Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. PNOA-LiDAR Data
2.3. Field Inventory Planning
2.4. LiDAR Forest Stock Estimation Using GLM with PCA-Derived Components
3. Results
3.1. Stock Calculation and Inventory Errors: Classical and Clustering-Based Stratification
3.2. LiDAR Forest Stock: Prediction and Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Airbone Laser Scanning |
DEM | Digital Elevation Model |
DSM | Digital Surface Model |
GIS | Geographic Information System |
GLM | Generalized Linear Model |
IFN | Inventario Forestal Nacional |
LiDAR | Light Detection and Ranging |
MAE | Mean Absolute Error |
PCA | Principal Component Analysis |
PNOA | Spanish National Aerial Ortophoto Plan |
RMSE | Relative Mean Squared Error |
TLS | Terrestrial Laser Scanning |
XdG | Xunta de Galicia |
Appendix A
Appendix A.1
Stratum | N° of Plots | Cluster | N° of Plots |
Pr12 | 2 | 1 | 9 |
Pr14 | 2 | 2 | 17 |
Pr16 | 2 | 3 | 14 |
Pr22 | 27 | ||
Pr22M | 7 | ||
Total | 40 | 40 |
Appendix A.2
Parcel | Coordinate X | Coordinate Y | XdG [1] (m3/ha) | 4IFN [1] (m3/ha) | No. of Trees | Stratum | Cluster | Avg. d.b.h. per Stratum (cm) |
---|---|---|---|---|---|---|---|---|
1 | 591,309.7 | 4,818,314 | 293.28 | 268.31 | 38 | Pr22 [2] | 2 | 29.1 |
2 | 593,853.7 | 4,817,692 | 313.36 | 283.72 | 32 | Pr22 | 2 | 29.1 |
3 | 594,132.3 | 4,817,878 | 227.31 | 206.96 | 19 | Pr22 | 2 | 29.1 |
4 | 594,299.4 | 4,818,145 | 296.52 | 272.69 | 17 | Pr22 | 2 | 29.1 |
5 | 594,645.4 | 4,817,658 | 334.83 | 303.82 | 33 | Pr22 | 2 | 29.1 |
6 | 594,706.2 | 4,817,185 | 281.27 | 257.10 | 29 | Pr22 | 2 | 29.1 |
7 | 596,827.5 | 4,818,178 | 241.90 | 220.30 | 27 | Pr22M | 3 | 22.6 |
8 | 597,400 | 4,817,769 | 317.63 | 291.14 | 35 | Pr22 | 2 | 29.1 |
9 | 597,459.2 | 4,818,519 | 316.58 | 287.87 | 36 | Pr22 | 2 | 29.1 |
10 | 597,744.1 | 4,818,504 | 429.23 | 394.87 | 24 | Pr22 | 2 | 29.1 |
11 | 596,153 | 4,818,417 | 268.15 | 250.31 | 53 | Pr22M | 2 | 22.6 |
12 | 594,098.8 | 4,818,196 | 414.46 | 378.42 | 40 | Pr22 | 2 | 29.1 |
13 | 593,845.8 | 4,818,246 | 330.62 | 301.61 | 23 | Pr22 | 2 | 29.1 |
14 | 593,753.1 | 4,817,289 | 477.16 | 434.60 | 31 | Pr22 | 2 | 29.1 |
15 | 596,830.5 | 4,817,915 | 171.59 | 159.17 | 13 | Pr22 | 3 | 29.1 |
16 | 597,876.9 | 4,818,638 | 223.17 | 203.78 | 15 | Pr22 | 2 | 29.1 |
17 | 598,004.7 | 4,818,281 | 418.74 | 380.31 | 40 | Pr22 | 2 | 29.1 |
18 | 594,429.3 | 4,818,411 | 67.36 | 70.42 | 32 | Pr22 | 1 | 29.1 |
19 | 594,406.4 | 4,818,060 | 97.91 | 92.77 | 20 | Pr22 | 3 | 29.1 |
20 | 595,055.8 | 4,817,667 | 125.95 | 121.74 | 36 | Pr22M | 3 | 22.6 |
21 | 594,848 | 4,817,513 | 77.56 | 71.46 | 7 | Pr22 | 3 | 29.1 |
22 | 597,020.9 | 4,818,409 | 75.25 | 83.02 | 44 | Pr22M | 1 | 22.6 |
23 | 591,441.5 | 4,818,509 | 215.63 | 198.46 | 32 | Pr22M | 3 | 22.6 |
24 | 593,116.6 | 4,817,783 | 132.24 | 124.64 | 31 | Pr22 | 3 | 29.1 |
25 | 593,655.2 | 4,817,594 | 165.35 | 150.06 | 20 | Pr22 | 2 | 29.1 |
26 | 597,017.3 | 4,818,204 | 275.08 | 253.82 | 38 | Pr22 | 3 | 29.1 |
27 | 597,124.1 | 4,818,551 | 196.01 | 182.04 | 27 | Pr22 | 2 | 29.1 |
28 | 594,817 | 4,818,121 | 63.12 | 67.0 | 31 | Pr22M | 1 | 22.6 |
29 | 591,373.8 | 4,818,784 | 27.69 | 43.58 | 46 | Pr12 | 1 | 13.8 |
30 | 596,514.9 | 4,818,205 | 31.74 | 39.38 | 29 | Pr22M | 1 | 22.6 |
31 | 592,114.6 | 4,818,894 | 161.55 | 154.50 | 39 | Pr16 | 3 | 19.8 |
32 | 594,983.7 | 4,819,637 | 129.25 | 126.03 | 40 | Pr14 | 3 | 17.2 |
33 | 594,552.4 | 4,818,310 | 217.68 | 201.08 | 32 | Pr22 | 3 | 29.1 |
34 | 593,307.2 | 4,818,302 | 90.59 | 102.43 | 60 | Pr16 | 1 | 19.8 |
35 | 595,053.4 | 4,819,532 | 59.25 | 74.67 | 58 | Pr14 | 1 | 17.2 |
36 | 594,633.3 | 4,818,418 | 82.58 | 79.98 | 23 | Pr22 | 1 | 29.1 |
37 | 594,289.4 | 4,818,259 | 96.39 | 91.12 | 22 | Pr22 | 3 | 29.1 |
38 | 595,243.4 | 4,817,808 | 204.56 | 205.59 | 77 | Pr22 | 3 | 29.1 |
39 | 594,024.7 | 4,817,357 | 102.18 | 93.33 | 12 | Pr22 | 3 | 29.1 |
40 | 591,373 | 4,818,890 | 25.18 | 36.68 | 35 | Pr12 | 1 | 13.8 |
Appendix A.3
LiDAR Metrics | Metrics | Units | Abbrev. | Description |
---|---|---|---|---|
Height distribution metrics | Percentile heights | m | H25, H50, H75, H95 | The percentiles of the height distributions (25th, 50th, 75th, 95th) |
Mean heights | m | Hmean | The mean height above 3 m of all points | |
Maximum heights | m | Hmaxim | The maximum height of all points above 3 m | |
Mode | m | Hmode | The mode height above 3 m | |
Coefficient of variation in heights | Coefficient, ratio | Hcv | Coefficient of variation in heights, defined as the ratio between the standard deviation and the mean of the heights | |
Kurtosis of heights | m | Hkurtosis | The kurtosis of the heights of all points above 3 m | |
Interquantile distance of heights | m | Hiq | The Interquartile distance of the heights of all points above 3 m | |
Variance of heights | m | Hvariance | The variance of the heights of all points above 3 m | |
Height distribution factor ((mean-min)/(max-min)) | Coefficient, ratio | Hdf | Canopy Relief Ratio ((mean-min)/(max-min)) | |
Canopy and density distribution metrics | Canopy density metrics | % | CDM3, CDM5, CDM7 CDM8 | Each tessera is divided into 10 equal parts by calculating the cumulative proportions of LiDAR returns |
Percentage of first returns over 4 m | % | PRO4 | (number of first returns above 4 meters)/(total number of first returns) | |
Percentage of first returns over the mean | % | PROM | (number of first returns above the mean height)/(total number of first returns) | |
Entropy | Vertical Complexity Index | Entropy | Fixed normalization of the entropy function. where HB is the total number of height bins and pi is the proportional abundance of LiDAR returns in height bin i |
Appendix A.4
References
- Felipe-Lucia, M.R.; Soliveres, S.; Penone, C.; Manning, P.; van der Plas, F.; Boch, S.; Prati, D.; Ammer, C.; Schall, P.; Gossner, M.M.; et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 2018, 9, 4839. [Google Scholar] [CrossRef] [PubMed]
- RSyrbe, U.; Schorcht, M.; Grunewald, K.; Meinel, G. Indicators for a nationwide monitoring of ecosystem services in Germany exemplified by the mitigation of soil erosion by water. Ecol. Indic. 2018, 94, 46–54. [Google Scholar] [CrossRef]
- Ojea, E.; Martin-Ortega, J.; Chiabai, A. Defining and classifying ecosystem services for economic valuation: The case of forest water services. Environ. Sci. Policy 2012, 19, 1–15. [Google Scholar] [CrossRef]
- Poudel, B.S. Ecological solutions to prevent future pandemics like COVID-19. Banko Janakari 2020, 30, 1–2. [Google Scholar] [CrossRef]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E.; Gabler, K.; Schadauer, K.; Vidal, C.; Lanz, A.; Ståhl, G.; Cienciala, E. National forest inventories. Pathw. Common Report. Eur. Sci. Found. 2010, 1, 541–553. [Google Scholar]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Alam, M.B.; Shahi, C.; Pulkki, R. Economic impact of enhanced forest inventory information and merchandizing yards in the forest product industry supply chain. Socioecon. Plann. Sci. 2014, 48, 189–197. [Google Scholar] [CrossRef]
- Papa, D.d.A.; de Almeida, D.R.A.; Silva, C.A.; Figueiredo, E.O.; Stark, S.C.; Valbuena, R.; Rodriguez, L.C.E.; Oliveira, M.V.N.D. Evaluating tropical forest classification and field sampling stratification from lidar to reduce effort and enable landscape monitoring. For. Ecol. Manag. 2020, 457, 117634. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Gobakken, T.; Næsset, E. Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications. Remote Sens. Environ. 2012, 125, 157–166. [Google Scholar] [CrossRef]
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote. Sens. 2018, 10, 1078. [Google Scholar] [CrossRef]
- Georgakis, A.; Gatziolis, D.; Stamatellos, G. A Primer on Clustering of Forest Management Units for Reliable Design-Based Direct Estimates and Model-Based Small Area Estimation. Forests 2023, 14, 1994. [Google Scholar] [CrossRef]
- Schumacher, J.; Rattay, M.; Kirchhöfer, M.; Adler, P.; Kändler, G. Combination of Multi-Temporal Sentinel 2 Images and Aerial Image Based Canopy Height Models for Timber Volume Modelling. Forests 2019, 10, 746. [Google Scholar] [CrossRef]
- Morell-Monzó, S.; Estornell, J.; Sebastiá-Frasquet, M.-T. Comparison of Sentinel-2 and high-resolution imagery for mapping land abandonment in fragmented areas. Remote. Sens. 2020, 12, 2062. [Google Scholar] [CrossRef]
- Wang, Z.; Ginzler, C.; Waser, L.T. A novel method to assess short-term forest cover changes based on digital surface models from image-based point clouds. For. Int. J. For. Res. 2015, 88, 429–440. [Google Scholar] [CrossRef]
- Barakat, A.; Khellouk, R.; El Jazouli, A.; Touhami, F.; Nadem, S. Monitoring of forest cover dynamics in eastern area of Béni-Mellal Province using ASTER and Sentinel-2A multispectral data. Geol. Ecol. Landscapes 2018, 2, 203–215. [Google Scholar] [CrossRef]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S.J. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Jia, T.; Li, Y.; Shi, W.; Zhu, L. Deriving a forest cover map in Kyrgyzstan using a hybrid fusion strategy. Remote. Sens. 2019, 11, 2325. [Google Scholar] [CrossRef]
- Tang, H.; Armston, J.; Hancock, S.; Marselis, S.; Goetz, S.; Dubayah, R. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote. Sens. Environ. 2019, 231, 111262. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Ganz, S.; Adler, P.; Kändler, G. Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data. Forests 2020, 11, 1322. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Wendt, D.G.; Nelson, M.D.; Hansen, M.H. Using a land cover classification based on satellite imagery to improve the precision of forest inventory area estimates. Remote Sens. Environ. 2002, 81, 36–44. [Google Scholar] [CrossRef]
- Hyyppa, J.; Pulliainen, J.; Hallikainen, M.; Saatsi, A. Radar-derived standwise forest inventory. IEEE Trans. Geosci. Remote. Sens. 1997, 35, 392–404. [Google Scholar] [CrossRef]
- Kotivuori, E.; Kukkonen, M.; Mehtätalo, L.; Maltamo, M.; Korhonen, L.; Packalen, P. Forest inventories for small areas using drone imagery without in-situ field measurements. Remote. Sens. Environ. 2020, 237, 111404. [Google Scholar] [CrossRef]
- Alvites, C.; Marchetti, M.; Lasserre, B.; Santopuoli, G. LiDAR as a Tool for Assessing Timber Assortments: A Systematic Literature Review. Remote. Sens. 2022, 14, 4466. [Google Scholar] [CrossRef]
- Newnham, G.J.; Armston, J.D.; Calders, K.; Disney, M.I.; Lovell, J.L.; Schaaf, C.B.; Strahler, A.H.; Danson, F.M. Terrestrial Laser Scanning for Plot-Scale Forest Measurement. Curr. For. Rep. 2015, 1, 239–251. [Google Scholar] [CrossRef]
- Buchalová, D.; Hofierka, J.; Šupinský, J.; Kaňuk, J. Estimating Subcanopy Solar Radiation Using Point Clouds and GIS-Based Solar Radiation Models. Remote. Sens. 2025, 17, 328. [Google Scholar] [CrossRef]
- Hill, R.A.; Broughton, R.K. Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain. ISPRS J. Photogramm. Remote Sens. 2009, 64, 223–233. [Google Scholar] [CrossRef]
- Chamberlain, C.P.; Meador, A.J.S.; Thode, A.E. Airborne lidar provides reliable estimates of canopy base height and canopy bulk density in southwestern ponderosa pine forests. For. Ecol. Manag. 2021, 481, 118695. [Google Scholar] [CrossRef]
- Alards-Tomalin, J.; Stott, L.; Standish, J.; Parlow, M. Seeing the Forest Through the Trees: Assessing Urban Forest Values Using a Combination of LiDAR, Timber Species Identifier, i-Tree Eco and GPS Ground Surveys. In Ecocities Now; Springer: Berlin/Heidelberg, Germany, 2020; pp. 149–160. [Google Scholar]
- Zhu, X.; Wang, C.; Nie, S.; Pan, F.; Xi, X.; Hu, Z. Mapping forest height using photon-counting LiDAR data and Landsat 8 OLI data: A case study in Virginia and North Carolina, USA. Ecol. Indic. 2020, 114, 106287. [Google Scholar] [CrossRef]
- Tijerín-Triviño, J.; Moreno-Fernández, D.; Zavala, M.A. Astigarraga, and M. García. Identifying forest structural types along an aridity gradient in peninsular Spain: Integrating low-density LiDAR, forest inventory, and aridity index. Remote Sens. 2022, 14, 235. [Google Scholar] [CrossRef]
- Ruiz, L.A.; Hermosilla, T.; Mauro, F.; Godino, M. Analysis of the Influence of Plot Size and LiDAR Density on Forest Structure Attribute Estimates. Forests 2014, 5, 936–951. [Google Scholar] [CrossRef]
- Fragoso-Campón, L.; Quirós, E.; Mora, J.; Gallego, J.A.G.; Durán-Barroso, P. Overstory-understory land cover mapping at the watershed scale: Accuracy enhancement by multitemporal remote sensing analysis and LiDAR. Environ. Sci. Pollut. Res. 2020, 27, 75–88. [Google Scholar] [CrossRef] [PubMed]
- González-Ferreiro, E.; Diéguez-Aranda, U.; Crecente-Campo, F.; Barreiro-Fernández, L.; Miranda, D.; Castedo-Dorado, F. Modelling canopy fuel variables for Pinus radiata D. Don in NW Spain with low-density LiDAR data. Int. J. Wildl. Fire 2014, 23, 350–362. [Google Scholar] [CrossRef]
- Pascual, A.; Guerra-Hernández, J. An integrated assessment of carbon emissions from forest fires beyond impacts on aboveground biomass. A showcase using airborne lidar and GEDI data over a megafire in Spain. J. Environ. Manag. 2023, 345, 118709. [Google Scholar] [CrossRef] [PubMed]
- Xunta de Galicia. DECRETO 52/2014, de 16 de Abril, Por el Que se Regulan las Instrucciones Generales de Ordenación y de Gestión de Montes de Galicia. Diario Oficial de Galicia. Available online: https://www.xunta.gal/dog/Publicados/2014/20140508/AnuncioG0165-250414-0003_es.html (accessed on 1 March 2024).
- Bastida, M.; García, A.V.; Taín, M.Á.V. A New Life for Forest Resources: The Commons as a Driver for Economic Sustainable Development—A Case Study from Galicia. Land 2021, 10, 99. [Google Scholar] [CrossRef]
- Valdés, C.M.M.; Sánchez, L.G. Tercer Inventario Forestal Nacional 1997–2006: La Transformación Histórica del Paisaje Forestal en Galicia. 2ª ed.; Ministerio de Medio Ambiente, Dirección General de Conservación de la Naturaleza: Madrid; Stonex Srl: Paderno Dugnano (MI), Italia, 2002; 159p, (Galicia: Lugo). [Google Scholar]
- MITECO. Anuario de Esadística Forestal 2020. Available online: https://www.miteco.gob.es/es/biodiversidad/estadisticas/forestal_anuarios_todos.aspx (accessed on 1 March 2024).
- de Galicia, X. Institulo Galego de Estadística. Available online: https://www.ige.gal/web/index.jsp?idioma=es (accessed on 1 March 2024).
- Alonso, C.A. River Ecosystem Assessment: Towards Water Security and Environmental Governance. Universidade de Vigo. 2023. Available online: https://www.investigo.biblioteca.uvigo.es/xmlui/handle/11093/4710 (accessed on 1 March 2024).
- Guitián, M.R.; Rego, P.R. Clasificaciones climáticas aplicadas a Galicia: Revisión desde una perspectiva biogeográfica. Recur. Rurais 2007, 3, 31–53. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Description, 3rd ed.; Food and Agriculture Organization: Rome, Italy, 1990. [Google Scholar]
- Marey-Pérez, M.F.; Rodríguez-Vicente, V. Factors determining forest management by farmers in northwest Spain: Application of discriminant analysis. For. Policy Econ. 2011, 13, 318–327. [Google Scholar] [CrossRef]
- Xunta de Galicia. Información Xeográfica de Galicia; Instituto Geográfico Nacional, Ministerio de Transportes y Movilidad Sostenible. 2025. Available online: https://centrodedescargas.cnig.es/CentroDescargas/home (accessed on 6 July 2025).
- Kraus, K.; Pfeifer, N. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1998, 53, 193–203. [Google Scholar] [CrossRef]
- Magnussen, S.; Boudewyn, P. Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can. J. For. Res. 1998, 28, 1016–1031. [Google Scholar] [CrossRef]
- Næsset, E. Determination of mean tree height of forest stands by digital photogrammetry. Scand. J. For. Res. 2002, 17, 446–459. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Innes, J.L.; Dai, J.; Ruan, H.; She, G. Tree species classification in subtropical forests using small-footprint full-waveform LiDAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 39–51. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, T.; Skidmore, A.K.; Holzwarth, S.; Heiden, U.; Heurich, M. Mapping individual silver fir trees using hyperspectral and LiDAR data in a Central European mixed forest. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102311. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Alboreca, A.R.; Castedo-Dorado, F.; González, J.Á.; Barrio-Anta, M.; Crecente-Campo, F.; González-González, J.M.; Cruzado, C.P.; Rodríguez-Soalleiro, R.; López-Sánchez, A.; et al. Herramientas selvícolas para la gestión forestal sostenible en Galicia. Forestry 2009, 82, 1–16. [Google Scholar]
- Dirección General de Medio Natural y Política Forestal. Cuarto Inventario Forestal Nacional; Ministerio para la Transición Ecológica y el Reto Demográfico: Madrid, Spain, 2011.
- Frazer, G.W.; Magnussen, S.; Wulder, M.A.; Niemann, K.O. Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass. Remote Sens. Environ. 2011, 115, 636–649. [Google Scholar] [CrossRef]
- Saxena, A.; Prasad, M.; Gupta, A.; Bharill, N.; Patel, O.P.; Tiwari, A.; Er, M.J.; Ding, W.; Lin, C.-T. A review of clustering techniques and developments. Neurocomputing 2017, 267, 664–681. [Google Scholar] [CrossRef]
- Molina, J.M.G.; Nicolau, M.P.; Grau, P.V. Manual de Ordenación por Rodales: Gestión Multifoncional de los Espacios Forestales; Centre Tecnològic Forestal de Catalunya, 2ª ed. 2006; Available online: https://www.researchgate.net/publication/264536504_Manual_de_ordenacion_por_rodales_gestion_multifuncional_de_los_espacios_forestales (accessed on 6 July 2025).
- Salem, N.; Hussein, S. Data dimensional reduction and principal components analysis. Procedia Comput. Sci. 2019, 163, 292–299. [Google Scholar] [CrossRef]
- Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [Google Scholar] [CrossRef]
- Refaeilzadeh, P.; Tang, L.; Liu, H. Cross-validation. Encycl. Database Syst. 2009, 5, 532–538. [Google Scholar]
- Fernández-Landa, A.; Fernández-Moya, J.; Tomé, J.L.; Algeet-Abarquero, N.; Guillén-Climent, M.L.; Vallejo, R.; Sandoval, V.; Marchamalo, M. High resolution forest inventory of pure and mixed stands at regional level combining National Forest Inventory field plots, Landsat, and low density lidar. Int. J. Remote Sens. 2018, 39, 4830–4844. [Google Scholar] [CrossRef]
- González-Ferreiro, E.; Diéguez-Aranda, U.; Miranda, D. Estimation of stand variables in Pinus radiata D. Don plantations using different LiDAR pulse densities. Forestry 2012, 85, 281–292. [Google Scholar] [CrossRef]
- Nord-Larsen, T.; Schumacher, J. Estimation of forest resources from a country wide laser scanning survey and national forest inventory data. Remote Sens. Environ. 2012, 119, 148–157. [Google Scholar] [CrossRef]
- Næsset, E.; Gobakken, T. Estimation of above-and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 2008, 112, 3079–3090. [Google Scholar] [CrossRef]
- Niu, X.; Jiang, N.; Hou, K.; Yin, Y. Estimating Forest Stock Volume Based on Airborne Lidar Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.—ISPRS Arch. 2024, 48, 535–540. [Google Scholar] [CrossRef]
- Maltamo, M.; Bollandsås, O.M.; Næsset, E.; Gobakken, T.; Packalén, P. Different plot selection strategies for field training data in ALS-assisted forest inventory. Forestry 2010, 84, 23–31. [Google Scholar] [CrossRef]
- Devassy, B.M.; George, S.; Nussbaum, P. Unsupervised Clustering of Hyperspectral Paper Data Using t-SNE. J. Imaging 2020, 6, 29. [Google Scholar] [CrossRef]
- Milošević, D.; Medeiros, A.S.; Piperac, M.S.; Cvijanović, D.; Soininen, J.; Milosavljević, A.; Predić, B. The application of Uniform Manifold Approximation and Projection (UMAP) for unconstrained ordination and classification of biological indicators in aquatic ecology. Sci. Total Environ. 2022, 815, 152365. [Google Scholar] [CrossRef]
- Wang, M.; Gao, G.; Huang, H.; Heidari, A.A.; Zhang, Q.; Chen, H.; Tang, W. A Principal Component Analysis-Boosted Dynamic Gaussian Mixture Clustering Model for Ignition Factors of Brazil’s Rainforests. IEEE Access 2021, 9, 145748–145762. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E. Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. Can. J. For. Res. 2009, 39, 1036–1052. [Google Scholar] [CrossRef]
- Bueso, D.; Piles, M.; Camps-Valls, G. Nonlinear PCA for Spatio-Temporal Analysis of Earth Observation Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5752–5763. [Google Scholar] [CrossRef]
- De Cáceres, M.; Martín-Alcón, S.; González-Olabarria, J.R.; Coll, L. A general method for the classification of forest stands using species composition and vertical and horizontal structure. Ann. For. Sci. 2019, 76, 40. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.; Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012, 121, 196–209. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Campbell, M.J.; Dennison, P.E.; Hudak, A.T.; Parham, L.M.; Butler, B.W. Quantifying understory vegetation density using small-footprint airborne lidar. Remote Sens. Environ. 2018, 215, 330–342. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Béland, M.; Caspersen, J.; Achim, A. A mathematical framework to describe the effect of beam incidence angle on metrics derived from airborne LiDAR: The case of forest canopies approaching turbid medium behaviour. Remote Sens. Environ. 2018, 209, 824–834. [Google Scholar] [CrossRef]
- Wongoutong, C. The impact of neglecting feature scaling in k-means clustering. PLoS ONE 2024, 19, e0310839. [Google Scholar] [CrossRef] [PubMed]
- Corbelle-Rico, E.; López-Iglesias, E. Farmland Abandonment and Afforestation—Socioeconomic and Biophysical Patterns of Land Use Change at the Municipal Level in Galicia, Northwest Spain. Land 2024, 13, 1394. [Google Scholar] [CrossRef]
- Harrell, F.E. Regression modeling strategies. Bios 2017, 330, 14. [Google Scholar]
Age Class | Surface Area (ha) | Average (ha) | N° | Maximum (ha) | Minimum (ha) |
---|---|---|---|---|---|
12 | 6.07 | 1.21 | 5 | 2.97 | 0.62 |
14 | 6.35 | 0.64 | 10 | 2.02 | 0.07 |
16 | 19.94 | 1.81 | 11 | 5.34 | 0.54 |
22 [1] | 153.94 | 2.17 | 71 | 9.02 | 0.06 |
22M [2] | 45.65 | 2.17 | 21 | 5.26 | 0.26 |
Stratum | ha | Pj | Nj | nj | (m3/ha) | Sj | Pj∙Vj | Sxj | Sxstr | n/m | t | Ea | E% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XdG tariff | Pr12 | 6.07 | 0.026 | 85.87 | 2 | 26.44 | 1.77 | 0.69 | 1.24 | 0.03 | 38.00 | 1.686 | 2.09 | 7.89 |
Pr14 | 6.35 | 0.027 | 89.83 | 2 | 94.26 | 49.49 | 2.58 | 34.60 | 0.95 | 38.00 | 1.686 | 58.34 | 61.89 | |
Pr16 | 19.94 | 0.086 | 282.09 | 2 | 126.07 | 50.18 | 10.84 | 35.36 | 3.04 | 38.00 | 1.686 | 59.61 | 47.28 | |
Pr22 | 153.94 | 0.664 | 2177.81 | 27 | 242.99 | 118.39 | 161.27 | 22.64 | 15.03 | 13.00 | 1.7709 | 40.10 | 16.50 | |
Pr22M | 45.65 | 0.197 | 645.82 | 7 | 145.97 | 95.13 | 28.73 | 35.76 | 7.04 | 33.00 | 1.6924 | 60.52 | 41.46 | |
231.95 | 40 | 635.73 | 204.11 | 26.08 | ||||||||||
4IFN tariff | Pr12 | 6.07 | 0.026 | 85.87 | 2 | 40.14 | 4.88 | 1.05 | 3.41 | 0.09 | 38.00 | 1.69 | 5.75 | 14.32 |
Pr14 | 6.35 | 0.027 | 89.83 | 2 | 100.35 | 36.32 | 2.75 | 25.39 | 0.70 | 38.00 | 1.69 | 42.82 | 42.67 | |
Pr16 | 19.94 | 0.086 | 282.09 | 2 | 128.47 | 36.82 | 11.04 | 25.94 | 2.23 | 38.00 | 1.69 | 43.74 | 34.05 | |
Pr22 | 153.94 | 0.664 | 2177.81 | 27 | 223.73 | 106.54 | 148.48 | 20.38 | 13.52 | 13.00 | 1.77 | 36.08 | 16.13 | |
Pr22M | 45.65 | 0.197 | 645.82 | 7 | 140.04 | 82.73 | 27.56 | 31.10 | 6.12 | 33.00 | 1.69 | 52.63 | 37.58 | |
231.95 | 40 | 632.73 | 190.89 | 22.66 |
Cluster | ha | Pj | Nj | nj | (m3/ha) | Sj | Pj∙Vj | Sxj | Sxstr | n/m | t | Ea | E% | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XdG tariff | 1 | 42.91 | 0.186 | 607.05 | 9 | 58.09 | 24.40 | 10.82 | 8.07 | 1.50 | 31 | 1.69 | 13.69 | 23.56 |
2 | 96.77 | 0.420 | 1369.01 | 17 | 311.99 | 85.63 | 131.15 | 20.64 | 8.67 | 23 | 1.71 | 35.37 | 11.33 | |
3 | 90.52 | 0.393 | 1280.59 | 14 | 160.68 | 61.65 | 63.18 | 16.39 | 6.44 | 26 | 1.70 | 27.95 | 17.39 | |
230.2 | 40 | 530.76 | 205.16 | 16.62 | ||||||||||
4IFN tariff | 1 | 42.91 | 0.186 | 607.05 | 9 | 66.36 | 22.30 | 12.37 | 7.37 | 1.37 | 31 | 1.69 | 12.51 | 18.85 |
2 | 96.77 | 0.420 | 1369.02 | 17 | 285.16 | 77.80 | 119.87 | 18.75 | 7.88 | 23 | 1.71 | 32.14 | 11.27 | |
3 | 90.52 | 0.393 | 1280.60 | 14 | 151.01 | 56.84 | 59.38 | 15.10 | 5.94 | 26 | 1.71 | 25.77 | 17.06 | |
230.2 | 40 | 502.53 | 191.62 | 15.19 |
Stratum | ha | XdG (m3/ha) | XdG (m3) | 4IFN (m3/ha) | 4IFN (m3) |
---|---|---|---|---|---|
Pr12 | 6.07 | 26.44 | 160.49 | 40.14 | 243.64 |
Pr14 | 6.35 | 94.26 | 598.55 | 100.35 | 637.22 |
Pr16 | 19.94 | 126.07 | 2513.83 | 128.47 | 2561.69 |
Pr22 | 153.94 | 242.99 | 37,405.88 | 223.73 | 344 |
Pr22M | 45.65 | 145.97 | 6663.53 | 140.04 | 6392.82 |
231.95 | 47,342.289 | 44,276.39 | |||
Cluster | ha | XdG (m3/ha) | XdG (m3) | 4IFN (m3/ha) | 4IFN (m3) |
1 | 42.91 | 58.09 | 2492.642 | 66.36 | 2847.508 |
2 | 96.77 | 311.99 | 30,191.27 | 285.16 | 27,594.93 |
3 | 90.52 | 160.68 | 14,544.75 | 151.01 | 13,669.43 |
230.2 | 47,228.67 | 44,111.87 |
Classical Stratification | Cluster Stratification | |||
---|---|---|---|---|
XdG | 4IFN | XdG | 4IFN | |
n/m | 35 | 35 | 37 | 37 |
t | 1.68 | 1.68 | 1.68 | 1.68 |
Sxstr | 26.08 | 22.65 | 16.62 | 15.19 |
Ea | 44.07 | 38.28 | 28.04 | 25.64 |
E% | 21.59 | 20.05 | 13.67 | 13.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Amoedo, A.; Lorenzo, H.; Acuña-Alonso, C.; Álvarez, X. Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain. Forests 2025, 16, 1140. https://doi.org/10.3390/f16071140
López-Amoedo A, Lorenzo H, Acuña-Alonso C, Álvarez X. Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain. Forests. 2025; 16(7):1140. https://doi.org/10.3390/f16071140
Chicago/Turabian StyleLópez-Amoedo, Alberto, Henrique Lorenzo, Carolina Acuña-Alonso, and Xana Álvarez. 2025. "Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain" Forests 16, no. 7: 1140. https://doi.org/10.3390/f16071140
APA StyleLópez-Amoedo, A., Lorenzo, H., Acuña-Alonso, C., & Álvarez, X. (2025). Employing Aerial LiDAR Data for Forest Clustering and Timber Volume Estimation: A Case Study with Pinus radiata in Northwest Spain. Forests, 16(7), 1140. https://doi.org/10.3390/f16071140