Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,183)

Search Parameters:
Keywords = oils absorption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1776 KB  
Article
Theoretical Computation-Driven Screening and Mechanism Study of Washing Oil Composite Solvents for Benzene Waste Gas Absorption
by Chengyi Qiu, Zekai Jin, Meisi Chen, Li Wang, Sisi Li, Gang Zhang, Muhua Chen, Xinbao Zhu and Bo Fu
Atmosphere 2026, 17(1), 52; https://doi.org/10.3390/atmos17010052 (registering DOI) - 31 Dec 2025
Abstract
In order to solve the problems of high volatility and insufficient absorption effect when using chemical by-product washing oil to treat benzene-containing waste gas, this study innovatively proposed a composite solvent screening method based on the solvation free energy (ΔGsol), and [...] Read more.
In order to solve the problems of high volatility and insufficient absorption effect when using chemical by-product washing oil to treat benzene-containing waste gas, this study innovatively proposed a composite solvent screening method based on the solvation free energy (ΔGsol), and reasonably predicted the absorption performance of 26 solvents for benzene. Through theoretical calculation and experimental verification, tetraethylene glycol dimethyl ether (TGDE) was finally determined to be the optimal composite component of washing oil. The absorption efficiency of the composite solvent reached 96.2%, and the regeneration efficiency was stable after 12 cycles with a mass loss of only 2.4%. Quantum computing simulation revealed that the dispersion force is dominant between benzene and the solvent, and TGDE enhances the electrostatic interaction through weak hydrogen bonds. The synergistic effect of the two improves the absorption performance. This study provides theoretical and technical support for the development of efficient and renewable benzene waste gas recovery solvent systems. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

21 pages, 4404 KB  
Article
Effect of Fluidized Bed Drying on the Physicochemical, Functional, and Morpho-Structural Properties of Starch from Avocado cv. Breda By-Product
by Anna Emanuelle S. Tomé, Yann B. Camilo, Newton Carlos Santos, Priscylla P. D. Rosendo, Elizabeth A. de Oliveira, Jéssica G. Matias, Sinthya K. Q. Morais, Thaisa A. S. Gusmão, Rennan P. de Gusmão, Josivanda P. Gomes and Ana P. T. Rocha
Processes 2026, 14(1), 122; https://doi.org/10.3390/pr14010122 (registering DOI) - 29 Dec 2025
Abstract
Fluidized bed drying has been widely applied in the food industry due to its high heat and mass transfer rates. In this study, the impact of drying temperatures (50, 60, 70 and 80 °C) in a fluidized bed on the physicochemical, functional, morpho-structural, [...] Read more.
Fluidized bed drying has been widely applied in the food industry due to its high heat and mass transfer rates. In this study, the impact of drying temperatures (50, 60, 70 and 80 °C) in a fluidized bed on the physicochemical, functional, morpho-structural, and thermal properties of avocado seed starch was evaluated. The process yield for all temperatures ranged from 52.3 to 58.5% (p > 0.05), with a starch content of 59.20–60.9 g/100 g, amylose content of 28.85–31.84 g/100 g, and amylopectin content of 29.13–30.37 g/100 g. Additionally, all samples showed high water, milk, and oil absorption capacity (>90%), low solubility (5.22–8.35%), good flow characteristics, and swelling power greater than 50%. There was also a greater release of water (syneresis) after 168 h of storage, regardless of the drying temperature, which likewise did not influence the texture parameters. The granules had a smooth surface, without cracks or cavities, predominantly oval and partially rounded, being classified as type B. In the FT-IR analysis, no new functional groups were observed, only a reduction in peak intensity with increasing drying temperature. Finally, the thermal properties indicated high conclusion temperatures (>130 °C), with gelatinization enthalpy in the range of 14.18 to 15.49 J/g, reflecting its thermal resistance and structural integrity under heat conditions. These results demonstrated that fluidized bed drying is an alternative technique for drying avocado seed starch pastes. Full article
Show Figures

Graphical abstract

22 pages, 1336 KB  
Article
Concentration-Dependent Rheological and Sensory Effects of Walnut Leaf Extract in Cosmetic Emulsion Creams
by Miljan Adamovic, Ana Adamovic, Ana Barjaktarevic, Marina Kostic, Olivera Kostic, Danijela Pecarski, Marijana Andjic, Jovana Dimitrijevic, Jelena Zivkovic and Marina Tomovic
Cosmetics 2026, 13(1), 6; https://doi.org/10.3390/cosmetics13010006 - 26 Dec 2025
Viewed by 190
Abstract
Background/Objectives: Understanding how plant-derived extracts influence the rheological and sensory behavior of emulsions is crucial for developing stable and consumer-appealing formulations. Although walnut leaf extract (Juglans regia L.) is recognized for its bioactive properties, its structural impact on cosmetic emulsions has not [...] Read more.
Background/Objectives: Understanding how plant-derived extracts influence the rheological and sensory behavior of emulsions is crucial for developing stable and consumer-appealing formulations. Although walnut leaf extract (Juglans regia L.) is recognized for its bioactive properties, its structural impact on cosmetic emulsions has not been systematically characterized. This study aimed to investigate the effect of increasing walnut leaf extract concentration on the rheological profile, mechanical integrity during application, and sensory performance of oil-in-water creams. Methods: Four emulsion formulations (F1–F4) containing 0%, 1%, 3%, and 5% walnut leaf extract were prepared using Olivem 1000 and Olivem 300 as emulsifiers. Rheological measurements included amplitude sweep, flow curve, frequency sweep, and thixotropy tests to assess viscoelasticity, flow behavior, and recovery. A sensory evaluation was conducted by trained panelists to correlate rheological parameters with perceived product attributes. Results: All formulations exhibited pseudoplastic, shear-thinning behavior in well-structured cosmetic emulsions during application. The addition of walnut extract significantly modified rheological responses: at 1% concentration, an increase in storage modulus (G′) and shear-thinning ratio (η0/η∞) indicated structural reinforcement and improved spreadability, whereas higher concentrations (3–5%) led to structural softening and faster thixotropic recovery. The frequency sweep revealed a concentration-dependent shift from elastic- to viscous-dominant behavior. Sensory analysis confirmed these trends, with higher extract levels reducing stickiness and greasiness while enhancing absorption. Conclusions: Walnut leaf extract shows a concentration-dependent influence on the rheological behavior of the emulsions, strengthening the network structure at low levels while promoting softening and faster structural recovery at higher concentrations. The strong correlation between rheological and sensory parameters underscores the potential of walnut extract as a multifunctional ingredient for designing well-structured, non-greasy, and consumer-preferred cosmetic creams. Full article
(This article belongs to the Section Cosmetic Formulations)
Show Figures

Figure 1

24 pages, 3382 KB  
Article
Weather Change and Spillover Effects of China’s Energy Futures Market: Based on Different Market Conditions
by Lekun Ma, Guangxi Cao and Lei Zhou
Sustainability 2026, 18(1), 196; https://doi.org/10.3390/su18010196 - 24 Dec 2025
Viewed by 142
Abstract
Weather change, as a physical risk factor of climate change, increasingly impacts the energy market. This paper investigates China’s major energy futures using a QVAR framework to analyze spillover effects under different market conditions, addressing mean-model limitations. It also reveals state-dependent weather impacts [...] Read more.
Weather change, as a physical risk factor of climate change, increasingly impacts the energy market. This paper investigates China’s major energy futures using a QVAR framework to analyze spillover effects under different market conditions, addressing mean-model limitations. It also reveals state-dependent weather impacts on spillovers, providing physical climate risk evidence. The results show the following: (1) Spillover effects intensify under extreme conditions, with crude oil and fuel oil as main transmitters, and methanol and coking coal as key recipients. Coking coal shows a stronger spillover absorption capacity under extreme conditions. (2) The Total Spillover Index (TSI) displays significant time-varying feature and sensitivity to external shocks, with heightened asymmetry and complexity in extreme markets. (3) Weather change significantly affects spillovers of China’s energy futures, with temperature, cooling and heating loads, and precipitation showing different impacts on TSI across market conditions. These findings provide references for energy finance regulation and risk early warning under climate change conditions. Full article
Show Figures

Figure 1

14 pages, 305 KB  
Article
From Raw to Cooked: Proximate Composition, Fatty Acids and Fat-Soluble Vitamins in Bluefish (Pomatomus saltatrix) from the Black Sea
by Veselina Panayotova, Katya Peycheva, Tatyana Hristova, Diana A. Dobreva, Tonika Stoycheva, Rositsa Stancheva, Stanislava Georgieva, Evgeni Andreev, Silviya Nikolova, Rouzha Pancheva and Albena Merdzhanova
Foods 2026, 15(1), 55; https://doi.org/10.3390/foods15010055 - 24 Dec 2025
Viewed by 284
Abstract
Bluefish (Pomatomus saltatrix) is an important Black Sea species; however, quantitative data on how traditional household cooking affects its nutritional composition remain limited. This study assessed the effects of grilling, pan-frying, and smoking on the proximate composition, fatty acid profile, fat-soluble [...] Read more.
Bluefish (Pomatomus saltatrix) is an important Black Sea species; however, quantitative data on how traditional household cooking affects its nutritional composition remain limited. This study assessed the effects of grilling, pan-frying, and smoking on the proximate composition, fatty acid profile, fat-soluble vitamins, antioxidant pigments, and cholesterol content of bluefish. Cooking led to moisture reductions of 7–18%, accompanied by increased total lipid content (26–80%). Crude protein content decreased in grilled and smoked fish and increased in pan-fried samples. Pan-frying resulted in the largest reduction in long-chain n-3 PUFA, with reductions of approximately 25.2% for EPA and 20.3% for DHA (in mg/100 g wet weight), probably due to higher temperature and absorption of other fatty acids from the cooking oil. Combined EPA + DHA levels ranged from 743 to 2223 mg/100 g (wet weight), with smoked fish showing the highest values. Vitamin E exhibited substantial losses during grilling but was largely preserved during smoking, whereas astaxanthin was undetectable in the grilled samples. Vitamin D3 demonstrated moderate thermal stability. Overall, each cooking method induced distinct quantitative changes driven by moisture loss and changes in the relative proportions of individual fatty acids within the total lipids. Grilling and smoking were the most favorable for retaining long-chain n-3 PUFA and key micronutrients. Full article
(This article belongs to the Special Issue Nutrients in Seafood)
13 pages, 1970 KB  
Article
Preparation and Performance of Nano-Silica-Modified Epoxy Resin Composite Coating for Concrete Subjected to Cryogenic Freeze–Thaw Cycles
by Pan Zhou, Sigui Zhao, Kang Gu, Hongji Chen, Qian Yang and Zhengwu Jiang
Coatings 2026, 16(1), 19; https://doi.org/10.3390/coatings16010019 - 23 Dec 2025
Viewed by 265
Abstract
Concrete is prone to deterioration and increased permeability under cryogenic freeze–thaw cycles. In this study, a novel method was proposed to prepare a nano-silica-modified epoxy resin composite coating with excellent anti-permeability. The effects of layer composition, a resin layer modified with different nanoparticles, [...] Read more.
Concrete is prone to deterioration and increased permeability under cryogenic freeze–thaw cycles. In this study, a novel method was proposed to prepare a nano-silica-modified epoxy resin composite coating with excellent anti-permeability. The effects of layer composition, a resin layer modified with different nanoparticles, and different nano-silica dosages on the oil impermeability of coated concrete were studied. The mechanical properties and chemical stability of the composite coating were also evaluated. The results showed that the composite coating composed of a nano-silica-modified resin layer, bonding layer, and surface layer presented good resistance to oil penetration under cryogenic freezing cycles. Moreover, nano-silica seemed to be a better choice for resin modification than nano-TiO2 and graphene. Macroscopic and morphological observation also confirmed a reduction in cracks and the integrity of the composite coating for concrete protection. Therefore, the coated concrete presented good mechanical properties and chemical stability. This study provides a guide for the preparation of composite coating concrete used for mountainous highway bridges and liquefied natural gas tanks. Full article
(This article belongs to the Special Issue Corrosion Resistant Coatings in Civil Engineering)
Show Figures

Figure 1

20 pages, 6891 KB  
Article
Extraction and Evolution Analysis of Partial Discharge Characteristic Parameters in Moisture-Affected and Aged Oil–Paper Insulation
by Ruiming Wang, Fubao Jin, Shangang Ma, Debao Wang and Caixiong Fan
Appl. Sci. 2026, 16(1), 151; https://doi.org/10.3390/app16010151 - 23 Dec 2025
Viewed by 142
Abstract
Oil–paper insulation in oil-immersed transformers undergoes a concealed degradation process that is difficult to detect during operation. To understand its discharge behavior, this study examines partial discharge characteristics under controlled moisture absorption and thermal aging. Experiments on S-PD (Surface Partial Discharge) and N-PD [...] Read more.
Oil–paper insulation in oil-immersed transformers undergoes a concealed degradation process that is difficult to detect during operation. To understand its discharge behavior, this study examines partial discharge characteristics under controlled moisture absorption and thermal aging. Experiments on S-PD (Surface Partial Discharge) and N-PD (Needle Partial Discharge) were carried out, and partial discharge patterns, discharge frequency, and breakdown voltage were collected to analyze discharge evolution. The results show that partial discharge develops through three stages: initiation, development, and pre-breakdown. In the initiation stage, pulses are sparse with low amplitudes and appear near the voltage peak. During development, both amplitude and discharge frequency increase, and the phase range expands. As breakdown approaches, pulse amplitude rises sharply, the phase distribution covers almost the full cycle, and conductive channels begin to form. Skewness, Peak Degree, and Maximum Steepness were extracted from statistical discharge maps to compare moisture-affected and aged samples. The findings provide experimental support for developing state-evolution-based failure warning models and diagnostic criteria, contributing to improved operational safety of oil–paper insulation systems. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

22 pages, 3843 KB  
Article
Numerical Simulation Study on the Mechanism of Pore Volume Expansion and Permeability Enhancement by High-Pressure Water Injection in Low Permeability Reservoirs
by Yugong Wang, Yang Xu, Yong Li, Ping Chen, Hongjiang Zou, Jianan Li, Yuwei Sun, Jianyu Li, Hualei Xu and Jie Wang
Processes 2026, 14(1), 48; https://doi.org/10.3390/pr14010048 - 22 Dec 2025
Viewed by 189
Abstract
High-pressure water injection (HPWI) refers to injecting water into the formation under conditions where the injection pressure is higher than or close to the formation fracture pressure. This technique can effectively improve the water absorption capacity of low-permeability reservoirs and maintain the formation [...] Read more.
High-pressure water injection (HPWI) refers to injecting water into the formation under conditions where the injection pressure is higher than or close to the formation fracture pressure. This technique can effectively improve the water absorption capacity of low-permeability reservoirs and maintain the formation pressure above the bubble point. It is a key technology for solving the problem of “difficult injection and difficult recovery” in low-permeability reservoirs, thereby achieving increased injection and enhanced production. However, due to the lack of a unified understanding of the mechanisms of dynamic micro-fractures and the mechanism of pore volume expansion and permeability enhancement during HPWI, the technology has not been widely promoted and applied. Based on an in-depth analysis of the mechanism of high-pressure water injection and by building a geological model for an actual oilfield development block, the “compaction–expansion” theory of rocks is used to characterize the variation in reservoir properties with pore pressure. This model is used to simulate the reservoir’s pore volume expansion and permeability enhancement effects during high-pressure water injection. The research results show the following: (1) HPWI can increase the effective distance of injected water by changing the permeability of the affected area. (2) During HPWI, the effective areas in the reservoir are divided into three regions: the enhanced-permeability zone (EPZ), the swept zone without permeability enhancement, and the unswept zone. Moreover, the EPZ expands significantly with higher injection pressure, rate, and volume. However, the degree of reservoir heterogeneity will significantly affect the effect of HPWI. (3) Simulation of two production modes—“HPWI–well soaking–oil production” and “simultaneous HPWI and oil production”—shows that under the first production mode, the degree of uniformity of the production wells’ response is higher. However, in the production wells in the EPZ, after a certain stage, an overall water flooding phenomenon occurs. In the second mode, the production wells in the water channeling direction show an alternating and rapid water-flooding phenomenon, while the production wells in the non-water channeling areas are hardly affected. Meanwhile, for local production wells with poor effectiveness of high-pressure water injection, hydraulic fracturing can be used as a pilot or remedial measure to achieve pressure-induced effectiveness and improve the sweep efficiency of the injected water. The results of this study explain the mechanisms of volume expansion and permeability enhancement during high-pressure water injection, providing guiding significance for the on-site application and promotion of high-pressure water injection technology in low-permeability reservoirs. Full article
(This article belongs to the Special Issue Hydraulic Fracturing Experiment, Simulation, and Optimization)
Show Figures

Figure 1

16 pages, 1286 KB  
Article
High-Limonene Orange Peel Essential Oil as a Natural Antibacterial Agent in Hand Sanitizer Gels
by Marcos A. Coronado, José R. Ayala, Beatriz E. Jaramillo-Colorado, Daniela G. Montes, Ernesto Beltrán-Partida, Benjamín A. Rojano, Andrés Felipe Alzate-Arbeláez and Ana M. Vázquez
Cosmetics 2025, 12(6), 288; https://doi.org/10.3390/cosmetics12060288 - 18 Dec 2025
Viewed by 350
Abstract
Orange peel waste has potential to be valorized from agro-industrial and food sectors to formulate products for personal hygiene and public health. This study presents the formulation of alcohol-based antibacterial gels incorporating essential oils extracted from Citrus sinensis orange peel waste and its [...] Read more.
Orange peel waste has potential to be valorized from agro-industrial and food sectors to formulate products for personal hygiene and public health. This study presents the formulation of alcohol-based antibacterial gels incorporating essential oils extracted from Citrus sinensis orange peel waste and its sensory evaluation among 770 participants in a holistic approach. The orange essential oil, obtained via hydrodistillation, demonstrated a high limonene content of 96.5% by GC-MS. Antibacterial activity assessed by agar diffusion assays showed orange essential oil efficacy against Escherichia coli and Staphylococcus aureus, with inhibition zones of 25.9 mm and 23.62 mm, respectively. Two gel prototypes, GSA and GSB, were developed and sensorily evaluated. GSA was preferred for its superior appearance, spreadability, absorption, and smell, with 99% acceptability. Appearance and spread sensory parameters were the differentiators between both formulations according to user preferences. Thus, 93% of respondents are willing to use either GSA or GSB as a daily hygiene product over commercial ones. Although the gels exhibited reduced antibacterial activity relative to essential oil, with inhibition zones measuring 8.3 mm for E. coli and 9.0 mm for S. aureus, they retained satisfactory user acceptability. These findings support the use of citrus biowaste-derived essential oils in sustainable personal hygiene products. Full article
Show Figures

Graphical abstract

26 pages, 11466 KB  
Article
Composite Reinforced Expanded Clay and Basalt Fiber Concrete for Floating Platforms
by Alexey N. Beskopylny, Sergey A. Stel′makh, Evgenii M. Shcherban′, Diana M. Shakhalieva, Andrei Chernil′nik, Alexandr Evtushenko, Maksim Nikolenko and Yasin Onuralp Özkılıç
J. Compos. Sci. 2025, 9(12), 697; https://doi.org/10.3390/jcs9120697 - 13 Dec 2025
Viewed by 476
Abstract
Currently, in hydrotechnical engineering, such as oil and gas platform construction, floating docks, and other floating structures, the need to develop new lightweight composite building materials is becoming an important problem. Expanded clay concrete (ECC) is the most common lightweight concrete option for [...] Read more.
Currently, in hydrotechnical engineering, such as oil and gas platform construction, floating docks, and other floating structures, the need to develop new lightweight composite building materials is becoming an important problem. Expanded clay concrete (ECC) is the most common lightweight concrete option for floating structures. The aim of this study is to develop effective composite ECC with improved properties and a coefficient of structural quality (CCQ). To improve the properties of ECC, the following formulation and technological techniques were additionally applied: reinforcement of lightweight expanded clay aggregate by pre-treatment in cement paste (CP-LECA) with the addition of microsilica (MS) and dispersed reinforcement with basalt fiber (BF). An experimental study examined the effect of the proposed formulation and technological techniques on the density and cone slump of fresh ECC and the density, compressive and flexural strength, and water absorption of hardened ECC. A SEM analysis was conducted. The optimal parameters for LECA pretreatment were determined. These parameters are achieved by treating LECA grains in a cement paste with 10% MS and using dispersed reinforcement parameters of 0.75% BF. The best combination of CP-LECA10MS-0.75BF provides increases in compressive and flexural strength of up to 50% and 61.7%, respectively, and a reduction in water absorption of up to 32.8%. The CCQ increases to 44.4%. If the ECC meets the design requirements, it can be used in hydraulic engineering for floating structures. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

21 pages, 3531 KB  
Article
Plant Proteins as Alternative Natural Emulsifiers in Food Emulsions
by Dominika Kaczmarek, Marta Pokora-Carzynska, Leslaw Juszczak, Ewelina Jamroz and Janusz Kapusniak
Foods 2025, 14(24), 4291; https://doi.org/10.3390/foods14244291 - 13 Dec 2025
Viewed by 526
Abstract
The growing interest in plant-based ingredients in food production has increased the demand for effective alternatives to animal-derived emulsifiers. In this study, the physicochemical and functional properties of selected commercial plant protein preparations as natural emulsifiers in food emulsions were assessed. Emulsifying activity [...] Read more.
The growing interest in plant-based ingredients in food production has increased the demand for effective alternatives to animal-derived emulsifiers. In this study, the physicochemical and functional properties of selected commercial plant protein preparations as natural emulsifiers in food emulsions were assessed. Emulsifying activity and stability (EA, ES), foaming capacity and stability (FC, FS), water and oil absorption (WAC, OAC), color (CIE Lab*), viscosity, surface tension, and zeta potential were analyzed. Pea (PP1–PP4), rice (RP1, RP2) and chickpea (CP1) proteins showed the most favorable properties, characterized by high EA values (58.3–62.5%) and emulsion stability during storage (62–65%) after 6 days. Emulsions formulated with these proteins were significantly lighter (L* > 69). PP1 exhibited more than twice the viscosity of the other samples. The lowest surface tension values (<45 mN/m) were observed for RP2 and PP1, indicating strong surface activity. Pea proteins PP1, PP2, and PP4 showed the highest system stability, with zeta potential values below –35 mV. Overall, the selected plant protein preparations, particularly pea, rice, and chickpea proteins, showed promising functional properties, confirming their potential use as natural emulsifiers in clean-label plant-based formulations and providing a basis for further product development. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

26 pages, 646 KB  
Article
Development and Consumer Acceptability of Functional Bread Formulations Enriched with Extruded Avocado Seed Flour: Nutritional and Technological Properties
by Jesús Salvador Jaramillo-De la Garza, Dariana Graciela Rodríguez-Sánchez, Carmen Hernández-Brenes and Erick Heredia-Olea
Foods 2025, 14(24), 4282; https://doi.org/10.3390/foods14244282 - 12 Dec 2025
Viewed by 315
Abstract
Avocado processing generates seed by-products rich in dietary fiber that can be upcycled into functional ingredients. This study modified and characterized avocado seed flour via extrusion and enzyme-assisted wet-milling, as well as evaluated its use in wheat bread. The flour was fractionated, and [...] Read more.
Avocado processing generates seed by-products rich in dietary fiber that can be upcycled into functional ingredients. This study modified and characterized avocado seed flour via extrusion and enzyme-assisted wet-milling, as well as evaluated its use in wheat bread. The flour was fractionated, and fraction 2 (F2) was selected based on techno-functional performance; it was tested in its non-extruded (NEF2) and extruded (EF2) forms. Breads were prepared by replacing 5% of wheat flour with NEF2 and EF2 (NEB and EB, respectively). Compared with NEF2, EF2 had an 81% higher water absorption index (WAI) and an 18% higher oil absorption index (OAI). Extrusion reduced antioxidant activity ~1.6-fold, consistent with an ~85% decrease in acetogenin content, indicating thermo-mechanical degradation of bioactives linked to bitterness. Analyses were conducted in triplicate (p < 0.05). By day 3, crumb hardness increased (EB: 9.65 N; NEB: 6.04 N; control: 5.49 N). In a test with 106 consumers, aroma scores improved for NEB (8.00, IQR 7.00–8.00) and EB (7.00, IQR 5.00–8.00) versus the control (6.00, IQR 4.00–7.00), while overall acceptability, texture, color, and appearance did not differ. These results support EF2 as a functional upcycled ingredient that enhances hydration and aroma, reduces bitterness, and maintains consumer acceptance, aligning with circular economy and clean-label goals. Full article
Show Figures

Graphical abstract

33 pages, 31820 KB  
Article
Confined Fluids in Gel Matrices for the Selective Cleaning of a Tibetan Altar Table
by Chiara Biribicchi, Jessica Chasen and Laura Maccarelli
Gels 2025, 11(12), 1001; https://doi.org/10.3390/gels11121001 - 11 Dec 2025
Viewed by 331
Abstract
LACMA’s 19th-century Tibetan Altar Table with Auspicious Symbols is characterized by a complex stratigraphy comprising animal glue-based ground and paint layers, a presumably original tung oil-based varnish, and a dark surface layer composed of a complex mixture of paraffinic wax, shellac, and rapeseed [...] Read more.
LACMA’s 19th-century Tibetan Altar Table with Auspicious Symbols is characterized by a complex stratigraphy comprising animal glue-based ground and paint layers, a presumably original tung oil-based varnish, and a dark surface layer composed of a complex mixture of paraffinic wax, shellac, and rapeseed oil, which obscures the object’s original decorative scheme. This study examines the use of nanostructured fluids and organic solvents confined within hydrogels and organogels for the selective removal of the dark surface layer while preserving the underlying paint and varnish. Following the analysis of the artwork’s constituent materials, cleaning tests were conducted and evaluated using visible and ultraviolet fluorescence (UVF) imaging, spectrophotometry, and digital microscopy. The homogeneous absorption of solvent mixtures by the organogels was assessed through gas chromatography–mass spectrometry (GC–MS). Results indicate that confining cleaning fluids within the gels’ porous networks significantly improved solvent retention and control of fluid release. While conventional cleaning methods proved insufficiently selective, the gradual release of a nanostructured fluid containing a small amount of benzyl alcohol, combined with the nanostructural properties of the poly(vinyl alcohol)–sebacic acid (PSA2) hydrogel, enabled targeted removal of the surface layer while preserving the integrity of the underlying layers. Full article
Show Figures

Figure 1

17 pages, 3657 KB  
Article
Combined Application of Acidic Phosphate Fertilizers Improves Drip-Irrigated Soybean Yield and Phosphorus Utilization Efficiency in Liming Soil
by Dongfei Liu, Hailong Di, Songlin Liu, Yuchen Hao, Wenli Cui, Kaiyong Wang, Hong Huang and Hua Fan
Agronomy 2025, 15(12), 2852; https://doi.org/10.3390/agronomy15122852 - 11 Dec 2025
Viewed by 411
Abstract
Phosphorus (P) characteristics significantly affect crop yield and P use efficiency (PUE). It is unclear whether different types of acidic phosphate fertilizers can enhance the availability of phosphorus in liming soil and soybean yields. In this field experiment in 2022 and 2023 in [...] Read more.
Phosphorus (P) characteristics significantly affect crop yield and P use efficiency (PUE). It is unclear whether different types of acidic phosphate fertilizers can enhance the availability of phosphorus in liming soil and soybean yields. In this field experiment in 2022 and 2023 in Xinjiang, China, four phosphate fertilization treatments, including no phosphate fertilization (CK), application of monoammonium phosphate (MAP), application of urea phosphate (UP), and application of a mixture of monoammonium phosphate and urea phosphate (8:2, M8U2), were designed. Then, the impacts of the four phosphate treatments on the PUE, growth, and yield of the high-oil soybean variety Kennong 23 under drip irrigation were explored. The results showed that the application of phosphate fertilizers significantly increased the soil inorganic P, available P, and total P content compared with CK, promoting the growth and yield formation of soybeans. The soil Ca2-P content of the UP treatment was higher than that of the MAP treatment. The soil Ca8-P content of the M8U2 treatment was higher than that of the MAP treatment, but the soil phosphorus fixation was lower. The soil available P content, soybean plant P accumulation, leaf photosynthetic capacity, and dry matter accumulation all reached the maximum in the M8U2 treatment. The soybean yield, net revenue, and PUE of the M8U2 treatment were 6.04%, 9.37%, and 14.16% higher than those of the MAP treatment, and 7.64%, 16.59%, and 23.50% higher than those of the UP treatment, respectively. Therefore, the combined application of acidic phosphate fertilizers (MAP and UP) can increase soil available P content and plant P absorption in liming soil and stimulate photosynthesis, enhancing soybean yield and PUE. This study will provide a technical reference for the P reduction and soybean yield enhancement in arid areas. Full article
Show Figures

Figure 1

18 pages, 8090 KB  
Article
Effect of CaCl2-Induced Surface Gelatinization on Enzymatic Porous Starch
by Nianxia Sun, Yakun Wang, Jie Zhang, Zesheng Wu, Mengting Cheng, Hui Shen, Dianlei Wang and Bo Cui
Foods 2025, 14(24), 4221; https://doi.org/10.3390/foods14244221 - 9 Dec 2025
Viewed by 264
Abstract
Porous starch (PS) is widely used in food, pharmaceutical, and environmental industries for its high adsorption capacity and controlled release properties. To explore how surface gelatinization affected enzymatically prepared PS, corn starch was first modified via surface gelatinization using a CaCl2 solution [...] Read more.
Porous starch (PS) is widely used in food, pharmaceutical, and environmental industries for its high adsorption capacity and controlled release properties. To explore how surface gelatinization affected enzymatically prepared PS, corn starch was first modified via surface gelatinization using a CaCl2 solution and then treated with α-amylase and amyloglucosidase to synthesize PS. Its structural and functional characteristics were subsequently analyzed. The findings demonstrated that the CaCl2 solution facilitated the surface gelatinization and enhanced the enzymatic hydrolysis of natural starch. The yield, specific volume, water solubility, swelling power, and oil absorption capacity of PS pretreated with CaCl2 solution were improved. After 40 min of processing, the yield, specific volume, and oil absorption capacity of PS reached the optimal state, increasing by 19.90%, 91.19%, and 32.84%, respectively. Consequently, its fisetin encapsulation efficiency (93.67%) and loading capacity (8.03%) were also higher than those of non-pretreated PS, attributed to the reduced short-range structure and crystallinity in the CaCl2-pretreated PS. The DPPH and ABTS radical scavenging activities of CaCl2-pretreated PS/fisetin (PS/FIT) exceeded those of the non-pretreated PS/FIT and free fisetin. These findings highlight the potential of CaCl2 pretreatment as an effective strategy to enhance the functional properties of enzymatic PS. Full article
Show Figures

Figure 1

Back to TopTop