Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,298)

Search Parameters:
Keywords = oil temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1647 KB  
Article
Thermo-Oxidative Stability and Functional Properties of Extra Virgin Olive Oil Oleogels
by Denisse Bascuñan, Claudia Vergara, Cristian Valdes, Yaneris Mirabal, Roberto Quiroz, Jaime Ortiz-Viedma, Vicente Barros, Jaime Vargas and Marcos Flores
Gels 2026, 12(2), 116; https://doi.org/10.3390/gels12020116 - 28 Jan 2026
Abstract
Structuring oils using oleogels (OGs) represents a promising strategy for developing semi-solid lipid matrices with applications in food and other soft systems. This study evaluated the thermal stability and physicochemical properties of an oleogel (OG) formulated with extra virgin olive oil (EVOO) and [...] Read more.
Structuring oils using oleogels (OGs) represents a promising strategy for developing semi-solid lipid matrices with applications in food and other soft systems. This study evaluated the thermal stability and physicochemical properties of an oleogel (OG) formulated with extra virgin olive oil (EVOO) and beeswax (BW, 6%). The oleogel and olive oil samples were initially characterized by thermogravimetric analysis (TGA/DTG). The beeswax and oleogel samples were initially characterized by texture analysis. An antioxidant capacity (ORAC) analysis was initially applied to the beeswax sample. An initial rheometric analysis was applied to the oleogel sample. Fatty acid profiling and infrared spectroscopy were applied initially and finally to the oleogel and olive oil samples. During the thermal processing (80 °C, 14 days) of the oleogel and olive oil, analyses of the percentage of polar compounds, refractive index, and absorption parameters (K232 and K270) were performed. The oleogel exhibited a soft, pseudoplastic network, with lower hardness and mechanical strength than pure beeswax. Gelation modified the thermo-oxidative stability of EVOO, showing lower levels of polar compounds (from day 7 of heating; p = 0.028) and a slight delay in the onset of thermal degradation (Tonset), suggesting partial protection against the formation of polar degradation compounds. Furthermore, the evolution of K232 indicated differences in the formation of primary oxidation products (p = 0.027) over the 14 days of heating, while K270 showed no differences in the formation of secondary oxidation compounds. This reflects the complex interaction between the gelled matrix and the lipid deterioration mechanisms. Overall, the results demonstrate that the incorporation of beeswax allows for a partial reduction in degradation compounds in high-temperature processes, producing technologically functional oleogels that offer a potential alternative source for structuring solid fats. This work provides relevant evidence for the rational design of oleogels based on unrefined oils and opens new opportunities for their application in food systems and gelled matrices with thermal processing requirements. Full article
(This article belongs to the Special Issue Advanced Gels in the Food System)
Show Figures

Figure 1

26 pages, 2983 KB  
Article
Activated Aluminum Alloys as an Alternative to Technological Solutions for Increasing Well Productivity
by Galina Boiko, Raushan Sarmurzina, Nina Lyubchenko, Bagdaulet Kenzhaliyev, Asset Makhanov, Yerkebulan Pulatov, Askar Malbagarov, Yelena Boiko and Yelena Panova
Processes 2026, 14(3), 448; https://doi.org/10.3390/pr14030448 - 27 Jan 2026
Abstract
The relevance of this study is determined by the need for new technological solutions to enhance the productivity of wells producing heavy and highly viscous crude oil. The work investigates multicomponent Al–Ga–In–Sn alloys as reactive systems capable of generating heat and hydrogen upon [...] Read more.
The relevance of this study is determined by the need for new technological solutions to enhance the productivity of wells producing heavy and highly viscous crude oil. The work investigates multicomponent Al–Ga–In–Sn alloys as reactive systems capable of generating heat and hydrogen upon contact with water. The focus is placed on optimizing melting parameters and assessing how alloy composition and structural features affect reactivity. Phase composition was analyzed by X-ray diffraction, microstructure by SEM-EDX, and elemental composition by XRF. The results show that the hydrogen generation rate and heat release depend on melting temperature, holding time, and ratios of activating metals, as well as the physicochemical properties of the formation water, particularly salinity and pH. Reaction enthalpy and conversion efficiency were quantified. The highest hydrogen output and thermal effect were observed for the following compositions—90 wt.% Al, 5 wt.% Ga, 2.5 wt.% In, 2.5 wt.% Sn; and 85 wt.% Al, 5 wt.% Ga, 5 wt.% In, 5 wt.% Sn (825 °C, 30 min). Rapid heat and gas release is attributed to the eutectic structure and micro-galvanic interaction, which eliminate the induction period. These findings demonstrate the potential of such alloys for in situ heating, enhanced oil recovery, and autonomous hydrogen-energy applications. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

18 pages, 758 KB  
Article
Performance Evaluation of Rubber Modified Asphalt Mixtures with Two Typical Light Oils: A Comparative Study Between Aromatic and Tall Oils
by Qiangbin Zhu, Youxin Jiang, Dongdong Ge, Li Liu, Chaopeng Li, Xiangyang Jiang and Milkos Borges Cabrera
Materials 2026, 19(3), 508; https://doi.org/10.3390/ma19030508 - 27 Jan 2026
Abstract
Recycling waste rubber is essential for promoting circular economy practices, reducing environmental pollution, and conserving resources. This study examines the performance of crumb rubber-modified asphalt mixtures incorporating two light oils (aromatic oil and tall oil) to alleviate the high viscosity and poor workability [...] Read more.
Recycling waste rubber is essential for promoting circular economy practices, reducing environmental pollution, and conserving resources. This study examines the performance of crumb rubber-modified asphalt mixtures incorporating two light oils (aromatic oil and tall oil) to alleviate the high viscosity and poor workability of asphalt with high rubber content. Mixtures were prepared using a neat asphalt modified with 20% crumb rubber and 5% light oil (by mass of the neat asphalt), combined with basalt aggregate in an AC-13 gradation. High-temperature performance was evaluated via Marshall stability and wheel tracking tests at 60 °C, moisture sensitivity through immersion Marshall and freeze–thaw splitting tests, and low-temperature cracking resistance using semi-circular bending (SCB) tests at 15 °C. Tensile strength and fatigue life were measured by splitting tests at 25 °C and fatigue tests at 15 °C, respectively. Results indicate that the rubber-modified mixtures showed significant improvements: the total deformation decreased by 44.7% and 64.1% for aromatic oil- and tall oil-modified mixtures, respectively, compared to the neat asphalt. Fracture toughness increased by 46.5% and 71.9%, and tensile strength improved by 40.2% and 63.6%, respectively. At a low stress ratio (0.281), mixtures with tall oil exhibited a 47.9% longer fatigue life than those with aromatic oil. Tall oil demonstrated superior performance, attributed to enhanced rubber swelling and crosslinked network formation, which improved viscosity and aggregate coating. The findings confirm that light oil-modified rubber asphalt mixtures, especially those containing tall oil, present a viable approach for developing high-performance and environmentally sustainable road pavements. Full article
(This article belongs to the Special Issue Sustainable Recycling Techniques of Pavement Materials (3rd Edition))
32 pages, 18294 KB  
Article
Influencing Factors of Hydrocarbon Migration and Adjustment at the Edge of a Stable Cratonic Basin: Implications from Fluid Inclusions, Quantitative Fluorescence Techniques, and Geochemical Tracing
by Zhengqi Yang, Xin Cheng, Siqi Ouyang, Zhe Liu, Yuting Cheng, Shuqi Lan, Lei Xue, Ting Zhang and Yiqian Qu
Energies 2026, 19(3), 638; https://doi.org/10.3390/en19030638 - 26 Jan 2026
Viewed by 15
Abstract
Understanding the mechanisms of hydrocarbon migration, accumulation, and alteration, particularly how evolution controls these processes, is critical for exploring lithologic hydrocarbons in reservoirs. In the complex tectonic settings of the continental margin of the stable North China Craton, there is a significant presence [...] Read more.
Understanding the mechanisms of hydrocarbon migration, accumulation, and alteration, particularly how evolution controls these processes, is critical for exploring lithologic hydrocarbons in reservoirs. In the complex tectonic settings of the continental margin of the stable North China Craton, there is a significant presence of small yet highly prolific hydrocarbon reservoirs. The processes of hydrocarbon migration and accumulation are complex and thus represent an important research focus in geology. This study, based on core, logging, and seismic data and integrating fluid inclusion analysis, quantitative fluorescence techniques, and geochemical experiments, combines the shale smear factor and paleotectonic reconstructions to clarify the hydrocarbon accumulation episodes, migration pathways, and factors controlling reservoir adjustments in the Yanwu area of the Tianhuan Depression in the Ordos Basin, China. The results reveal three types of NE-trending left-lateral strike–slip faults: linear, left-stepping, and right-stepping. Shale Smear Factor (SSF) analysis confirms that these faults exhibit segmented opening behaviors, with SSF > 1.7 identified as the threshold for fault openness. Multiparameter geochemical tracing based on terpanes and steranes shows that lateral migration along fault zones dominates the preferential migration pathways for hydrocarbons. Fluid inclusion thermometry revealed homogenization temperatures within the 100–110 °C and 80–90 °C intervals, while the oil inclusions exhibit blue or blue-and-white fluorescence, reflecting early hydrocarbon charging and late-stage secondary migration. Integrated analysis indicates that during the late Early Cretaceous (105–90 Ma), hydrocarbons were charged upward through open segments of linear strike–slip fault zones in the northern study area, experiencing lateral migration and accumulation along high-permeability sand bodies and unconformities in the shallow strata. Since the Late Cretaceous (65 Ma-present), the regional tectonic framework has evolved from a west–high, east–low to a west–low, east–high configuration, inducing secondary hydrocarbon migration and leading to the remigration or even destruction of early-formed oil reservoirs. This study systematically demonstrates that fault activity and tectonic evolution control the accumulation and distribution of hydrocarbons in the region. These findings provide theoretical insights for hydrocarbon exploration in regions with complex tectonic evolution within stable cratonic basins. Full article
Show Figures

Figure 1

17 pages, 4499 KB  
Article
Processing Suitability and Flavor Profiles of Wagyu Beef Tallow from Different Anatomical Regions
by Yanxia Xing, He Zhu, Mengqi Li, Yanfei Yang, Mengliu Zhu, Yushu Wang, Zien Li, Baochen Xu, Yang Yu and Lizeng Peng
Molecules 2026, 31(3), 426; https://doi.org/10.3390/molecules31030426 - 26 Jan 2026
Viewed by 41
Abstract
This study investigated the technological properties and volatile flavor profiles of tallow from three anatomical regions of Wagyu cattle, omental fats (OF), perirenal fats (PF), and subcutaneous fats (SF), smelted at temperatures ranging from 100 to 160 °C. The objective was to provide [...] Read more.
This study investigated the technological properties and volatile flavor profiles of tallow from three anatomical regions of Wagyu cattle, omental fats (OF), perirenal fats (PF), and subcutaneous fats (SF), smelted at temperatures ranging from 100 to 160 °C. The objective was to provide a theoretical basis for the targeted utilization of Wagyu fats. Results showed that smelting temperature significantly affected oil yield, with the highest yield obtained at 160 °C for all regions. PF exhibited the greatest oil yield, followed by OF and SF. Physicochemical analyses indicated that OF had the highest degree of unsaturation, whereas PF demonstrated superior hardness and oxidative stability. Microstructural and spectroscopic analyses, Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to characterize the samples, revealed that the compact protein structure of SF residues limited oil release, while the porous structures of OF and PF residues facilitated higher yields. With respect to flavor profiling, headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME-GC-MS) was employed to analyze volatile compounds, identified aldehydes as the dominant flavor contributors in OF and PF, imparting fatty and citrus notes, whereas SF was characterized by a distinct creamy aroma primarily due to γ-butyrolactone. These regional differences were further validated by principal component analysis (PCA). Overall, PF obtained the highest comprehensive quality score. The integrated evaluation underscores the potential for precision-based utilization of Wagyu tallow: PF and OF are recommended for applications demanding high yield and intense flavor, whereas SF, characterized by its distinctive creamy aroma, is more suitable for specialized or niche products. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

23 pages, 3151 KB  
Article
Nanoformulations of the Piper auritum Kunth (Piperales: Piperaceae) Essential Oil for the Control of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae)
by Josefina Barrera-Cortés, Jocelyn Sosa-Trejo, Isabel M. Sánchez-Barrera, Laura P. Lina-García, Fabiola D. León Navarrete and María E. Mancera-López
Agriculture 2026, 16(3), 308; https://doi.org/10.3390/agriculture16030308 - 26 Jan 2026
Viewed by 47
Abstract
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three [...] Read more.
Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is an agricultural pest of global economic importance. Its ability to reproduce, adapt, and develop resistance necessitates the creation of effective and environmentally friendly alternative control strategies. This study aimed to evaluate the larvicidal activity of three nanoformulations (NFs) based on the essential oil (70% safrole) of Piper auritum Kunth (Piperales: Piperaceae), nanoemulsion (NE), microemulsion (ME), and silver nanoparticles (AgNPs), against second-instar larvae of S. frugiperda. The NFs were prepared using a combination of low- and high-energy methods, using Tween 80 and Span 80 as stabilizing agents. The droplet sizes of the NFs ranged from 19 to 48 nm. Stability analysis of the formulations maintained for 60 days in open systems at room temperature allowed the identification of remaining oxidized sesquiterpenes and phenylpropanoids. In in vitro bioassays, the NE demonstrated the highest larvicidal activity, with an LD50 of 0.97 µg cm−2, outperforming the other formulations by a factor of ten. Observations of morphological damage to larval and pupal tissues, along with deformation of adult specimens, confirming the toxicity of the NFs. These findings highlight the potential of essential oil-based NFs derived from P. auritum as sustainable biopesticides for integrated pest management. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Graphical abstract

16 pages, 3848 KB  
Article
Photoelectric Composite Three-Phase Flow Sensor for Complex Oil and Gas Wells
by Qiang Chen, Xueguang Qiao, Tao Chen, Hong Gao and Congcong Li
Sensors 2026, 26(3), 808; https://doi.org/10.3390/s26030808 - 26 Jan 2026
Viewed by 98
Abstract
Reliable measurement of multiphase flow is fundamental to production evaluation in complex oil and gas wells. However, conventional sensors often suffer from low integration, limited measurement capability, and potential environmental impact. To address these challenges, a photoelectric composite three-phase flow sensor is developed, [...] Read more.
Reliable measurement of multiphase flow is fundamental to production evaluation in complex oil and gas wells. However, conventional sensors often suffer from low integration, limited measurement capability, and potential environmental impact. To address these challenges, a photoelectric composite three-phase flow sensor is developed, integrating multiple electrode rings for water holdup and liquid-phase velocity measurement, with dual optical-fiber probes for gas holdup and gas-phase velocity detection. A slip model is further applied to quantify the dependence of slip velocity on liquid holdup based on measured phase rates. Experimental results demonstrate high sensitivity to bubble-flow structures, accurate extraction of gas holdup and phase velocities, and stable full-range water holdup calibration from 0% to 100% at 5 V and 15 V with effective temperature and salinity compensation. And compared with existing technologies, the sensor designed in this paper has the advantages of high integration, a simple structure, multiple measurement parameters, and higher water-holding capacity resolution in low-saturation areas, providing more advanced technical means for conventional profile three-phase flow logging. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 3955 KB  
Review
Biocompatible Emulsions Stabilized by Natural Silk Fibroin
by Xiuying Qiao, Reinhard Miller, Emanuel Schneck and Kang Sun
Colloids Interfaces 2026, 10(1), 13; https://doi.org/10.3390/colloids10010013 - 26 Jan 2026
Viewed by 38
Abstract
Due to its amphiphilicity, the natural fibrous structural protein, silk fibroin (SF), can adsorb at the oil/water interface, form protective viscoelastic layers, and stabilize emulsions. Biocompatible SF-stabilized emulsions can be used in different fields of cosmetics, food, drug delivery, and biomedicine. Depending on [...] Read more.
Due to its amphiphilicity, the natural fibrous structural protein, silk fibroin (SF), can adsorb at the oil/water interface, form protective viscoelastic layers, and stabilize emulsions. Biocompatible SF-stabilized emulsions can be used in different fields of cosmetics, food, drug delivery, and biomedicine. Depending on the silk processing method, various emulsion types can be obtained, such as film-stabilized emulsions stabilized by SF molecules and Pickering emulsions stabilized by nanostructured SF or SF particles. Nanostructured SF and SF particles, with β-sheet dominated secondary structures, can overcome the drawback of SF molecules with unstable conformation transition during application, and thus endow higher emulsion stability than SF molecules. The emulsions stabilized by SF nanoparticles can endure heat and high ionic strength, while the emulsions stabilized by SF nanofibers show superior stability at high temperature, high salinity, and low pH due to the strong interfacial entangled nanofiber networks. In this review, the recent progress in research on SF-stabilized emulsions is summarized and generalized, including a systematic comparison of the stabilization mechanisms for different SF morphologies, and the influences of the emulsion fabrication technique, component type and proportions, and environmental conditions on the microstructures and properties of SF-stabilized emulsions. Understanding the stabilization mechanism and factors influencing the emulsion stability is of great significance for the design, preparation and application of SF-stabilized emulsions. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Figure 1

26 pages, 16948 KB  
Article
MXene/Cuttlefish-Ink Nanoparticles Incorporated Dual-Purification Sponge for Solar-Driven Oily Wastewater and Microplastic Remediation
by Huixuan Sun, Qirui Gong, Lihong Fan, Shilin Tian, Shiyuan Yao, Guangxu Wang, Sasha You and Wei Zhang
Polymers 2026, 18(3), 324; https://doi.org/10.3390/polym18030324 - 26 Jan 2026
Viewed by 151
Abstract
The escalating severity of microplastic pollution and oily wastewater discharge has intensified the demand for recyclable, multifunctional, and environmentally benign materials. In this study, we present a composite polyurethane (PU) sponge constructed through the synergistic integration of cuttlefish-ink nanoparticles (CINPs), Ti3C [...] Read more.
The escalating severity of microplastic pollution and oily wastewater discharge has intensified the demand for recyclable, multifunctional, and environmentally benign materials. In this study, we present a composite polyurethane (PU) sponge constructed through the synergistic integration of cuttlefish-ink nanoparticles (CINPs), Ti3C2TX MXene, and polydimethylsiloxane (PDMS). The synergistic CINP@MXene framework imparts high photothermal conversion efficiency and structural stability, while the PDMS coating confers superhydrophobicity. The resulting sponge demonstrates efficient oil absorption and oil–water separation capabilities, alongside a stable photothermal response, achieving a temperature of 84.1 °C within 10 s under 1.5 Sun irradiation. Notably, the sponge absorbed approximately 0.05 g of crude oil within 10 s, the saturated absorption capacity of crude oil under 1.5 solar days was 24.52 g/g, and the adsorption rate of 5 g crude oil within 4 min was 91.4%. Furthermore, it exhibits remarkable adsorption performance toward common microplastics and nanoplastics. Overall, the CINPs@MXene/PU/PDMS sponge represents a versatile and scalable platform with significant potential for addressing challenges in oily wastewater treatment, solar-assisted oil recovery, and microplastic remediation, thereby contributing to sustainable environmental protection efforts. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

16 pages, 2358 KB  
Article
Thermal-Oxidative Aging Behavior of Waste Engine Oil Bottom-Rejuvenated Asphalt Binder
by Rukai Li, Dawei Shi, Hongmei Zhu and Chuanqiang Li
Appl. Sci. 2026, 16(3), 1234; https://doi.org/10.3390/app16031234 - 25 Jan 2026
Viewed by 123
Abstract
Incorporating waste engine oil bottoms (WEOBs) as rejuvenators into reclaimed asphalt pavement offers a sustainable solution to reduce the consumption of non-renewable resources. To explore the effect of WEOBs on aged asphalt, WEOB-rejuvenated asphalt (WEOB-asphalt) with different thermal-oxidative aging times was prepared. Subsequently, [...] Read more.
Incorporating waste engine oil bottoms (WEOBs) as rejuvenators into reclaimed asphalt pavement offers a sustainable solution to reduce the consumption of non-renewable resources. To explore the effect of WEOBs on aged asphalt, WEOB-rejuvenated asphalt (WEOB-asphalt) with different thermal-oxidative aging times was prepared. Subsequently, viscosity, double-edge-notched tension (DENT), temperature sweep, linear amplitude sweep (LAS), and Fourier transform infrared spectroscopy (FTIR) tests were conducted to investigate the performance of WEOB-asphalt. The results indicate that WEOB-asphalt shows acceptable thermal-oxidative aging ability within 180 min. The WEOB-asphalt experiences a small decrease in critical crack tip opening displacement within a 180 min aging time. Additionally, the temperature sensitivity of WEOB-asphalt is low, and the rutting factors at temperatures of 46 °C and 52 °C can significantly distinguish the thermal-oxidative aging performance of asphalt at different aging degrees. The fatigue life of WEOB-asphalt decreases compared to the original asphalt after 540 min of aging when the strain exceeds 0.04%. Furthermore, WEOB-asphalt displays increased carbonyl and sulfoxide groups, indicating poorer thermal-oxidative aging resistance than the original asphalt. Based on these results, it is suggested that WEOB-asphalt should be used in areas with mild climate conditions to avoid its rapid secondary aging. Full article
Show Figures

Figure 1

27 pages, 4135 KB  
Article
The Model and Burner Development for Crude Glycerol and Used Vegetable Mixing: Cube Mushroom Steaming Oven
by Anumut Siricharoenpanich, Paramust Juntarakod and Paisarn Naphon
Eng 2026, 7(2), 56; https://doi.org/10.3390/eng7020056 - 25 Jan 2026
Viewed by 73
Abstract
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable [...] Read more.
Reducing fuel costs, maximizing waste utilization, and improving energy efficiency are critical challenges in agricultural thermal processes. This study addresses these issues by developing and evaluating a mixed-fuel burner and furnace system for steaming mushroom substrate cubes using crude glycerol and recycled vegetable oil as low-cost alternative energy sources. The experimental investigation assessed boiler thermal efficiency, combustion efficiency, exhaust-gas composition, temperature distribution, steam generation, and combustion-gas dispersion within the furnace. In parallel, analytical modeling of pressure, temperature, and gas-flow behavior was performed to validate the experimental observations. Five fuel compositions were examined, including 100% used vegetable oil, 100% crude glycerol, and blended ratios of 50/50, 25/75, and 10/90 (glycerol/vegetable oil), with all tests conducted in accordance with DIN EN 203-1 standards. The results demonstrate that blending used vegetable oil with glycerol significantly improves flame stability, increases peak combustion temperatures, and suppresses incomplete-combustion byproducts compared with pure glycerol operation. Combustion efficiencies of 90–99% and boiler thermal efficiencies of 72–73% were achieved. Among the tested fuels, the optimal balance between combustion stability, efficiency, and cost was achieved with a 25% glycerol and 75% used vegetable oil mixture. Economic analysis revealed that the proposed mixed-fuel system offers superior viability compared with LPG, reducing annual fuel costs by approximately 50%, shortening steaming time by 2 h per batch, and achieving a payback period of only 3.26 months. These findings confirm the feasibility of the proposed waste-to-energy system for small- and medium-scale agricultural applications. To further enhance sustainability and renewable fuel utilization, future work should focus on improving air–fuel mixing for higher glycerol fractions, scaling the system for larger farms, and extending its application to other agricultural thermal processes. Full article
31 pages, 4473 KB  
Review
Recent Progress in Organic Inhibitors for Anticorrosion in Complex Acid Environments
by Yunfeng Liu, Wei Li, Zhenhua Xiao, Shiwen Ji, Qiang Liu, Yongfan Tang, Yan Zhang and Jiemin Wang
Coatings 2026, 16(2), 150; https://doi.org/10.3390/coatings16020150 - 23 Jan 2026
Viewed by 144
Abstract
Corrosion in complex acid environments, such as high temperatures and acidic downhole conditions, remains a critical threat to well integrity during oil and gas acidizing. This review firstly examines the influence of downhole variables, including temperature, acidity, and steel, on the performance of [...] Read more.
Corrosion in complex acid environments, such as high temperatures and acidic downhole conditions, remains a critical threat to well integrity during oil and gas acidizing. This review firstly examines the influence of downhole variables, including temperature, acidity, and steel, on the performance of organic inhibitors. It analyzes molecular design strategies that enhance the stability and adsorption of traditional inhibitor classes, including Mannich Bases, quaternary ammonium salts, and benzimidazoles, through structural modifications such as rigid heterocycles, extended alkyl chains, and multi-dentate architectures. The discussion extends to synergistic formulations, sustainable alternatives derived from biopolymers or green chemistry, and intelligent responsive systems. Furthermore, the growing role of computational methods, from molecular dynamics simulations to AI-driven molecular design, in accelerating the discovery of high-performance inhibitors is highlighted. Together, these advances offer a comprehensive and forward-looking perspective on developing adaptive, efficient, and environmentally compatible corrosion protection strategies for next-generation hydrocarbon extraction. Full article
(This article belongs to the Special Issue Advanced Coating Protection Technology in the Oil and Gas Industry)
Show Figures

Figure 1

28 pages, 8611 KB  
Article
Interpretable Deep Learning for Forecasting Camellia oleifera Yield in Complex Landscapes by Integrating Improved Spectral Bloom Index and Environmental Parameters
by Tong Shi, Shi Cao, Xia Lu, Lina Ping, Xiang Fan, Meiling Liu and Xiangnan Liu
Remote Sens. 2026, 18(3), 387; https://doi.org/10.3390/rs18030387 - 23 Jan 2026
Viewed by 199
Abstract
Camellia oleifera, a woody oil crop unique to China, plays a crucial role in alleviating the global pressure of edible oil supply and maintaining ecological security. However, it remains challenging to accurately forecast Camellia oleifera yield in complex landscapes using only remote [...] Read more.
Camellia oleifera, a woody oil crop unique to China, plays a crucial role in alleviating the global pressure of edible oil supply and maintaining ecological security. However, it remains challenging to accurately forecast Camellia oleifera yield in complex landscapes using only remote sensing data. The aim of this study is to develop an interpretable deep learning model, namely Shapley Additive Explanations–guided Attention–long short-term memory (SALSTM), for estimating Camellia oleifera yield by integrating an improved spectral bloom index and environmental parameters. The study area is located in Hengyang City in Hunan Province. Sentinel-2 imagery, meteorological observation from 2019 to 2023, and topographic data were collected. First, an improved spectral bloom index (ISBI) was constructed as a proxy for flowering density, while average temperature, precipitation, accumulated temperature, and wind speed were selected to represent environmental regulation variables. Second, a SALSTM model was designed to capture temporal dynamics from multi-source inputs, in which the LSTM module extracts time-dependent information and an attention mechanism assigns time-step-wise weights. Feature-level importance derived from SHAP analysis was incorporated as a guiding prior to inform attention distribution across variable dimensions, thereby enhancing model transparency. Third, model performance was evaluated using root mean square error (RMSE) and coefficient of determination (R2). The result show that the constructed SALSTM model achieved strong predictive performance in predicting Camellia oleifera yield in Hengyang City (RMSE = 0.5738 t/ha, R2 = 0.7943). Feature importance analysis results reveal that ISBI weight > 0.26, followed by average temperature and precipitation from flowering to fruit stages, these features are closely associated with C. oleifera yield. Spatially, high-yield zones were mainly concentrated in the central–southern hilly regions throughout 2019–2023, In contrast, low-yield zones were predominantly distributed in the northern and western mountainous areas. Temporally, yield hotspots exhibited a gradual increasing while low-yield zones showed mild fluctuations. This framework provides an effective and transferable approach for remote sensing-based yield estimation of flowering and fruit-bearing crops in complex landscapes. Full article
Show Figures

Figure 1

20 pages, 5434 KB  
Article
Study of the Cooling Performance of Electric Vehicle Motors Using a Centripetal-Inclined Oil Spray Cooling System
by Jinchi Hou, Jianping Li, Junqiu Li, Jingyi Ruan, Hao Qu and Hanjun Luo
Energies 2026, 19(3), 580; https://doi.org/10.3390/en19030580 - 23 Jan 2026
Viewed by 89
Abstract
Efficient cooling systems are crucial for achieving high efficiency and power density in electric vehicle motors. To enhance motor cooling performance, a novel oil spray cooling system was developed, referred to as the centripetal-inclined oil spray (CIOS) cooling system. The CIOS cooling system [...] Read more.
Efficient cooling systems are crucial for achieving high efficiency and power density in electric vehicle motors. To enhance motor cooling performance, a novel oil spray cooling system was developed, referred to as the centripetal-inclined oil spray (CIOS) cooling system. The CIOS cooling system features axial oil channels evenly distributed on the surface of the stator core, with each channel connected at both ends to stepped oil channels. This configuration allows for direct oil spraying towards the center at specific inclined angles without the need for additional components such as nozzles, oil spray rings, and oil spray tubes, which reduces costs, minimizes the risk of oil leakage, and enhances motor reliability. Electromagnetic and computational fluid dynamic simulations were conducted on the motor with the CIOS cooling system. The results indicated that the CIOS cooling system adversely impacted core losses and torque, while these effects were minimized after optimization, with losses increasing by up to 0.29% and torque decreasing by up to 0.45%. The CIOS cooling system achieved stable oil spraying, forming oil films on the end-winding with a maximum formation rate of 49.4% and an average thickness of 1.56 mm. Compared to the motor with oil spray rings, the motor with the CIOS cooling system exhibited lower temperatures across all components and more uniform cooling. Finally, the cooling performance of the CIOS cooling system was verified through experiments, and the results showed that the measured temperature closely matched the simulated results, with a maximum error of 5.9%. The findings in this study are expected to provide new insights for optimizing oil cooling systems in electric vehicle motors. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

33 pages, 14736 KB  
Article
An Investigation into the Effects of Lubricant Type on Thermal Stability and Efficiency of Cycloidal Reducers
by Milan Vasić, Mirko Blagojević, Milan Banić and Tihomir Mačkić
Lubricants 2026, 14(2), 48; https://doi.org/10.3390/lubricants14020048 - 23 Jan 2026
Viewed by 120
Abstract
Modern power transmission systems are required to meet increasingly stringent demands, including a wide range of transmission ratios, compact dimensions, high precision, energy efficiency, reliability, and thermal stability under dynamic operating conditions. Among the solutions that satisfy these requirements, cycloidal reducers are particularly [...] Read more.
Modern power transmission systems are required to meet increasingly stringent demands, including a wide range of transmission ratios, compact dimensions, high precision, energy efficiency, reliability, and thermal stability under dynamic operating conditions. Among the solutions that satisfy these requirements, cycloidal reducers are particularly prominent, with their application continuously expanding in industrial robotics, computer numerical control (CNC) machines, and military and transportation systems, as well as in the satellite industry. However, as with all mechanical power transmissions, friction in the contact zones of load-carrying elements in cycloidal reducers leads to power losses and an increase in operating temperature, which in turn results in a range of adverse effects. These undesirable phenomena strongly depend on lubrication conditions, namely on the type and properties of the applied lubricant. Although manufacturers’ catalogs provide general recommendations for lubricant selection, they do not address the fundamental tribological mechanisms in the most heavily loaded contact pairs. At the same time, the available scientific literature reveals a significant lack of systematic and experimentally validated studies examining the influence of lubricant type on the energetic and thermal performance of cycloidal reducers. To address this identified research gap, this study presents an analytical and experimental investigation of the effects of different lubricant types—primarily greases and mineral oils—on the thermal stability and efficiency of cycloidal reducers. The results demonstrate that grease lubrication provides lower total power losses and a more stable thermal operating regime compared to oil lubrication, while oil film thickness analyses indicate that the most unfavorable lubrication conditions occur in the contact between the eccentric bearing rollers and the outer raceway. These findings provide valuable guidelines for engineers involved in cycloidal reducer design and lubricant selection under specific operating conditions, as well as deeper insight into the lubricant behavior mechanisms within critical contact zones. Full article
(This article belongs to the Special Issue Novel Tribology in Drivetrain Components)
Back to TopTop