You are currently viewing a new version of our website. To view the old version click .
Gels
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

11 December 2025

Confined Fluids in Gel Matrices for the Selective Cleaning of a Tibetan Altar Table

,
and
Conservation Center, Los Angeles County Museum of Art, 5905 Wilshire Blvd, Los Angeles, CA 90036, USA
*
Author to whom correspondence should be addressed.
This article belongs to the Special Issue Advances in the Design and Application of Gels in Heritage Conservation

Abstract

LACMA’s 19th-century Tibetan Altar Table with Auspicious Symbols is characterized by a complex stratigraphy comprising animal glue-based ground and paint layers, a presumably original tung oil-based varnish, and a dark surface layer composed of a complex mixture of paraffinic wax, shellac, and rapeseed oil, which obscures the object’s original decorative scheme. This study examines the use of nanostructured fluids and organic solvents confined within hydrogels and organogels for the selective removal of the dark surface layer while preserving the underlying paint and varnish. Following the analysis of the artwork’s constituent materials, cleaning tests were conducted and evaluated using visible and ultraviolet fluorescence (UVF) imaging, spectrophotometry, and digital microscopy. The homogeneous absorption of solvent mixtures by the organogels was assessed through gas chromatography–mass spectrometry (GC–MS). Results indicate that confining cleaning fluids within the gels’ porous networks significantly improved solvent retention and control of fluid release. While conventional cleaning methods proved insufficiently selective, the gradual release of a nanostructured fluid containing a small amount of benzyl alcohol, combined with the nanostructural properties of the poly(vinyl alcohol)–sebacic acid (PSA2) hydrogel, enabled targeted removal of the surface layer while preserving the integrity of the underlying layers.

Article Metrics

Citations

Article Access Statistics

Article metric data becomes available approximately 24 hours after publication online.