Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,854)

Search Parameters:
Keywords = online adapting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 603 KiB  
Article
Adapting Ophthalmology Practices in Puerto Rico During COVID-19: A Cross-Sectional Survey Study
by Surafuale Hailu, Andrea N. Ponce, Juliana Charak, Hiram Jimenez and Luma Al-Attar
Epidemiologia 2025, 6(3), 42; https://doi.org/10.3390/epidemiologia6030042 - 6 Aug 2025
Abstract
Background/Objectives: The COVID-19 pandemic caused pronounced disorder in healthcare delivery globally, including ophthalmology. Our study explores how ophthalmologists in Puerto Rico (PR) altered their practices during the pandemic, confronting obstacles such as resource shortages, evolving public health mandates, and unique socio-economic and [...] Read more.
Background/Objectives: The COVID-19 pandemic caused pronounced disorder in healthcare delivery globally, including ophthalmology. Our study explores how ophthalmologists in Puerto Rico (PR) altered their practices during the pandemic, confronting obstacles such as resource shortages, evolving public health mandates, and unique socio-economic and geographic constraints. The study aims to enhance preparedness for future public health crises. Methods: We conducted descriptive analyses on four online surveys distributed at crucial time points of the pandemic (March 2020, May 2020, August 2020, August 2021) to all practicing ophthalmologists in PR (N ≈ 200), capturing data on closures, patient volume, personal protective equipment (PPE) access, telemedicine use, and financial relief. Results: Survey responses ranged from 41% (n = 81) to 56% (n = 111). By March 2020, 22% (24/111) of respondents closed their offices. By May 2020, 20% (19/93) of respondents maintained a closed office, while 89% (64/72) of open offices reported seeing less than 25% of their usual patient volume. Access to PPE was a challenge, with 59% (65/111) reporting difficulty obtaining N95 masks in March 2020. Telemedicine usage increased initially, peaking in May 2020 and declining in July 2020. By August 2021, all respondents were fully vaccinated and most practices returned to pre-pandemic levels. Overall, 86% (70/81) of respondents found the surveys to be useful for navigating practice changes during the pandemic. Conclusions: PR ophthalmologists showed adaptability during the COVID-19 pandemic to maintain care given limited resources. Guidelines from professional organizations and real time surveys play an important role in future crisis preparedness. Full article
Show Figures

Figure 1

25 pages, 10639 KiB  
Article
Sliding Mode Control of the MY-3 Omnidirectional Mobile Robot Based on RBF Neural Networks
by Huaiyong Li, Changlong Ye, Song Tian and Suyang Yu
Machines 2025, 13(8), 695; https://doi.org/10.3390/machines13080695 - 6 Aug 2025
Abstract
Omnidirectional mobile robots have gained extensive application across diverse fields due to their exceptional maneuverability and adaptability in confined spaces. However, structural and systemic uncertainties significantly compromise motion accuracy. To enhance motion control precision, this paper proposes a sliding mode control (SMC) method [...] Read more.
Omnidirectional mobile robots have gained extensive application across diverse fields due to their exceptional maneuverability and adaptability in confined spaces. However, structural and systemic uncertainties significantly compromise motion accuracy. To enhance motion control precision, this paper proposes a sliding mode control (SMC) method integrated with a radial basis function (RBF) neural network. The approach aggregates model uncertainties, nonlinear dynamics, and unknown disturbances into a composite disturbance term. An RBF neural network is employed to approximate this disturbance, with compensation embedded within the SMC framework. An online adaptive law for neural network optimization is derived using the Lyapunov stability theorem, thereby improving the disturbance rejection capability. Comparative simulations and experiments validate the proposed method against modern control strategies. Results demonstrate superior tracking performance and robustness, significantly enhancing trajectory tracking accuracy for the MY3 wheeled omnidirectional mobile robot. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

26 pages, 10899 KiB  
Article
Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter
by Jingbin Yan, Tao Wang, Feiruo Qin and Haoxuan Hu
Symmetry 2025, 17(8), 1247; https://doi.org/10.3390/sym17081247 - 6 Aug 2025
Abstract
To address the issues of DC-side voltage fluctuation and three-phase current distortion in rectifier systems under pulsed load conditions, this paper proposes a control strategy that integrates Model Predictive Control (MPC) with a Luenberger observer for the Power Pulsation Buffer (PPB). The observer [...] Read more.
To address the issues of DC-side voltage fluctuation and three-phase current distortion in rectifier systems under pulsed load conditions, this paper proposes a control strategy that integrates Model Predictive Control (MPC) with a Luenberger observer for the Power Pulsation Buffer (PPB). The observer parameters are adaptively tuned using a gradient descent method. First, the pulsed current generated by the load is decomposed into dynamic and average components, and a mathematical model of the PPB is established. Considering the negative impact of DC voltage ripple and lumped disturbances such as parasitic parameters on model accuracy, a Luenberger observer is designed to estimate these disturbances. To overcome the dependence of traditional Luenberger observers on empirically tuned gains, an adaptive gradient descent algorithm based on gradient direction consistency is introduced for online gain adjustment. Simulation and experimental results demonstrate that the proposed control strategy—combining the Luenberger observer with gradient descent and MPC—effectively reduces current tracking overshoot and improves tracking accuracy. Furthermore, it enables sustained decoupling of the PPB from the system, significantly mitigating DC-side voltage ripple and three-phase current distortion under pulsed load conditions, thereby validating the effectiveness of the proposed approach. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

18 pages, 404 KiB  
Article
Deterministic Scheduling for Asymmetric Flows in Future Wireless Networks
by Haie Dou, Taojie Zhu, Fei Li, Chen Liu and Lei Wang
Symmetry 2025, 17(8), 1246; https://doi.org/10.3390/sym17081246 - 6 Aug 2025
Abstract
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the [...] Read more.
In the era of Industry 5.0, future wireless networks are increasingly shifting from traditional symmetric architectures toward heterogeneous and asymmetric paradigms, driven by the demand for diversified and dynamic services. This architectural evolution gives rise to complex and asymmetric flows, such as the coexistence of periodic and burst flows with varying latency, jitter, and deadline constraints, posing new challenges for deterministic transmission. Traditional time-sensitive networking (TSN) is well-suited for periodic flows but lacks the flexibility to effectively handle dynamic, asymmetric traffi. To address this limitation, we propose a two-stage asymmetric flow scheduling framework with dynamic deadline control, termed A-TSN. In the first stage, we design a Deep Q-Network-based Dynamic Injection Time Slot algorithm (DQN-DITS) to optimize slot allocation for periodic flows under varying network loads. In the second stage, we introduce the Dynamic Deadline Online (DDO) scheduling algorithm, which enables real-time scheduling for asymmetric flows while satisfying flow deadlines and capacity constraints. Simulation results demonstrate that our approach significantly reduces end-to-end latency, improves scheduling efficiency, and enhances adaptability to high-volume asymmetric traffic, offering a scalable solution for future deterministic wireless networks. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

19 pages, 1220 KiB  
Article
The Role of Square Dancing in Psychological Capital: Evidence from a Large Cross-Sequential Study
by Ruitong Li, Yujia Qu, Zhiyuan Liu and Yan Wang
Healthcare 2025, 13(15), 1913; https://doi.org/10.3390/healthcare13151913 - 5 Aug 2025
Abstract
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and [...] Read more.
(1) Background: Rapid population aging in China intensifies physical and mental health challenges, including negative emotions and social barriers. Physical activity (PA) fosters resilience, adaptability, and successful aging through emotional and social benefits. This study examines the relationship between square-dancing exercise and psychological capital (PsyCap) in middle-aged and elderly individuals using cross-validation, subgroup analysis, and a cross-sequential design. (2) Methods: A cross-sectional study with 5714 participants employed a serial mediation model. Online questionnaires assessed square-dancing exercise, cognitive reappraisal, prosocial behavior tendencies, PsyCap, and interpersonal relationships. Statistical analyses were conducted using SPSS 27.0 and Mplus 8.3, incorporating correlation analysis, structural equation modeling, and subgroup comparisons. (3) Results: (a) Cognitive reappraisal and prosocial behavior mediated the link between square-dancing and PsyCap through three pathways; (b) model stability was confirmed across two random subsamples; (c) cross-group differences emerged in age and interpersonal relationships. Compared with secondary data, this study further validated PsyCap’s stability over six months post-pandemic. (4) Conclusions: The study, based on China’s largest square-dancing sample, establishes a robust serial mediation model. The findings strengthen theoretical foundations for PA-based interventions promoting psychological resilience in aging populations, highlighting structured exercise’s role in mental and social well-being. Full article
Show Figures

Figure 1

18 pages, 1305 KiB  
Article
Curriculum–Vacancy–Course Recommendation Model Based on Knowledge Graphs, Sentence Transformers, and Graph Neural Networks
by Valiya Ramazanova, Madina Sambetbayeva, Sandugash Serikbayeva, Aigerim Yerimbetova, Zhanar Lamasheva, Zhanna Sadirmekova and Gulzhamal Kalman
Technologies 2025, 13(8), 340; https://doi.org/10.3390/technologies13080340 - 5 Aug 2025
Abstract
This article addresses the task of building personalized educational recommendations based on a heterogeneous knowledge graph that integrates data from university curricula, job vacancies, and online courses. To solve the problem of course recommendations by their relevance to a user’s competencies, a graph [...] Read more.
This article addresses the task of building personalized educational recommendations based on a heterogeneous knowledge graph that integrates data from university curricula, job vacancies, and online courses. To solve the problem of course recommendations by their relevance to a user’s competencies, a graph neural network (GNN)-based approach is proposed, specifically utilizing and comparing the Heterogeneous Graph Transformer (HGT) architecture, Graph Sample and Aggregate network (GraphSAGE), and Heterogeneous Graph Attention Network (HAN). Experiments were conducted on a heterogeneous graph comprising various node and relation types. The models were evaluated using regression and ranking metrics. The results demonstrated the superiority of the HGT-based recommendation model as a link regression task, especially in terms of ranking metrics, confirming its suitability for generating accurate and interpretable recommendations in educational systems. The proposed approach can be useful for developing adaptive learning recommendations aligned with users’ career goals. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

23 pages, 23638 KiB  
Article
Enhanced YOLO and Scanning Portal System for Vehicle Component Detection
by Feng Ye, Mingzhe Yuan, Chen Luo, Shuo Li, Duotao Pan, Wenhong Wang, Feidao Cao and Diwen Chen
Sensors 2025, 25(15), 4809; https://doi.org/10.3390/s25154809 - 5 Aug 2025
Abstract
In this paper, a novel online detection system is designed to enhance accuracy and operational efficiency in the outbound logistics of automotive components after production. The system consists of a scanning portal system and an improved YOLOv12-based detection algorithm which captures images of [...] Read more.
In this paper, a novel online detection system is designed to enhance accuracy and operational efficiency in the outbound logistics of automotive components after production. The system consists of a scanning portal system and an improved YOLOv12-based detection algorithm which captures images of automotive parts passing through the scanning portal in real time. By integrating deep learning, the system enables real-time monitoring and identification, thereby preventing misdetections and missed detections of automotive parts, in this way promoting intelligent automotive part recognition and detection. Our system introduces the A2C2f-SA module, which achieves an efficient feature attention mechanism while maintaining a lightweight design. Additionally, Dynamic Space-to-Depth (Dynamic S2D) is employed to improve convolution and replace the stride convolution and pooling layers in the baseline network, helping to mitigate the loss of fine-grained information and enhancing the network’s feature extraction capability. To improve real-time performance, a GFL-MBConv lightweight detection head is proposed. Furthermore, adaptive frequency-aware feature fusion (Adpfreqfusion) is hybridized at the end of the neck network to effectively enhance high-frequency information lost during downsampling, thereby improving the model’s detection accuracy for target objects in complex backgrounds. On-site tests demonstrate that the system achieves a comprehensive accuracy of 97.3% and an average vehicle detection time of 7.59 s, exhibiting not only high precision but also high detection efficiency. These results can make the proposed system highly valuable for applications in the automotive industry. Full article
(This article belongs to the Topic Smart Production in Terms of Industry 4.0 and 5.0)
Show Figures

Figure 1

17 pages, 2168 KiB  
Article
Model Predictive Control Algorithm for Converter Based on a Convolutional Neural Network
by Kun Shen, Mengyao Wu and Rongbin Chen
Appl. Sci. 2025, 15(15), 8658; https://doi.org/10.3390/app15158658 (registering DOI) - 5 Aug 2025
Abstract
In the finite control set model predictive control (FCSMPC) algorithm for a converter based on a neural network, the optimal control variables computed by neural network controllers achieve decoupling between the optimal FCSMPC algorithm design and online computational burden. However, the limited generalization [...] Read more.
In the finite control set model predictive control (FCSMPC) algorithm for a converter based on a neural network, the optimal control variables computed by neural network controllers achieve decoupling between the optimal FCSMPC algorithm design and online computational burden. However, the limited generalization capability of neural network controllers leads to degraded control performance when converter load types vary, so it is essential to design switching rules for neural network controller model parameters tailored to different load types and rapidly identify the converter load type. To address this issue, this article designs a switching strategy for neural network controller model parameters of converters and employs a convolutional neural network (CNN) to identify the converter load type. The CNN-based identification achieves adaptive switching of controller model parameters based on detected load types, ensuring consistent control performance across different converter load types. Simulation results demonstrate that load-type identification based on the CNN achieves alignment between neural network controller model parameters and load types, and the adaptability of converter neural network controllers is enhanced significantly. The effectiveness and feasibility of the proposed method are validated. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

19 pages, 1716 KiB  
Article
Image-Based Adaptive Visual Control of Quadrotor UAV with Dynamics Uncertainties
by Jianlan Guo, Bingsen Huang, Yuqiang Chen, Guangzai Ye and Guanyu Lai
Electronics 2025, 14(15), 3114; https://doi.org/10.3390/electronics14153114 - 5 Aug 2025
Abstract
In this paper, an image-based visual control scheme is proposed for a quadrotor aerial vehicle with unknown mass and moment of inertia. In order to reduce the impacts of underactuation in quadrotor dynamics, a virtual image plane is introduced and appropriate image moment [...] Read more.
In this paper, an image-based visual control scheme is proposed for a quadrotor aerial vehicle with unknown mass and moment of inertia. In order to reduce the impacts of underactuation in quadrotor dynamics, a virtual image plane is introduced and appropriate image moment features are defined to decouple the image features from the movement of the vehicle. Subsequently, based on the quadrotor dynamics, a backstepping method is used to construct the torque controller, ensuring that the control system has superior dynamic performance. Furthermore, an adaptive control scheme is then designed to enable online estimation of dynamic parameters. Finally, stability is formally verified through constructive Lyapunov methods, and performance test results validate the efficacy and robustness of the proposed control scheme. It can be verified through performance tests that the quadrotor successfully positions itself at the desired position under uncertain dynamic parameters, and the attitude angles converge to the expected values. Full article
Show Figures

Figure 1

22 pages, 3217 KiB  
Article
A Deep Reinforcement Learning Approach for Energy Management in Low Earth Orbit Satellite Electrical Power Systems
by Silvio Baccari, Elisa Mostacciuolo, Massimo Tipaldi and Valerio Mariani
Electronics 2025, 14(15), 3110; https://doi.org/10.3390/electronics14153110 - 5 Aug 2025
Abstract
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement [...] Read more.
Effective energy management in Low Earth Orbit satellites is critical, as inefficient energy management can significantly affect mission objectives. The dynamic and harsh space environment further complicates the development of effective energy management strategies. To address these challenges, we propose a Deep Reinforcement Learning approach using Deep-Q Network to develop an adaptive energy management framework for Low Earth Orbit satellites. Compared to traditional techniques, the proposed solution autonomously learns from environmental interaction, offering robustness to uncertainty and online adaptability. It adjusts to changing conditions without manual retraining, making it well-suited for handling modeling uncertainties and non-stationary dynamics typical of space operations. Training is conducted using a realistic satellite electric power system model with accurate component parameters and single-orbit power profiles derived from real space missions. Numerical simulations validate the controller performance across diverse scenarios, including multi-orbit settings, demonstrating superior adaptability and efficiency compared to conventional Maximum Power Point Tracking methods. Full article
Show Figures

Figure 1

39 pages, 8108 KiB  
Article
PSMP: Category Prototype-Guided Streaming Multi-Level Perturbation for Online Open-World Object Detection
by Shibo Gu, Meng Sun, Zhihao Zhang, Yuhao Bai and Ziliang Chen
Symmetry 2025, 17(8), 1237; https://doi.org/10.3390/sym17081237 - 5 Aug 2025
Abstract
Inspired by the human ability to learn continuously and adapt to changing environments, researchers have proposed Online Open-World Object Detection (OLOWOD). This emerging paradigm faces the challenges of detecting known categories, discovering unknown ones, continuously learning new categories, and mitigating catastrophic forgetting. To [...] Read more.
Inspired by the human ability to learn continuously and adapt to changing environments, researchers have proposed Online Open-World Object Detection (OLOWOD). This emerging paradigm faces the challenges of detecting known categories, discovering unknown ones, continuously learning new categories, and mitigating catastrophic forgetting. To address these challenges, we propose Category Prototype-guided Streaming Multi-Level Perturbation, PSMP, a plug-and-play method for OLOWOD. PSMP, comprising semantic-level, enhanced data-level, and enhanced feature-level perturbations jointly guided by category prototypes, operates at different representational levels to collaboratively extract latent knowledge across tasks and improve adaptability. In addition, PSMP constructs the “contrastive tension” based on the relationships among category prototypes. This mechanism inherently leverages the symmetric structure formed by class prototypes in the latent space, where prototypes of semantically similar categories tend to align symmetrically or equidistantly. By guiding perturbations along these symmetric axes, the model can achieve more balanced generalization between known and unknown categories. PSMP requires no additional annotations, is lightweight in design, and can be seamlessly integrated into existing OWOD methods. Extensive experiments show that PSMP achieves an improvement of approximately 1.5% to 3% in mAP for known categories compared to conventional online training methods while significantly increasing the Unknown Recall (UR) by around 4.6%. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Computer Vision and Graphics)
Show Figures

Figure 1

22 pages, 5188 KiB  
Article
LCDAN: Label Confusion Domain Adversarial Network for Information Detection in Public Health Events
by Qiaolin Ye, Guoxuan Sun, Yanwen Chen and Xukan Xu
Electronics 2025, 14(15), 3102; https://doi.org/10.3390/electronics14153102 - 4 Aug 2025
Viewed by 30
Abstract
With the popularization of social media, information related to public health events has seen explosive growth online, making it essential to accurately identify informative tweets with decision-making and management value for public health emergency response and risk monitoring. However, existing methods often suffer [...] Read more.
With the popularization of social media, information related to public health events has seen explosive growth online, making it essential to accurately identify informative tweets with decision-making and management value for public health emergency response and risk monitoring. However, existing methods often suffer performance degradation during cross-event transfer due to differences in data distribution, and research specifically targeting public health events remains limited. To address this, we propose the Label Confusion Domain Adversarial Network (LCDAN), which innovatively integrates label confusion with domain adaptation to enhance the detection of informative tweets across different public health events. First, LCDAN employs an adversarial domain adaptation model to learn cross-domain feature representation. Second, it dynamically evaluates the importance of different source domain samples to the target domain through label confusion to optimize the migration effect. Experiments were conducted on datasets related to COVID-19, Ebola disease, and Middle East Respiratory Syndrome public health events. The results demonstrate that LCDAN significantly outperforms existing methods across all tasks. This research provides an effective tool for information detection during public health emergencies, with substantial theoretical and practical implications. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

15 pages, 682 KiB  
Article
Hypergraph-Driven High-Order Knowledge Tracing with a Dual-Gated Dynamic Mechanism
by Fanglan Ma, Changsheng Zhu and Peng Lei
Appl. Sci. 2025, 15(15), 8617; https://doi.org/10.3390/app15158617 (registering DOI) - 4 Aug 2025
Viewed by 42
Abstract
Knowledge tracing (KT), a core educational data mining task, models students’ evolving knowledge states to predict future learning. In online education systems, the exercises are numerous, but they are typically associated with only a few concepts. However, existing models rarely integrate exercise information [...] Read more.
Knowledge tracing (KT), a core educational data mining task, models students’ evolving knowledge states to predict future learning. In online education systems, the exercises are numerous, but they are typically associated with only a few concepts. However, existing models rarely integrate exercise information with high-order exercise–concept correlations, focusing solely on optimizing models’ final predictive performance. To address these limitations, we propose the Hypergraph-Driven High-Order Knowledge Tracing with a Dual-Gated Dynamic Mechanism (HGKT), a novel framework that (1) captures correlations between exercises and concepts through a two-layer hypergraph convolution; (2) integrates hypergraph-driven exercise embedding and temporal features (answer time and interval time) to characterize learning behavioral dynamics; and (3) designs a learning layer and a forgetting layer, with the dual-gating mechanism dynamically balancing their impacts on the knowledge state. Experiments on three public datasets demonstrate that the proposed HGKT model achieves superior predictive performance compared to all baselines. On the longest interaction sequence dataset, ASSISChall, HGKT improves prediction AUC by least 1.8%. On the biggest interaction records dataset, EdNet-KT1, it maintains a state-of-the-art AUC of 0.78372. Visualization analyses confirm its interpretability in tracing knowledge state evolution. These results validate HGKT’s effectiveness in modeling high-order exercise–concept correlations while ensuring practical adaptability in real-world online education platforms. Full article
Show Figures

Figure 1

Back to TopTop