Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter
Abstract
1. Introduction
2. Analysis of the Impact of Pulsed Loads
3. Model Predictive Control
4. Design of the Luenberger Observer
4.1. Observation of Lumped Disturbances
4.2. Adaptive Tuning of the Observer
4.3. Stability Analysis
5. Experimental Validation
5.1. Preliminary Validation
5.2. Experimental Validation
6. Discussion
7. Conclusions
- (1)
- Low-frequency, high-peak pulsed loads result in continuous current impacts on the DC side, which in turn cause significant disturbances to the AC current waveform and DC voltage. Experimental results show that the Total Harmonic Distortion (THD) of the three-phase current increases sharply when the pulsed load is active, thereby degrading the rectification performance.
- (2)
- Compared with PI control, conventional MPC, and MPC combined with a fixed-gain Luenberger observer, the proposed strategy based on a gradient-adaptive Luenberger observer and MPC not only anticipates current changes in advance to reduce overshoot, but also adaptively adjusts the observer’s convergence speed in real time based on the estimation error, thus improving current prediction accuracy.
- (3)
- Simulation and experimental results demonstrate that the proposed control strategy achieves low current tracking error and uniform current distribution, thereby enhancing current tracking performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fair, H.D. The science and technology of electric launch. IEEE Trans. Magn. 2001, 37, 25–32. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Liu, P.; Gui, Y.; Yuan, W.; Xia, S. Experimental Results From Pseudoliquid Armatures Launched by Two-Turn Railgun. IEEE Trans. Plasma Sci. 2011, 39, 80–82. [Google Scholar] [CrossRef]
- Einat, M.; Orbach, Y. A multi-stage 130m/s reluctance linear electromagnetic launcher. Sci. Rep. 2023, 13, 218. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Lei, B.; Li, Z.; Zhao, K. Design and Experiment of Reluctance Electromagnetic Launcher With New-Style Armature. IEEE Trans. Plasma Sci. 2013, 41, 1066–1069. [Google Scholar] [CrossRef]
- Zhang, Y.; Ji, F.; Gao, X.; Wu, C.; Li, H.; Zhang, Q. Optimal Operation Schedule Strategy of High-power Pulsed Loads in Shipboard Power System. J. Electr. Eng. Technol. 2024, 19, 2089–2101. [Google Scholar] [CrossRef]
- Zheng, J.P.; Jow, T.R.; Ding, M.S. Hybrid Power Sources for Pulsed Current Applications. IEEE Trans. Aerosp. Electron. Syst. 2001, 37, 288–292. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, S.; Lu, S.; Zhang, T.; Liu, R. A Study on Power Fluctuation Mechanism of Phased Array Radar Power System. Mod. Radar 2021, 43, 92–99. [Google Scholar]
- Yuan, H.; Li, S.; Qi, W.; Wang, J.; Zhang, M. On Nonlinear Control of Single-Phase Converters With Active Power Decoupling Function. IEEE Trans. Power Electron. 2019, 34, 5903–5915. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Wang, J.; Zhao, M.; Liu, T. Research on Single-stage Isolated Micro-inverter Based on Power Decoupling. Electr. Drive 2021, 51, 28–34. [Google Scholar]
- Chen, J.; Wu, H.; Zhu, J.; Li, L.; Xing, Y. A Three-Phase AC/DC Power System with Paralleled Active and Passive Rectifiers for Low-Frequency Pulsed Load Applications. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 1595–1599. [Google Scholar]
- Ren, K.; Liu, B.; Lu, J.; Zhao, X.; Xu, Y. Enhanced Adaptive Linear Active Disturbance Rejection Control for Shunt APF. J. Xi’an Univ. Technol. 2025, 41, 141–150. [Google Scholar]
- Cheng, Q.; Hu, X.; Cheng, Y.; Wang, L. Current Control Strategy of Active Power Filter Based on the Indefinite Frequency Hysteresis Space Voltage Vector. Electr. Mach. Control 2014, 18, 77–85. [Google Scholar]
- Yang, F.; Li, L.; Zhu, J.; Hu, K.; Tang, Z. A Pulsed Current Compensator and Control Strategy for High Peak-to-Average-Ratio Low Frequency Pulse Load. Mod. Radar 2022, 37, 4193–4201. [Google Scholar]
- Somayajula, D.; Crow, M.L. An Integrated Active Power Filter-Ultracapacitor Design to Provide Intermittency Smoothing and Reactive Power Support to the Distribution Grid. IEEE Trans. Sustain. Energy 2014, 5, 1116–1125. [Google Scholar] [CrossRef]
- Zhu, Z.; Yang, P.; Cao, J.; Li, Q.; Huang, Y. Design and Implementation of Pulsed Load Power Supply With Fast Dynamic Response. Adv. Technol. Electr. Eng. Energy 2019, 38, 13–20. [Google Scholar]
- Meng, K.; Xie, P.; Zhang, L.; Wu, F. Photovoltaic Hybrid Energy Storage System for Pulse Load. Mod. Radar 2019, 41, 84–87. [Google Scholar]
- Wang, Q.; Sun, Y.; Huang, Y. Design of Battery-Ultracapacitor Hybrid Energy Source Applied to Pulse Current Load. J. Zhejiang Univ. (Eng. Sci.) 2015, 49, 1537–1543. [Google Scholar]
- Ren, X.; Bai, L.; Chen, Y.; Liu, Z.; Wang, M. Single-Phase AC-DC Converter With SiC Power Pulsation Buffer for Pulse Load Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 517–528. [Google Scholar] [CrossRef]
- Huang, X.; Ruan, X.; Du, F.; Lin, J.; Wei, M. A Pulsed Power Supply Adopting Active Capacitor Converter for Low-Voltage and Low-Frequency Pulsed Loads. IEEE Trans. Power Electron. 2018, 33, 9219–9230. [Google Scholar] [CrossRef]
- Ao, W.; Chen, J. Model Predictive Control of Four-Switch Buck-Boost Converter for Pulse Power Loads. In Proceedings of the 2021 IEEE International Conference on Predictive Control of Electrical Drives and Power Electronics (PRECEDE), Jinan, China, 20–22 November 2021; pp. 904–908. [Google Scholar]
- Xu, L.; Ma, R.; Xie, R.; Liu, Y.; Chen, Q. Offset-Free Model Predictive Control of Fuel Cell DC–DC Boost Converter With Low-Complexity and High-Robustness. IEEE Trans. Ind. Electron. 2023, 70, 5784–5796. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Z.; Wang, T.; Liu, C. An Interleaved Parallel Bidirectional DC/DC Converter for BESS. Acta Energ. Sol. Sin. 2022, 43, 277–283. [Google Scholar]
- Zhang, B.; Dong, S.; Zhu, C.; Wang, X. Composite Control to Suppress Output Fluctuation for Receiver Side of Dynamic Wireless Power Transfer System. IEEE Trans. Power Electron. 2023, 38, 6720–6733. [Google Scholar] [CrossRef]
- Duan, M.; Duan, J.; Sun, L. Sensorless Current-Sharing Scheme for Multiphase DC-DC Boost Converters. IEEE Trans. Power Electron. 2023, 38, 1398–1405. [Google Scholar] [CrossRef]
- Yue, G.; Zhang, Z.; Du, G.; Hu, X. Control Strategy of Bidirectional DC-DC Converter for Energy Storage Battery. Trans. China Electrotech. Soc. 2025, 1–12. [Google Scholar]
- Yu, X.; Yang, Y.; Xu, L.; Zhao, K. Luenberger Disturbance Observer-Based Deadbeat Predictive Control for Interleaved Boost Converter. Symmetry 2022, 14, 924. [Google Scholar] [CrossRef]
- Chae, S.; Song, Y.; Park, S.; Jeong, H. Digital Current Sharing Method for Parallel Interleaved DC–DC Converters Using Input Ripple Voltage. IEEE Trans. Ind. Inform. 2012, 8, 536–544. [Google Scholar] [CrossRef]
- Min, B.-S.; Park, N.-J.; Hyun, D.-S. A Novel Current Sharing Technique for Interleaved Boost Converter. In Proceedings of the IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 2658–2663. [Google Scholar]
- Liu, G.; Zhou, W.; Wu, Q.; Fu, Y.; Wang, M. A Sensorless Current Balance Control Method for Interleaved Boost Converter. In Proceedings of the 2020 IEEE Applied Power Electronics Conference and Exposition (APEC), New Orleans, LA, USA, 15–19 March 2020; pp. 3019–3023. [Google Scholar]
- Shan, Y.; Hu, J.; Chan, K.W.; Fu, Q.; Guerrero, J.M. Model Predictive Control of Bidirectional DC–DC Converters and AC/DC Interlinking Converters—A New Control Method for PV-Wind-Battery Microgrids. IEEE Trans. Sustain. Energy 2019, 10, 1823–1833. [Google Scholar] [CrossRef]
- Li, N.; Cao, Y.; Liu, X.; Zhang, Y.; Wang, R.; Jiang, L.; Zhang, X. An Improved Modulation Strategy for Single-Phase Three-Level Neutral-Point-Clamped Converter in Critical Conduction Mode. J. Mod. Power Syst. Clean Energy 2024, 12, 981–990. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Zhong, C.; Wang, J.; Bai, X.; Liu, J. Adaptive Nonlinear Active Disturbance Rejection Current Controller for Distributed Generation System Considering Uncertain Ripples. IEEE Trans. Power Electron. 2025, 40, 4984–4996. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, R.; Wang, Y.; Fang, W.; Jiang, L.; Liu, Y.; Niu, G. Set/Reset Bilaterally Controllable Resistance Switching Ga-doped Ge2Sb2Te5 Long-Term Electronic Synapses for Neuromorphic Computing. Adv. Funct. Mater. 2023, 33, 2213296. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, Q.; Shangguan, B.; Ma, J.; Jiao, N.; Liu, T. Accurate and Continuous Reactive Power Control of Three-Terminal Hybrid DC Transmission System. IEEE Trans. Power Deliv. 2025, 40, 30–40. [Google Scholar] [CrossRef]
Parameter | Physical Meaning |
---|---|
reference output voltage | |
reference current of PPB | |
pulse load frequency | |
current of PPB | |
pulse load power | |
duty cycle of the pulse load | |
maximum error on the DC side | |
output capacitor | |
energy storage inductor | |
energy storage capacitor |
Parameter | Value | |
---|---|---|
operating condition 1 | pulse load frequency | 150 |
duty cycle of the pulse load | 50% | |
pulsed Load Power | 25 | |
operating condition 1 | pulse load frequency | 50 |
duty cycle of the pulse load | 20% | |
pulsed Load Power | 12.5 |
Parameter | Value |
---|---|
reference output voltage | 500 |
maximum error on the DC side | 1% |
output capacitor | 0.5 |
energy storage inductor | 2 |
energy storage capacitor | 0.5 |
Control Strategy | Tracking Current Ripple | Ripple Magnitude | |
---|---|---|---|
operating condition 1 | PI | 23.5~27.7 A | 4.2 A |
conventional MPC | 23.0~26.1 A | 3.1 A | |
MPC with fixed-gain Luenberger observer | 22.8~27.0 A | 4.2 A | |
proposed control strategy | 23.6~26.4 A | 2.8 A | |
operating condition 2 | PI | 3.3~7.1 A | 3.8 A |
conventional MPC | 2.8~6.9 A | 4.1 A | |
MPC with fixed-gain Luenberger observer | 3.3~7.0 A | 3.7 A | |
proposed control strategy | 3.5~6.5 A | 3.0 A |
Control Strategy | Ripple Magnitude | |
---|---|---|
operating condition 1 | PI | 5.5 A |
conventional MPC | 4.6 A | |
MPC with fixed-gain Luenberger observer | 4.2 A | |
proposed control strategy | 3.1 A | |
operating condition 1 | PI | 4.7 A |
conventional MPC | 4.5 A | |
MPC with fixed-gain Luenberger observer | 4.2 A | |
proposed control strategy | 3.4 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Wang, T.; Qin, F.; Hu, H. Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter. Symmetry 2025, 17, 1247. https://doi.org/10.3390/sym17081247
Yan J, Wang T, Qin F, Hu H. Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter. Symmetry. 2025; 17(8):1247. https://doi.org/10.3390/sym17081247
Chicago/Turabian StyleYan, Jingbin, Tao Wang, Feiruo Qin, and Haoxuan Hu. 2025. "Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter" Symmetry 17, no. 8: 1247. https://doi.org/10.3390/sym17081247
APA StyleYan, J., Wang, T., Qin, F., & Hu, H. (2025). Investigation of Pulse Power Smoothing Control Based on a Three-Phase Interleaved Parallel Bidirectional Buck-Boost DC–DC Converter. Symmetry, 17(8), 1247. https://doi.org/10.3390/sym17081247