A Novel Marine Oil from the Copepod Calanus finmarchicus: Source, Harvesting, Chemistry and Potential Application in Human Health
Abstract
1. Introduction
2. Calanus finmarchicus—An Unexploited and Sustainable Source of Omega-3 Fatty Acids
2.1. Lifecycle and Role in Marine Food Webs
2.2. Developing Harvesting Technology and Management Policy
2.3. Developing Extraction Technology
2.4. Regulatory Framework
3. The Chemistry of Calanus Oil
4. Potential Health Effects of Calanus Oil
4.1. Explorative Preclinical Studies
4.2. Human Trials
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LC-PUFA | long-chain omega-3 polyunsaturated fatty acids |
ALA | alpha-linolenic acid |
SDA | stearidonic acid |
EPA | eicosapentaenoic acid |
DHA | docosahexaenoic acid |
MUFA | monounsaturated fatty acid |
FaOH | fatty alcohol |
HFD | high-fat diet |
O3I | omega-3 Index |
VO2max | maximum oxygen uptake |
COmax | maximum cardiac output |
SV | stroke volume |
GLP-1 | glucagon-like peptide 1 |
GPR120 | G protein-coupled receptor 120 |
References
- Bradford, J.M. Review of the taxonomy of the calanidae (copepoda) and the limits to the genus Calanus. Hydrobiologia 1988, 167, 73–81. [Google Scholar] [CrossRef]
- Skjoldal, H.R.S.R.; Faernö, A.; Misund, O.A.; Røttingen, I. The Norwegian Sea ecosystem; Tapir Academic Press: Trondheim, Norway, 2004; pp. 435–446. [Google Scholar]
- Choquet, M.; Hatlebakk, M.; Dhanasiri, A.K.S.; Kosobokova, K.; Smolina, I.; Soreide, J.E.; Svensen, C.; Melle, W.; Kwasniewski, S.; Eiane, K.; et al. Genetics redraws pelagic biogeography of Calanus. Biol. Lett. 2017, 13, 20170588. [Google Scholar] [CrossRef]
- Pedersen, A.M.; Vang, B.; Olsen, R.L. Oil from Calanus finmarchicus-Composition and Possible Use: A Review. J. Aquat. Food Product. Technol. 2014, 23, 633–646. [Google Scholar] [CrossRef]
- Vang, B.; Pedersen, A.M.; Olsen, R.L. Oil extraction From the Copepod Calanus finmarchicus Using Proteolytic Enzymes. J. Aquat. Food Product. Technol. 2013, 22, 619–628. [Google Scholar] [CrossRef]
- AMAP. Arctic pollution 2002: Persistent Organic Pollutants, Heavy Metals, Radioactivity, Human Health; Changing Pathways; AMAP, Arctic Monitoring and Assessment Programme: Oslo, Norway, 2002. [Google Scholar]
- Cantillo, J.; Deshpande, P.C.; Jafarzadeh, S. Life cycle assessment of products. Int. J. Life Cycle 2025, 30, 511–524. [Google Scholar] [CrossRef]
- Kraska, R.; Mcquate, R.S.; Omaye, S.T. Grass Assesment. Calanus Oil Food Usage Condtition for General Recongition of Safety. 2011; 25, Unpublished Report, in mimeo. [Google Scholar]
- Sargent, J.R.; Gatten, R.R.; McIntosh, R. Wax esters in the marine environment—their occurrence, formation, transformation and ultimate fates. Mar. Chem. 1977, 5, 573–584. [Google Scholar] [CrossRef]
- Song, R.Z.; Wang, X.C.; Deng, S.G.; Tao, N.P. Lipidomic analysis and triglyceride profiles of fish oil: Preparation through silica gel column and enzymatic treatment. Food Res. Int. 2022, 162, 112100. [Google Scholar] [CrossRef]
- Xie, D.; Gong, M.Y.; Wei, W.; Jin, J.; Wang, X.S.; Wang, X.G.; Jin, Q.Z. Antarctic Krill Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 514–534. [Google Scholar] [CrossRef]
- Falkpetersen, S.; Sargent, J.R.; Tande, K.S. Lipid-Composition of Zooplankton in Relation to the Sub-Arctic Food Web. Polar Biol. 1987, 8, 115–120. [Google Scholar] [CrossRef]
- Graeve, M.; Kattner, G. Species-specific differences in intact wax esters of Calanus-hyperboreus and C-Finmarchicus from fram strait—Greenland sea. Mar. Chem. 1992, 39, 269–281. [Google Scholar] [CrossRef]
- Hargrove, J.L.; Greenspan, P.; Hartle, D.K. Nutritional significance and metabolism of very long chain fatty alcohols and acids from dietary waxes. Exp. Biol. Med. 2004, 229, 215–226. [Google Scholar] [CrossRef]
- Bergvik, M.; Leiknes, O.; Altin, D.; Dahl, K.R.; Olsen, Y. Dynamics of the lipid content and biomass of Calanus finmarchicus (copepodite V) in a Norwegian Fjord. Lipids 2012, 47, 881–895. [Google Scholar] [CrossRef]
- Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-a review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef]
- Andersson, M.; Van Nieuwerburgh, L.; Snoeijs, P. Pigment transfer from phytoplankton to zooplankton with emphasis on astaxanthin production in the Baltic Sea food web. Mar. Ecol. Progress. Ser. 2003, 254, 213–224. [Google Scholar] [CrossRef]
- Bang, H.O.; Dyerberg, J.; Nielsen, A.B. Plasma lipid and lipoprotein pattern in Greenlandic West-coast Eskimos. Lancet 1971, 1, 1143–1145. [Google Scholar] [CrossRef]
- Dyerberg, J.; Bang, H.O.; Hjorne, N. Fatty acid composition of the plasma lipids in Greenland Eskimos. Am. J. Clin. Nutr. 1975, 28, 958–966. [Google Scholar] [CrossRef]
- Bjerregaard, P.; Young, T.K.; Hegele, R.A. Low incidence of cardiovascular disease among the Inuit--what is the evidence? Atherosclerosis 2003, 166, 351–357. [Google Scholar] [CrossRef]
- Bundgaard, J.S.; Jorgensen, M.E.; Andersen, K.; Bundgaard, H.; Geisler, U.W.; Pedersen, M.L. Dyslipidemia and the preventive potential in the Greenlandic population. Atheroscler. Plus 2023, 51, 22–27. [Google Scholar] [CrossRef]
- Baker, E.J.; Miles, E.A.; Burdge, G.C.; Yaqoob, P.; Calder, P.C. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog. Lipid Res. 2016, 64, 30–56. [Google Scholar] [CrossRef]
- Eilertsen, K.E.; Maehre, H.K.; Jensen, I.J.; Devold, H.; Olsen, J.O.; Lie, R.K.; Brox, J.; Berg, V.; Elvevoll, E.O.; Osterud, B. A wax ester and astaxanthin-rich extract from the marine copepod Calanus finmarchicus attenuates atherogenesis in female apolipoprotein E-deficient mice. J. Nutr. 2012, 142, 508–512. [Google Scholar] [CrossRef]
- Hoper, A.C.; Salma, W.; Khalid, A.M.; Hafstad, A.D.; Sollie, S.J.; Raa, J.; Larsen, T.S.; Aasum, E. Oil from the marine zooplankton Calanus finmarchicus improves the cardiometabolic phenotype of diet-induced obese mice. Br. J. Nutr. 2013, 110, 2186–2193. [Google Scholar] [CrossRef]
- Hoper, A.C.; Salma, W.; Sollie, S.J.; Hafstad, A.D.; Lund, J.; Khalid, A.M.; Raa, J.; Aasum, E.; Larsen, T.S. Wax esters from the marine copepod Calanus finmarchicus reduce diet-induced obesity and obesity-related metabolic disorders in mice. J. Nutr. 2014, 144, 164–169. [Google Scholar] [CrossRef]
- Place, A.R. Comparative aspects of lipid digestion and absorption: Physiological correlates of wax ester digestion. Am. J. Physiol. 1992, 263, R464–R471. [Google Scholar] [CrossRef]
- Pedersen, A.M.; Salma, W.; Höper, A.C.; Larsen, T.S.; Olsen, R.L. Lipid profile of mice fed a high-fat diet supplemented with a wax ester-rich marine oil. Eur. J. Lipid Sci. Tech. 2014, 116, 1718–1726. [Google Scholar] [CrossRef]
- Salma, W.; Franekova, V.; Lund, T.; Hoper, A.; Ludvigsen, S.; Lund, J.; Aasum, E.; Ytrehus, K.; Belke, D.D.; Larsen, T.S. Dietary Calanus oil antagonizes angiotensin II-induced hypertension and tissue wasting in diet-induced obese mice. Prostaglandins Leukot. Essent. Fat. Acids 2016, 108, 13–21. [Google Scholar] [CrossRef]
- Jansen, K.M.; Moreno, S.; Garcia-Roves, P.M.; Larsen, T.S. Dietary Calanus oil recovers metabolic flexibility and rescues postischemic cardiac function in obese female mice. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H290–H299. [Google Scholar] [CrossRef]
- Rokling-Andersen, M.H.; Rustan, A.C.; Wensaas, A.J.; Kaalhus, O.; Wergedahl, H.; Rost, T.H.; Jensen, J.; Graff, B.A.; Caesar, R.; Drevon, C.A. Marine n-3 fatty acids promote size reduction of visceral adipose depots, without altering body weight and composition, in male Wistar rats fed a high-fat diet. Br. J. Nutr. 2009, 102, 995–1006. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Khan, S.U.; Lone, A.N.; Khan, M.S.; Virani, S.S.; Blumenthal, R.S.; Nasir, K.; Miller, M.; Michos, E.D.; Ballantyne, C.M.; Boden, W.E.; et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. EClinicalMedicine 2021, 38, 100997. [Google Scholar] [CrossRef]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N. Engl. J. Med. 2019, 380, 23–32. [Google Scholar] [CrossRef]
- Tande, K.S.; Vo, T.D.; Lynch, B.S. Clinical safety evaluation of marine oil derived from Calanus finmarchicus. Regul. Toxicol. Pharmacol. 2016, 80, 25–31. [Google Scholar] [CrossRef]
- Cook, C.M.; Larsen, T.S.; Derrig, L.D.; Kelly, K.M.; Tande, K.S. Wax Ester Rich Oil from the Marine Crustacean, Calanus finmarchicus, is a Bioavailable Source of EPA and DHA for Human Consumption. Lipids 2016, 51, 1137–1144. [Google Scholar] [CrossRef]
- Vosskotter, F.; Burhop, M.; Hahn, A.; Schuchardt, J.P. Equal bioavailability of omega-3 PUFA from Calanus oil, fish oil and krill oil: A 12-week randomized parallel study. Lipids 2023, 58, 129–138. [Google Scholar] [CrossRef]
- Brezinova, M.; Cajka, T.; Oseeva, M.; Stepan, M.; Dadova, K.; Rossmeislova, L.; Matous, M.; Siklova, M.; Rossmeisl, M.; Kuda, O. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158576. [Google Scholar] [CrossRef]
- Cizkova, T.; Stepan, M.; Dadova, K.; Ondrujova, B.; Sontakova, L.; Krauzova, E.; Matous, M.; Koc, M.; Gojda, J.; Kracmerova, J.; et al. Exercise Training Reduces Inflammation of Adipose Tissue in the Elderly: Cross-Sectional and Randomized Interventional Trial. J. Clin. Endocrinol. Metab. 2020, 105, e4510–e4526. [Google Scholar] [CrossRef]
- Dadova, K.; Petr, M.; Steffl, M.; Sontakova, L.; Chlumsky, M.; Matous, M.; Stich, V.; Stepan, M.; Siklova, M. Effect of Calanus Oil Supplementation and 16 Week Exercise Program on Selected Fitness Parameters in Older Women. Nutrients 2020, 12, 481. [Google Scholar] [CrossRef]
- Stepan, M.; Dadova, K.; Matous, M.; Krauzova, E.; Sontakova, L.; Koc, M.; Larsen, T.; Kuda, O.; Stich, V.; Rossmeislova, L.; et al. Exercise Training Combined with Calanus Oil Supplementation Improves the Central Cardiodynamic Function in Older Women. Nutrients 2021, 14, 149. [Google Scholar] [CrossRef]
- Tauschek, L.; Rosbjorgen, R.E.N.; Dalen, H.; Larsen, T.; Karlsen, T. No Effect of Calanus Oil on Maximal Oxygen Uptake in Healthy Participants: A Randomized Controlled Study. Int. J. Sport. Nutr. Exerc. Metab. 2022, 32, 468–478. [Google Scholar] [CrossRef]
- Wasserfurth, P.; Nebl, J.; Bosslau, T.K.; Kruger, K.; Hahn, A.; Schuchardt, J.P. Intake of Calanus finmarchicus oil for 12 weeks improves omega-3 index in healthy older subjects engaging in an exercise programme. Br. J. Nutr. 2021, 125, 432–439. [Google Scholar] [CrossRef]
- Wasserfurth, P.; Nebl, J.; Schuchardt, J.P.; Muller, M.; Bosslau, T.K.; Kruger, K.; Hahn, A. Effects of Exercise Combined with a Healthy Diet or Calanus finmarchicus Oil Supplementation on Body Composition and Metabolic Markers-A Pilot Study. Nutrients 2020, 12, 2139. [Google Scholar] [CrossRef]
- Burhop, M.; Schuchardt, J.P.; Nebl, J.; Muller, M.; Lichtinghagen, R.; Hahn, A. Marine Oil from C. finmarchicus Enhances Glucose Homeostasis and Liver Insulin Resistance in Obese Prediabetic Individuals. Nutrients 2022, 14, 396. [Google Scholar] [CrossRef]
- Whelan, J. Dietary stearidonic acid is a long chain (n-3) polyunsaturated fatty acid with potential health benefits. J. Nutr. 2009, 139, 5–10. [Google Scholar] [CrossRef]
- Ostbye, T.K.; Berge, G.M.; Nilsson, A.; Romarheim, O.H.; Bou, M.; Ruyter, B. The long-chain monounsaturated cetoleic acid improves the efficiency of the n-3 fatty acid metabolic pathway in Atlantic salmon and human HepG2 cells. Br. J. Nutr. 2019, 122, 755–768. [Google Scholar] [CrossRef]
- Perez-Jimenez, F.; Lopez-Miranda, J.; Mata, P. Protective effect of dietary monounsaturated fat on arteriosclerosis: Beyond cholesterol. Atherosclerosis 2002, 163, 385–398. [Google Scholar] [CrossRef]
- Gillingham, L.G.; Harris-Janz, S.; Jones, P.J. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 2011, 46, 209–228. [Google Scholar] [CrossRef]
- Clemente-Suarez, V.J.; Redondo-Florez, L.; Beltran-Velasco, A.I.; Martin-Rodriguez, A.; Martinez-Guardado, I.; Navarro-Jimenez, E.; Laborde-Cardenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef]
- Paulsen, S.J.; Larsen, L.K.; Hansen, G.; Chelur, S.; Larsen, P.J.; Vrang, N. Expression of the fatty acid receptor GPR120 in the gut of diet-induced-obese rats and its role in GLP-1 secretion. PLoS ONE 2014, 9, e88227. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- Walser, B.; Stebbins, C.L. Omega-3 fatty acid supplementation enhances stroke volume and cardiac output during dynamic exercise. Eur. J. Appl. Physiol. 2008, 104, 455–461. [Google Scholar] [CrossRef]
Lipid Class | g/100 g | Individual Fatty Acids |
---|---|---|
SFA | 16 | Mysteric acid (14:0) Palmitic acid (16:0) |
MUFA | 15 | Oleic acid (18:1 n-9) Gondoic acid (20:1 n-9) Cetoleic acid (22:1 n-11) |
PUFA | 24 | α-Linolenic acid (18:3 n-3) Stearidonic acid (SDA, 18:4 n-3) Eicosapentaenoic acid (EPA, 20:5 n-3) Docosahexaenoic acid (DHA, 22:6 n-3) |
FaOH | 38 | Eicosenol (20:1 n-9 Docosenol (22:1 n-11) |
Sterols | 0.5 | |
TAG, NEFA, PL | 6.3 | |
Astaxanthin | 0.2 |
Subjects | Dose/Duration | Samples/Measurements | Effect of Calanus oil | Reference |
---|---|---|---|---|
Healthy participants | Calanus vs. olive oil 2 g/day for 12 months | Clinical chemistry and hematology. Evaluation of vital signs/adverse effects. | No clinical or adverse effects. | [34] |
Healthy participants | 4 g Calanus oil vs. 1 g Lovaza for 72 h (crossover) | Analysis of plasma EPA and DHA. | Increase of plasma EPA in response to Calanus oil higher relative to Lovaza. | [35] |
Healthy participants | Oil from Calanus, fish and krill. Equal dose of EPA+DHA/day for 12 weeks | Analysis of plasma fatty acids and O3I. | Similar increase in O3I. | [36] |
Healthy elderly women (EXODYA) | Calanus oil vs. sunflower oil 2.5 g/day for 4 months Combined with exercise | Body composition. Analysis of plasma. Adipose tissue biopsies. Lipidomic. Functional fitness and muscle strength. Aerobic capacity. Cardiac function (impedance cardiography). | Reduced (visceral) fat mass. Reduced HOMA-IR. Increased muscle strength of lower body. Increased max cardiac output. No effect on VO2max or changes in adipose tissue lipidome and inflammation. | [37,38,39,40] |
Healthy participants | Calanus oil vs. olive oil. 2 g/day for 6 months | Body composition. Cardiopulmonary exercise test. | No change in body weight and composition or BMI. No effect on HRmax or VO2max. | [41] |
Healthy participants (BEGINN) | Calanus oil 2 g/day for 12–16 weeks Combined with exercise | Analysis of plasma. Body composition. | Reduced fat mass. Increased O3I. Bodyweight and BMI unchanged. No effect of fasting insulin, HOMA-IR and blood lipids. | [42,43] |
Obese prediabetic patients | Calanus oil vs. paraffin 2 g/day for 12 weeks | Analysis of plasma. Body composition. | Increased O3I. Reduced fasting glucose, HOMA-IR and hepatic and muscle insulin resistance. | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aasum, E.; Pedersen, A.M.; Hahn, A.; Larsen, T.S.; Tande, K.S. A Novel Marine Oil from the Copepod Calanus finmarchicus: Source, Harvesting, Chemistry and Potential Application in Human Health. Lipidology 2025, 2, 11. https://doi.org/10.3390/lipidology2020011
Aasum E, Pedersen AM, Hahn A, Larsen TS, Tande KS. A Novel Marine Oil from the Copepod Calanus finmarchicus: Source, Harvesting, Chemistry and Potential Application in Human Health. Lipidology. 2025; 2(2):11. https://doi.org/10.3390/lipidology2020011
Chicago/Turabian StyleAasum, Ellen, Alice M. Pedersen, Andreas Hahn, Terje S. Larsen, and Kurt S. Tande. 2025. "A Novel Marine Oil from the Copepod Calanus finmarchicus: Source, Harvesting, Chemistry and Potential Application in Human Health" Lipidology 2, no. 2: 11. https://doi.org/10.3390/lipidology2020011
APA StyleAasum, E., Pedersen, A. M., Hahn, A., Larsen, T. S., & Tande, K. S. (2025). A Novel Marine Oil from the Copepod Calanus finmarchicus: Source, Harvesting, Chemistry and Potential Application in Human Health. Lipidology, 2(2), 11. https://doi.org/10.3390/lipidology2020011