Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (616)

Search Parameters:
Keywords = omega-3 oils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

16 pages, 1005 KiB  
Article
Camelina sativa: An Emerging Feedstuff for Laying Hens to Improve the Nutritional Quality of Eggs and Meat
by Yazavinder Singh, Antonella Dalle Zotte, Bianca Palumbo and Marco Cullere
Animals 2025, 15(15), 2173; https://doi.org/10.3390/ani15152173 - 23 Jul 2025
Viewed by 179
Abstract
Camelina sativa (CS) is an emerging sustainable oilseed crop with interesting feed application potentialities. The research assessed the potentiality of Camelina sativa (CS) in the diet for free-range laying hens, aiming at reaching a nutritional claim. To this purpose, two feeding groups of [...] Read more.
Camelina sativa (CS) is an emerging sustainable oilseed crop with interesting feed application potentialities. The research assessed the potentiality of Camelina sativa (CS) in the diet for free-range laying hens, aiming at reaching a nutritional claim. To this purpose, two feeding groups of hens (n = 100 Livorno hens, n = 25 hens/pen) were farmed outdoor and received either a Control diet, which was a commercial diet for laying hens, or a CS diet. The latter was formulated to include the 5% CS cake and 1% CS oil, replacing conventional feedstuffs. Diets were isoprotein and isoenergy and were available ad libitum throughout the laying period (February–September). At day 1, n = 12 eggs/diet were sampled to assess the initial proximate composition and FA profile. Every 7 days the sampling was repeated to analyze the eggs’ FA profile, up to day 35. At the end of the laying season, n = 6 hens/dietary treatment were slaughtered and subjected to meat quality evaluations. Results highlighted that a 28-day feeding was the period required to obtain 227 mg of C18:3 n-3 and 81 mg of C20:5 n-3 + C22:6 n-3/100 g egg, whereas a further 7 days of feeding trial were ineffective in further enhancing the omega-3 FA content of eggs. CS eggs were comparable to Control ones for overall physical traits, proximate composition, and shelf-life. In addition, at the end of the laying period, the meat of CS hens was also found to be healthier than that of Control ones, thanks to a higher omega-3 FA proportion (p < 0.01), which was, however, not sufficient to reach any nutritional claim. Instead, the proximate composition of CS meat was overall comparable to Control hens. In conclusion, the present research demonstrated that feeding Camelina sativa meal and oil to laying hens is feasible and allows to reach the nutritional claim in eggs “rich in omega-3 FA” after a feeding period of 28 days, without any negative effects on other eggs’ quality trials. Camelina sativa can thus be defined as a promising sustainable feedstuff for the poultry sector for diversification purposes and to enhance the nutritional quality of eggs. Full article
(This article belongs to the Section Animal Products)
Show Figures

Figure 1

19 pages, 4208 KiB  
Article
Transcriptome Analysis Reveals Metabolic Pathways and Key Genes Involved in Oleic Acid Formation of Sunflower (Helianthus annuus L.)
by Yingnan Mu, Ying Sun, Yang Wu, Liuxi Yi, Haifeng Yu and Shaoying Zhang
Int. J. Mol. Sci. 2025, 26(14), 6757; https://doi.org/10.3390/ijms26146757 - 15 Jul 2025
Viewed by 289
Abstract
Sunflower is one of the four most important oilseed crops in the world, and its edible oil is of high nutritional quality. However, the molecular regulatory mechanism of oil accumulation in sunflowers is still unclear. In this study, we selected two inbred lines [...] Read more.
Sunflower is one of the four most important oilseed crops in the world, and its edible oil is of high nutritional quality. However, the molecular regulatory mechanism of oil accumulation in sunflowers is still unclear. In this study, we selected two inbred lines with significant differences in oleic acid content and similar agronomic traits: the high oleic acid content (82.5%) inbred line 227 and the low oleic acid content (30.8%) inbred line 228. Sunflower seeds were selected for transcriptome experiments at 10, 20, and 30 days after full bloom (DAFB). There were 21, 225, and 632 differentially expressed genes (DEGs) identified at the three times, respectively. The Gene Ontology (GO) analysis showed that DEGs from two sunflower cultivars at three stages were significantly enriched in the activities of omega-6 fatty acid desaturase and glucosyltransferase. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that at 10, 20, and 30 DAFB, DEGs were significantly enriched in the unsaturated fatty acid synthesis pathway, glutathione metabolism pathway, and pyruvate metabolism pathway. Through mapping analysis of GO in the KEGG pathway, it was found that the omega-6 fatty acid desaturase gene FAD6/FAD2, diacylglyceroyltransferase gene DGAT, glycerol-3-phosphate acyltransferase gene GPAT, and long-chain acyl-CoA synthase gene LACS may play important roles in regulating sunflower oleic acid content. Our research provides candidate genes and a research basis for breeding high oleic sunflowers. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

26 pages, 1301 KiB  
Article
Synergistic Effects of Probiotic and Omega-3 Supplementation with Ultra-Short Race Pace Training on Sprint Swimming Performance
by Ideh Maymandinejad, Mohammad Hemmatinafar, Ralf Jäger, Babak Imanian, Maryam Koushkie Jahromi and Katsuhiko Suzuki
Nutrients 2025, 17(14), 2296; https://doi.org/10.3390/nu17142296 - 11 Jul 2025
Viewed by 927
Abstract
Background: Optimal nutrition and training regimens are essential for athletes to maximize performance and recovery. Probiotic supplementation, through the modulation of the gut microbiota, and omega-3 fatty acids, known for their anti-inflammatory properties, may enhance physiological adaptations when combined with targeted training. [...] Read more.
Background: Optimal nutrition and training regimens are essential for athletes to maximize performance and recovery. Probiotic supplementation, through the modulation of the gut microbiota, and omega-3 fatty acids, known for their anti-inflammatory properties, may enhance physiological adaptations when combined with targeted training. This study evaluated the effects of probiotics and omega-3 supplementation, alongside ultra-short race pace training (USRPT), on performance metrics in competitive sprint swimmers. Methods: In this double-blind, placebo-controlled study, 60 male sprint swimmers (age: 19.2 ± 3.6 years; height: 182.2 ± 5.2 cm; weight: 81.6 ± 4.4 kg) with a minimum of five years of training experience, were randomly assigned to six groups (n = 10 per group): (1) Control (CON), (2) USRPT only, (3) Placebo + USRPT (PLA + USRPT), (4) Probiotics + USRPT (PRO + USRPT), (5) Omega-3 + USRPT (OMEGA + USRPT), and (6) Probiotics + Omega-3 + USRPT (PRO + OMEGA + USRPT). Over the eight-week intervention, the participants in PRO + USRPT consumed one multi-strain probiotic capsule daily (4.5 × 1011 CFU) and a placebo capsule. Those in OMEGA + USRPT ingested 1000 mg of fish oil after lunch (500 mg EPA and 180 mg DHA per capsule) paired with a placebo capsule. The combined supplementation group (PRO + OMEGA + USRPT) received both probiotic and omega-3 capsules. The PLA + USRPT group consumed two starch capsules daily. The USRPT protocol was implemented across all the training groups, where the swimmers performed 17 sets of 25 m and 12.5 m sprints based on weekly recorded race times. Performance assessments included pre- and post-test measurements of sprint times (50 m and 100 m freestyle), vertical jump tests (both in water and on dry land), and other strength and endurance metrics (reaction time, agility T-test, sprint index, fatigue index, and velocity). Results: The combined intervention of probiotics and omega-3 with USRPT produced the greatest improvements in performance. The PRO + OMEGA + USRPT group reduced 50 m freestyle time by 1.92% (p = 0.002, pEta2 = 0.286) and 100 m freestyle time by 2.48% (p = 0.041, pEta2 = 0.229), demonstrating significant Time × Group interactions consistent with a synergistic effect. Additionally, the sprint index improved (pEta2 = 0.139, p = 0.013) and reaction time decreased (pEta2 = 0.241, p = 0.009) in the combined group, indicating enhanced anaerobic capacity and neuromuscular responsiveness compared to single interventions. Conclusions: This study suggests that combining probiotics and omega-3 supplementation with USRPT leads to synergistic improvements in sprint swimming performance, enhancing anaerobic power and recovery beyond what is achieved with individual interventions. This integrated approach may provide a practical strategy for competitive swimmers seeking to optimize their performance. Future studies should incorporate mechanistic markers, longer intervention durations, and diverse athlete populations to clarify further and extend these findings. Full article
(This article belongs to the Special Issue Nutritional Supplements to Optimize Exercise Performance)
Show Figures

Figure 1

16 pages, 7688 KiB  
Article
Targeted Isolation of ω-3 Polyunsaturated Fatty Acids from the Marine Dinoflagellate Prorocentrum lima Using DeepSAT and LC-MS/MS and Their High Activity in Promoting Microglial Functions
by Chang-Rong Lai, Meng-Xing Jiang, Dan-Mei Tian, Wei Lu, Bin Wu, Jin-Shan Tang, Yi Zou, Song-Hui Lv and Xin-Sheng Yao
Mar. Drugs 2025, 23(7), 286; https://doi.org/10.3390/md23070286 - 10 Jul 2025
Viewed by 555
Abstract
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues [...] Read more.
In this study, we integrated HSQC-based DeepSAT with UPLC-MS/MS to guide the isolation of omega-3 polyunsaturated fatty acid derivatives (PUFAs) from marine resources. Through this approach, four new (14) and nine known (513) PUFA analogues were obtained from large-scale cultures of the marine dinoflagellate Prorocentrum lima, with lipidomic profiling identifying FA18:5 (5), FA18:4 (7), FA22:6 (8), and FA22:6 methyl ester (11) as major constituents of the algal oil extract. Structural elucidation was achieved through integrated spectroscopic analyses of IR, 1D and 2D NMR, and HR-ESI-MS data. Given the pivotal role of microglia in Alzheimer’s disease (AD) pathogenesis, we further evaluated the neuroprotective potential of these PUFAs by assessing their regulatory effects on critical microglial functions in human microglia clone 3 (HMC3) cells, including chemotactic migration and amyloid-β42 (Aβ42) phagocytic clearance. Pharmacological evaluation demonstrated that FA20:5 butanediol ester (1), FA18:5 (5), FA18:4 (7), FA22:6 (8), and (Z)-10-nonadecenoic acid (13) significantly enhanced HMC3 migration in a wound-healing assay. Notably, FA18:4 (7) also significantly promoted Aβ42 phagocytosis by HMC3 microglia while maintaining cellular viability and avoiding pro-inflammatory activation at 20 μM. Collectively, our study suggests that FA18:4 (7) modulates microglial function in vitro, indicating its potential to exert neuroprotective effects. Full article
Show Figures

Graphical abstract

24 pages, 1294 KiB  
Review
Effects of Docosahexaenoic Acid on Prostate Cancer
by Guilherme Henrique Tamarindo, Gustavo Matheus Amaro, Alana Della Torre da Silva and Rejane Maira Góes
J. Xenobiot. 2025, 15(4), 111; https://doi.org/10.3390/jox15040111 - 4 Jul 2025
Viewed by 874
Abstract
The polyunsaturated fatty acids of the omega-3 class have been widely investigated due to their antitumor properties, including in prostate cancer (PCa). Among them is docosahexaenoic acid (DHA, C22:6 ω-3), whose biological activity is higher than other omega-3s, exhibiting a stronger impact on [...] Read more.
The polyunsaturated fatty acids of the omega-3 class have been widely investigated due to their antitumor properties, including in prostate cancer (PCa). Among them is docosahexaenoic acid (DHA, C22:6 ω-3), whose biological activity is higher than other omega-3s, exhibiting a stronger impact on PCa. The specific mechanisms triggered by DHA are blurred by studies that used a blend of omega-3s, delaying the understanding of its biological role, and hence alternative therapeutic approaches. DHA is differentially processed between normal and malignant epithelial PCa cells, which suggests its function as a tumor suppressor. At cell-specific level, it downregulates key pathways in PCa, such as androgen signaling and lipid metabolism, but also changes membrane composition by disrupting phospholipid balance and increasing unsaturation status, arrests the cell cycle, and induces apoptosis and reactive oxygen species (ROS) overproduction. At the tissue level, DHA seems to influence stromal components, such as the inhibition of cancer-associated fibroblast differentiation and resolution of inflammation, which generates a microenvironment favorable to PCa initiation and progression. Considering that such effects are misunderstood and assigned to omega-3s in general, this review aims to discuss the specific effects of DHA on PCa based on in vitro and in vivo evidence. Full article
(This article belongs to the Special Issue Impact of Nutrition and the Environment on Human Metabolism)
Show Figures

Figure 1

17 pages, 7582 KiB  
Article
Effects of Feeding Calcium Salts from a Mixture of Linseed and Fish Oil on Productive Response, Metabolic Status, and Reproductive Parameters in Early-Lactation Dairy Cows
by Pablo M. Roskopf, Alejandra Cuatrin, Matías Stangaferro, Gino Storani, Emmanuel Angeli, Gustavo J. Hein and Eloy E. Salado
Dairy 2025, 6(4), 34; https://doi.org/10.3390/dairy6040034 - 1 Jul 2025
Viewed by 527
Abstract
This study evaluated the effects of supplementing early-lactation Holstein cows with rumen-protected omega-3 fatty acids (calcium salts) on productive and reproductive performance. Thirty-six multiparous cows were randomly assigned to one of two treatments from 21 ± 2 days before calving to 105 ± [...] Read more.
This study evaluated the effects of supplementing early-lactation Holstein cows with rumen-protected omega-3 fatty acids (calcium salts) on productive and reproductive performance. Thirty-six multiparous cows were randomly assigned to one of two treatments from 21 ± 2 days before calving to 105 ± 5 days in milk (DIM): a Control group (C) or an Omega-3-supplemented group (O-3), receiving a blend of linseed and fish oil (60:40). Both groups were fed isoenergetic diets, with ground corn as the control supplement. Total dry matter and net energy intake did not differ between treatments. A treatment-by-time interaction was observed for milk yield, with cows in the O-3 group producing more milk than controls at specific time points. Additionally, O-3 cows had higher overall protein yield and improved feed efficiency. No differences were found in body weight, BCS, glucose, insulin, IGF-1, or urea concentrations, but a tendency toward higher plasma NEFA and BHBA concentrations and lower energy balance was observed in the O-3 group. Supplementation increased plasma cholesterol and progesterone concentrations and was associated with a higher proportion of cows being pregnant at 130 DIM. These findings suggest that omega-3 supplementation may improve specific aspects of lactational performance and reproductive efficiency without compromising metabolic status. Full article
(This article belongs to the Section Dairy Animal Nutrition and Welfare)
Show Figures

Figure 1

15 pages, 1205 KiB  
Article
Omega-3 Polyunsaturated Fatty Acids (PUFAs) and Diabetic Peripheral Neuropathy: A Pre-Clinical Study Examining the Effect of Omega-3 PUFAs from Fish Oil, Krill Oil, Algae or Pharmaceutical-Derived Ethyl Esters Using Type 2 Diabetic Rats
by Eric Davidson, Oleksandr Obrosov, Lawrence Coppey and Mark Yorek
Biomedicines 2025, 13(7), 1607; https://doi.org/10.3390/biomedicines13071607 - 30 Jun 2025
Viewed by 505
Abstract
Background and Objectives: We have previously reported that omega-3 polyunsaturated fatty acids (PUFAs) derived from fish oil (FO) is an effective treatment for type 1 and type 2 diabetes neural and vascular complications. As omega-3 PUFAs become more widely used as a [...] Read more.
Background and Objectives: We have previously reported that omega-3 polyunsaturated fatty acids (PUFAs) derived from fish oil (FO) is an effective treatment for type 1 and type 2 diabetes neural and vascular complications. As omega-3 PUFAs become more widely used as a nutritional and disease modifying supplement an important question to be addressed is what is the preferred source of omega-3 PUFAs? Methods: Using a type 2 diabetic rat model and early and late intervention protocols we examined the effect of dietary treatment with omega-3 PUFAs derived from menhaden (fish) oil (MO), krill oil (KO), algal oils consisting primarily of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or combination of EPA + DHA, or pharmaceutical-derived ethyl esters of EPA, DHA or combination of EPA + DHA. Nerve related endpoints included motor and sensory nerve conduction velocity, heat sensitivity of the hind paw, intraepidermal nerve density, cornea nerve fiber length, and cornea sensitivity. Vascular reactivity to acetylcholine and calcitonin gene-related peptide by epineurial arterioles that provide blood to the sciatic nerve was also examined. Results: The dose of each omega-3 PUFA supplement increased the content of EPA, docosapentaenoic acid (DPA), and/or DHA in red blood cell membranes, serum and liver. Diabetes caused a significant decrease of 30–50% of neural function and fiber occupancy of the skin and cornea and vascular reactivity. Treatment with MO, KO or the combination of EPA + DHA provided through algal oil or ethyl esters provided significant improvement of each neural endpoint and vascular function. Algal oil or ethyl ester of EPA alone was the least effective with algal oil or ethyl ester of DHA alone providing benefit that approached combination therapies for some endpoints. Conclusions: We confirm that omega-3 PUFAs are an effective treatment for DPN and sources other than fish oil are similarly effective. Full article
(This article belongs to the Special Issue Novel Biomarker and Treatments for Diabetic Neuropathy)
Show Figures

Figure 1

35 pages, 2913 KiB  
Article
Effect of Supplementation of Antioxidant Lipids Synthetized by Enzymatic Acidolysis with EPA/DHA Concentrate and Maqui (Aristotelia chilensis (Mol.) Stuntz) Seed Oil for Mitigating High-Fat Diet-Induced Obesity and Metabolic Disorders in Mice
by Benjamín Claria, Alejandra Espinosa, Alicia Rodríguez, María Elsa Pando, Gretel Dovale-Rosabal, Nalda Romero, Katherynne Mayorga, Evelyn Tapia, Jenifer Saez, Melissa Tsuchida, Karla Vásquez, Rodrigo Valenzuela, Álvaro Pérez, Patricio Díaz and Santiago P. Aubourg
Antioxidants 2025, 14(7), 790; https://doi.org/10.3390/antiox14070790 - 26 Jun 2025
Viewed by 602
Abstract
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were [...] Read more.
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were derived from a concentrate of rainbow trout (Oncorhynchus mykiss) belly oil, rich in long-chain polyunsaturated omega-3 fatty acids (LCPUFAn-3), and cold-pressed maqui seed oil (MO, Aristotelia chilensis (Mol.) Stuntz). Their effects were then evaluated in a murine high-fat diet (HFD) model. The fatty acid profile, tocopherol and tocotrienol content, and thin-layer chromatography of ALω-3 were analyzed. After 8 weeks on an HFD, male C57BL/6 mice were divided into four groups and switched to a control diet (CD) with the following supplements for 3 weeks: Glycerol (G), commercial marine Omega-3 (CMω-3), a mixture of LCPUFAn-3 concentrate + MO (Mω-3), or ALω-3. The total body and organ weights, serum markers, and liver and visceral fat pro-inflammatory marker expression levels were assessed. ALω-3 contained 13.4% oleic, 33.9% linoleic, 6.3% α-linolenic, 10.7% eicosapentaenoic, and 16.2% docosahexaenoic fatty acids. The β, γ, δ-tocopherol, and β, γ-tocotrienol values were 22.9 ± 1.4, 24.9 ± 0.2, 6.8 ± 0.7, 22.9 ± 1.7, and 22.4 ± 4.7 mg·kg−1, respectively, with α-tocopherol detected in traces. ALω-3 supplementation increased serum Trolox equivalent capacity, significantly reduced serum GPT levels (p < 0.01), and enhanced postprandial glucose tolerance (p < 0.001), although it did not alter insulin resistance (HOMA-IR). These findings indicate ALω-3′s potential for mitigating the glucose intolerance, liver damage, and oxidative stress associated with obesity and MetS, highlighting the need for additional research to explore its potential health benefits. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Figure 1

13 pages, 1083 KiB  
Article
The Potential Benefits of a Novel Food Supplement Based on Cannabis Sativa, Boswellia, and Fish Oil for Pain and Inflammation in Physical Activity: Unraveling the Role of Orexin-A Modulation
by Antonietta Messina, Antonietta Monda, Valentina Vassallo, Girolamo Di Maio, Rita Polito, Marco La Marra, Salvatore Allocca, Maria Casillo, Fiorenzo Moscatelli, Cristina Scavone, Francesco Taturi, Vincenzo Monda, Giovanni Messina, Chiara Schiraldi and Marcellino Monda
Sports 2025, 13(7), 199; https://doi.org/10.3390/sports13070199 - 22 Jun 2025
Viewed by 414
Abstract
Background: Nutraceuticals have emerged as promising alternatives to conventional pharmacological treatments for managing joint pain and low-grade inflammation in physically active individuals. However, few clinical studies have evaluated the combined metabolic, inflammatory, and neuroendocrine effects of multi-ingredient supplements. This study aimed to evaluate [...] Read more.
Background: Nutraceuticals have emerged as promising alternatives to conventional pharmacological treatments for managing joint pain and low-grade inflammation in physically active individuals. However, few clinical studies have evaluated the combined metabolic, inflammatory, and neuroendocrine effects of multi-ingredient supplements. This study aimed to evaluate the effects of Flector Softgel FS Integratore, a multi-component food supplement, on joint pain, inflammatory markers, metabolic health, and orexin-A levels in physically active adults. Methods: In this randomized, controlled, low-intervention study, 25 adult participants (aged 30–60 years and amateur athletes engaging in at least 3 sessions/week of moderate physical activity) were assigned to either a treatment group (n = 15 received Flector Softgel FS for 14 days) or a placebo group (n = 10). The supplement contained 500 mg of Cannabis sativa seed oil (THC-free), 250 mg of Boswellia serrata extract, 250 mg of fish oil, 160 mg of omega-3 fatty acids, and 0.6 mg of undenatured type II collagen (UC-II). Pain was assessed using the Visual Analog Scale (VAS). Metabolic parameters, inflammatory cytokines (IL-6, IL-8, TNF-α, IFN-γ, and IL-10), and serum orexin-A levels were measured before and after the intervention. Results: Compared with the placebo, the treatment group showed a significant reduction in VAS scores (p < 0.001), as well as improvements in BMI, insulin, and lipid profiles, and a decrease in pro-inflammatory cytokines (IL-6, IL-8, TNF-α, and IFN-γ). A reduction in orexin-A levels was also observed in the treatment group (p < 0.001), with a positive correlation between orexin-A and perceived pain. No adverse effects were reported. Conclusions: Flector Softgel FS Integratore may be effective in reducing joint pain and systemic inflammation while supporting metabolic health in active adults. These effects may involve indirect modulation of orexin-A, though the exact mechanisms remain to be clarified. Despite the promising results, conclusions regarding efficacy in comparison with NSAIDs should be approached with caution in the absence of a pharmacological control group. Further studies with larger samples and a longer duration are needed. Full article
Show Figures

Figure 1

2 pages, 142 KiB  
Retraction
RETRACTED: Shen et al. Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice. Antioxidants 2020, 9, 489
by Hsin Hsueh Shen, Stephen J. Peterson, Lars Bellner, Abu Choudhary, Lior Levy, Leah Gancz, Ariel Sasson, Joseph Trainer, Rita Rezzani, Abraham Resnick, David E. Stec and Nader G. Abraham
Antioxidants 2025, 14(7), 758; https://doi.org/10.3390/antiox14070758 - 20 Jun 2025
Viewed by 484
Abstract
The journal retracts the article “Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice” [...] Full article
25 pages, 1626 KiB  
Review
From Fish Oil to Resolution: A Narrative Review on the Potential of SPM-Enriched Marine Oil for Exercise-Induced Muscle Damage Recovery
by Leticia C. de Souza, Jose M. Moris, Paul M. Gordon, Jeffery L. Heileson and LesLee K. Funderburk
Nutrients 2025, 17(12), 2014; https://doi.org/10.3390/nu17122014 - 16 Jun 2025
Viewed by 1593
Abstract
Exercise-induced muscle damage (EIMD) initiates an inflammatory response that is essential for tissue repair. However, when prolonged or excessive, this response can impair recovery and muscular performance. Specialized pro-resolving mediators (SPMs), derived from the metabolism of omega-3 (n-3) polyunsaturated fatty acids [...] Read more.
Exercise-induced muscle damage (EIMD) initiates an inflammatory response that is essential for tissue repair. However, when prolonged or excessive, this response can impair recovery and muscular performance. Specialized pro-resolving mediators (SPMs), derived from the metabolism of omega-3 (n-3) polyunsaturated fatty acids (PUFAs), facilitate the resolution of inflammation without causing immunosuppression. Evidence from preclinical studies indicates that SPM administration accelerates muscle repair and functional recovery by enhancing the clearance of apoptotic cells, suppressing pro-inflammatory signaling and modulating macrophage polarization. However, translation to human applications remains limited as commercially available SPM-enriched marine oils do not contain active SPMs but rather their monohydroxylated precursors, including 14-Hydroxy-Docosahexaenoic Acid (14-HDHA), 17-Hydroxy-Docosahexaenoic Acid (17-HDHA), and 18-Hydroxy-Eicosapentaenoic Acid (18-HEPE) in addition to low doses of the n-3 PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Furthermore, the variable increases in circulating SPM concentrations as a result of dietary intake of EPA and DHA, whether from fish or fish oil supplements, and the wide diversity of SPM molecules (many of which remain under investigation), highlight the complexity of their structural and functional networks. While advances in lipidomics have identified SPMs and their pathway intermediates in human biological samples, further research is needed to determine optimal dosing strategies, delivery mechanisms, and the real impact of SPM-enriched marine oil on athletic performance and recovery. This narrative review examines the biological rationale and current evidence surrounding SPM-enriched marine oil supplementation and its potential to enhance muscle recovery following EIMD. By synthesizing findings from preclinical and human studies, the potential of SPM-enriched supplementation as a novel tool for optimizing performance recovery in athletic populations is reviewed to inform future research directions. Full article
Show Figures

Figure 1

28 pages, 1593 KiB  
Review
A Review on Marine Microbial Docosahexaenoic Acid Production Through Circular Economy, Fermentation Engineering, and Antioxidant Technology
by Fengwei Yin, Xiaolong Sun, Xi Luo, Weilong Zheng, Longfei Yin, Yingying Zhang and Yongqian Fu
Mar. Drugs 2025, 23(6), 256; https://doi.org/10.3390/md23060256 - 16 Jun 2025
Viewed by 1043
Abstract
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This [...] Read more.
Marine microbial-derived docosahexaenoic acid (DHA) has garnered significant attention as a sustainable and health-promoting alternative to fish oil-derived DHA. However, its industrial production from marine heterotrophic microorganisms faces challenges related to high costs and suboptimal oil quality, which hinder its broader application. This review focuses on recent strategies aimed at achieving low-cost and high-quality marine microbial DHA production, emphasizing heterotrophic systems that dominate commercial supply. Key aspects include: Fermentation optimization using waste-derived feedstocks and bioprocess engineering to enhance DHA yields; Critical refining techniques—including degumming, neutralization, decolorization, and deodorization—are analyzed for improving DHA oil purity and quality, with emphasis on process optimization to adapt to the unique biochemical properties of microbial-derived oils. Additionally, strategies for oxidative stabilization, such as antioxidant protection, are discussed to extend the shelf life and preserve the nutritional value of marine microbial DHA oil. By integrating techno-economic and biochemical perspectives, this work outlines a holistic framework to guide the industrial optimization of marine microbial-sourced DHA oil production, addressing cost and quality challenges to facilitate its large-scale application as functional foods and nutraceuticals, thereby reducing reliance on marine resources and advancing sustainable omega-3 production. Full article
(This article belongs to the Special Issue Fatty Acids from Marine Organisms, 2nd Edition)
Show Figures

Figure 1

17 pages, 1975 KiB  
Article
Enhancing Oxidative Stability and Nutritional Quality of Flaxseed Oil Using Apricot, Sesame, and Black Cumin Oil Blends
by Dino Muhović, Gorica Cvijanović, Marija Bajagić, Lato Pezo, Lazar Pejić and Biljana Rabrenović
Foods 2025, 14(11), 2000; https://doi.org/10.3390/foods14112000 - 5 Jun 2025
Viewed by 915
Abstract
There is an unmet need for an affordable, high-quality, and non-thermally processed source of omega-3 fatty acids. Cold-pressed flaxseed oil comes closest to meeting these criteria. Flaxseed oil is also subject to rapid oxidative degradation. Sesame, black cumin, and apricot kernel oils are [...] Read more.
There is an unmet need for an affordable, high-quality, and non-thermally processed source of omega-3 fatty acids. Cold-pressed flaxseed oil comes closest to meeting these criteria. Flaxseed oil is also subject to rapid oxidative degradation. Sesame, black cumin, and apricot kernel oils are already used as functional foods and are more resistant to oxidative degradation. GC, HPLC, DPPH, the Folin−Ciocalteu method, and OXITEST were applied to the four cold-pressed oils and their binary blends with flaxseed oil. The fatty acid profile showed that the dominant fatty acid in flaxseed oil was linolenic acid with a content of 52.27 ± 0.17%, while oleic acid dominated in apricot kernel oil (69.45 ± 0.18%) and linoleic acid (58.80 ± 0.07%) in black cumin oil, while sesame oil was characterized by approximately equal proportions of oleic (42.21 ± 0.20%) and linoleic acids (43.37 ± 0.07%). The content of oleic acid showed a moderate, statistically significant correlation with the oxidative stability of oils and blends. The antioxidant capacity of flaxseed oil (25 ± 1.4 μmol TE/g) was most strongly influenced by the addition of black cumin oil (75 ± 3.5 μmol TE/g), so that the highest antioxidant capacity was achieved by the blend with an addition of 50% of this oil (57.5 ± 2.4 μmol TE/g). Oxidative stability tests show that apricot kernel oil stabilizes flaxseed oil the most and increases the oxidative stability of the blend by up to 60%. Full article
Show Figures

Figure 1

14 pages, 966 KiB  
Review
A Novel Marine Oil from the Copepod Calanus finmarchicus: Source, Harvesting, Chemistry and Potential Application in Human Health
by Ellen Aasum, Alice M. Pedersen, Andreas Hahn, Terje S. Larsen and Kurt S. Tande
Lipidology 2025, 2(2), 11; https://doi.org/10.3390/lipidology2020011 - 1 Jun 2025
Viewed by 745
Abstract
In the first part of this paper, we introduce the marine copepod Calanus finmarchicus, its lifecycle and ecology, and describe the technologies developed for harvesting and extracting oil from this copepod. Calanus oil has a unique composition, with its fatty acids—including a [...] Read more.
In the first part of this paper, we introduce the marine copepod Calanus finmarchicus, its lifecycle and ecology, and describe the technologies developed for harvesting and extracting oil from this copepod. Calanus oil has a unique composition, with its fatty acids—including a high concentration of long-chain omega-3 polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs)—bound to long chain fatty alcohols in the form of wax esters. In the second part of this paper, we review pre-clinical and clinical studies conducted over the last two decades, which demonstrate the potential health benefits of Calanus oil. These studies highlight its role in preventing obesity-related metabolic distortions, such as inflammation and reduced insulin sensitivity. Full article
Show Figures

Figure 1

Back to TopTop