
Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain
by Alberto López-Amoedo, Henrique Lorenzo, Carolina Acuña-Alonso and Xana Álvarez
Forests 2025, 16(7), 1140; https://doi.org/10.3390/f16071140 - 10 Jul 2025
Viewed by 238
Abstract
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. [...] Read more.
In the case of forest inventory, heterogeneous areas are particularly challenging due to variability in vegetation structure. This is especially true in Galicia (northwest Spain), where land is highly fragmented, complicating the planning and management of single-species plantations such as Pinus radiata. This study proposes a cost-effective strategy using open-access tools and data to characterize and estimate wood volume in these plantations. Two stratification approaches—classical and cluster-based—were compared to a modeling method based on Principal Component Analysis (PCA). Data came from open-access national LiDAR point clouds, acquired using manned aerial vehicles under the Spanish National Aerial Orthophoto Plan (PNOA). Moreover, two volume estimation methods were applied: one from the Xunta de Galicia (XdG) and another from Spain’s central administration (4IFN). A Generalized Linear Model (GLM) was also fitted using PCA-derived variables with logarithmic transformation. The results show that although overall volume estimates are similar across methods, cluster-based stratification yielded significantly lower absolute errors per hectare (XdG: 28.04 m3/ha vs. 44.07 m3/ha; 4IFN: 25.64 m3/ha vs. 38.22 m3/ha), improving accuracy by 7% over classical stratification. Moreover, it does not require precise field parcel locations, unlike PCA modeling. Both official volume estimation methods tended to overestimate stock by about 10% compared to PCA. These results confirm that clustering offers a practical, low-cost alternative that improves estimation accuracy by up to 18 m3/ha in fragmented forest landscapes. Full article
Show Figures

Figure 1

Back to TopTop