Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,859)

Search Parameters:
Keywords = oil and gas industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6782 KB  
Article
VIIRS Nightfire Super-Resolution Method for Multiyear Cataloging of Natural Gas Flaring Sites: 2012-2025
by Mikhail Zhizhin, Christopher D. Elvidge, Tilottama Ghosh, Gregory Gleason and Morgan Bazilian
Remote Sens. 2026, 18(2), 314; https://doi.org/10.3390/rs18020314 (registering DOI) - 16 Jan 2026
Abstract
We present a new method for mapping global gas flaring using a multiyear spatio-temporal database of VIIRS Nightfire (VNF) nighttime infrared detections from the Suomi NPP, NOAA-20, and NOAA-21 satellites. The method is designed to resolve closely spaced industrial combustion sources and to [...] Read more.
We present a new method for mapping global gas flaring using a multiyear spatio-temporal database of VIIRS Nightfire (VNF) nighttime infrared detections from the Suomi NPP, NOAA-20, and NOAA-21 satellites. The method is designed to resolve closely spaced industrial combustion sources and to produce a stable, physically meaningful flare catalog suitable for long-term monitoring and emissions analysis. The method combines adaptive spatial aggregation of high-temperature detections with a hierarchical clustering that super-resolves individual flare stacks within oil and gas fields. Post-processing yields physically consistent flare footprints and attraction regions, allowing separation of closely spaced sources. Flare clusters are assigned to operational categories (e.g., upstream, midstream, LNG) using prior catalogs combined with AI-assisted expert interpretation. In this step, a multimodal large language model (LLM) provides contextual classification suggestions based on geospatial information, high-resolution daytime imagery, and detection time-series summaries, while final attribution is performed and validated by domain experts. Compared with annual flare catalogs commonly used for national flaring estimates, the new catalog demonstrates substantially improved performance. It is more selective in the presence of intense atmospheric glow from large flares, identifies approximately twice as many active flares, and localizes individual stacks with ~50 m precision, resolving emitters separated by ~400–700 m. For the well-defined class of downstream flares at LNG export facilities, the catalog achieves complete detectability. These improvements support more accurate flare inventories, facility-level attribution, and policy-relevant assessments of gas flaring activity. Full article
(This article belongs to the Section Environmental Remote Sensing)
20 pages, 2354 KB  
Article
Combined Effects of Vegetable Oil-, Micronutrient-, and Activated Flavonoid-Based Biostimulants on Photosynthesis, Nematode Suppression, and Fruit Quality of Cucumber (Cucumis sativus L.)
by Georgia Ouzounidou, Niki-Sophia Antaraki, Antonios Anagnostou, George Daskas and Ioannis-Dimosthenis Adamakis
Plants 2026, 15(2), 274; https://doi.org/10.3390/plants15020274 - 16 Jan 2026
Abstract
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield [...] Read more.
The agricultural industry faces increasing environmental degradation due to the intensive use of conventional chemical fertilizers, leading to water pollution and alterations in soil composition. In addition, root-knot and cyst nematodes are major constraints to cucumber production, causing severe root damage and yield losses worldwide, underscoring the need for sustainable alternatives to conventional fertilization and pest management. Under greenhouse conditions, a four-month cultivation trial evaluated vegetable oil-, micronutrient-, and activated flavonoid-based biostimulants, applying Key Eco Oil® (Miami, USA) via soil drench (every 15 days) combined with foliar sprays of CropBioLife® (Victoria, Australia) and KeyPlex 120® (Miami, USA) (every 7 days). Results showed reduced parasitic nematodes by 66% in soil and decreased gall formation by 41% in roots. Chlorophyll fluorescence and infrared gas analysis revealed higher oxygen-evolving complex efficiency (38%), increased PSII electron transport, improved the fluorescence decrease ratio, also known as the vitality index (Rfd), and higher CO2 assimilation compared to conventional treatments. Processed cucumbers showed higher sugar and nearly double ascorbic acid content, with improved flesh consistency and color. Therefore, the application of these bioactive products significantly reduced nematode infestation while enhancing plant growth and physiological performance, underscoring their potential as sustainable tools for crop cultivation and protection. These results provide evidence that sustainable bioactive biostimulants improve plant resilience, productivity, and nutritional quality, offering also an environmentally sound approach to pest management. Full article
(This article belongs to the Special Issue Plants 2025—from Seeds to Food Security)
Show Figures

Figure 1

47 pages, 2952 KB  
Review
Beyond Waste: Future Sustainable Insights for Integrating Complex Feedstocks into the Global Energy Mix
by Malkan Kadieva, Anton Manakhov, Maxim Orlov, Mustafa Babiker and Abdulaziz Al-Qasim
Energies 2026, 19(2), 413; https://doi.org/10.3390/en19020413 - 14 Jan 2026
Viewed by 64
Abstract
The utilization of sustainable feedstocks offers significant opportunities for innovation in sustainable and efficient processing technologies, targeting a vacuum residue upgrade industry projected to be valued at around USD 26 billion in 2024. This review examines advances in catalytic strategies for upgrading waste-derived [...] Read more.
The utilization of sustainable feedstocks offers significant opportunities for innovation in sustainable and efficient processing technologies, targeting a vacuum residue upgrade industry projected to be valued at around USD 26 billion in 2024. This review examines advances in catalytic strategies for upgrading waste-derived products (plastics, tires) and biomass, in addition to heavy oil feedstocks. Particular emphasis is placed on hydrogen addition pathways, specifically, residue hydroconversion facilitated by dispersed nanocatalysts and waste co-processing methodologies. Beyond nanoscale catalyst design and reaction performance, this work also addresses refinery-level sustainability impacts. The advanced catalytic conversion of heavy oil residue demonstrates superior conversion efficiency, significant coke suppression, and improved carbon utilization, while life cycle and illustrative techno-economic comparisons indicate greenhouse gas reductions and a net economic gain of approximately USD 2–3 per barrel relative to conventional refining under scenarios assuming decarbonized hydrogen production. Co-processing of plastics, tires, and biomass with heavy oil feedstocks is highlighted as a practical and effective approach. Together, these findings outline a rational catalytic pathway toward optimized refining systems. Within the framework of the circular carbon economy, these catalytic processes enable enhanced feedstock utilization, integration of low-carbon hydrogen, and coupling with carbon-capture technologies. Full article
(This article belongs to the Special Issue A Circular Economy Perspective: From Waste to Energy)
Show Figures

Figure 1

18 pages, 4233 KB  
Article
Study on the Displacement and Gas Storage Characteristics of Flue Gas Gravity Flooding in Fractured Tight Oil Reservoirs
by Aiqing Cao, Xirui Zhao, Zhaomin Li, Zhengxiao Xu, Xinge Sun, Mengyuan Zhang, Binfei Li and Fengxiang Yang
Sustainability 2026, 18(2), 832; https://doi.org/10.3390/su18020832 - 14 Jan 2026
Viewed by 145
Abstract
Flue gas is an industrial waste gas produced by the combustion of fossil fuels. Its application in reservoir development can increase oil recovery factor and achieve underground storage of CO2. Flue gas gravity flooding experiments were conducted to clarify the displacement [...] Read more.
Flue gas is an industrial waste gas produced by the combustion of fossil fuels. Its application in reservoir development can increase oil recovery factor and achieve underground storage of CO2. Flue gas gravity flooding experiments were conducted to clarify the displacement and storage characteristics of flue gas gravity flooding. The results show that the experiment can be divided into three stages based on the output characteristics, and the oil recovery factor curve exhibits a stepwise increase. During the pure oil production stage, the crude oil output is approximately half of the total output. When the experimental pressure is 18 MPa, the oil recovery factor is 11.53%. As the experimental pressure increases, the extraction and viscosity reduction effects of the flue gas are enhanced. Therefore, the oil recovery factor gradually increases and the crude oil in the micropores and small pores is better displaced. The storage rate of flue gas is 8.42% at a pressure of 18 MPa. When the experimental pressure increases to 25 MPa, the storage rate of flue gas reaches 19.70%. The increase in permeability and the extension of displacement time can effectively improve the oil recovery factor. The research results provide a new approach for the resource utilization of flue gas and offer theoretical support for flue gas flooding in tight reservoirs. Full article
Show Figures

Figure 1

36 pages, 4465 KB  
Review
Earth-Driven Hydrogen: Integrating Geothermal Energy with Methane Pyrolysis Reactors
by Ayann Tiam, Sarath Poda and Marshall Watson
Hydrogen 2026, 7(1), 10; https://doi.org/10.3390/hydrogen7010010 - 13 Jan 2026
Viewed by 144
Abstract
The increasing global demand for clean hydrogen necessitates production methods that minimize greenhouse gas emissions while being scalable and economically viable. Hydrogen has a very high gravimetric energy density of about 142 MJ/kg, which makes it a very promising energy carrier for many [...] Read more.
The increasing global demand for clean hydrogen necessitates production methods that minimize greenhouse gas emissions while being scalable and economically viable. Hydrogen has a very high gravimetric energy density of about 142 MJ/kg, which makes it a very promising energy carrier for many uses, such as transportation, industrial processes, and fuel cells. Methane pyrolysis has emerged as an attractive low-carbon alternative, decomposing methane (CH4) into hydrogen and solid carbon while circumventing direct CO2 emissions. Still, the process is very endothermic and has always depended on fossil-fuel heat sources, which limits its ability to run without releasing any carbon. This review examines the integration of geothermal energy and methane pyrolysis as a sustainable heat source, with a focus on Enhanced Geothermal Systems (EGS) and Closed-Loop Geothermal (CLG) technologies. Geothermal heat is a stable, carbon-free source of heat that can be used to preheat methane and start reactions. This makes energy use more efficient and lowers operating costs. Also, using flared natural gas from remote oil and gas fields can turn methane that would otherwise be thrown away into useful hydrogen and solid carbon. This review brings together the most recent progress in pyrolysis reactors, catalysts, carbon management, geothermal–thermochemical coupling, and techno-economic feasibility. The conversation centers on major problems and future research paths, with a focus on the potential of geothermal-assisted methane pyrolysis as a viable way to make hydrogen without adding to the carbon footprint. Full article
Show Figures

Figure 1

24 pages, 26435 KB  
Article
Oil and Gas Facility Detection in High-Resolution Remote Sensing Images Based on Oriented R-CNN
by Yuwen Qian, Song Liu, Nannan Zhang, Yuhua Chen, Zhanpeng Chen and Mu Li
Remote Sens. 2026, 18(2), 229; https://doi.org/10.3390/rs18020229 - 10 Jan 2026
Viewed by 144
Abstract
Accurate detection of oil and gas (O&G) facilities in high-resolution remote sensing imagery is critical for infrastructure surveillance and sustainable resource management, yet conventional detectors struggle with severe class imbalance, extreme scale variation, and arbitrary orientation. In this work, we propose OGF Oriented [...] Read more.
Accurate detection of oil and gas (O&G) facilities in high-resolution remote sensing imagery is critical for infrastructure surveillance and sustainable resource management, yet conventional detectors struggle with severe class imbalance, extreme scale variation, and arbitrary orientation. In this work, we propose OGF Oriented R-CNN (Oil and Gas Facility Detection Oriented Region-based Convolutional Neural Network), an enhanced oriented detection model derived from Oriented R-CNN that integrates three improvements: (1) O&G Loss Function, (2) Class-Aware Hard Example Mining (CAHEM) module, and (3) Feature Pyramid Network with Feature Enhancement Attention (FPNFEA). Working in synergy, they resolve the coupled challenges more effectively than any standalone fix and do so without relying on rigid one-to-one matching between modules and individual issues. Evaluated on the O&G facility dataset comprising 3039 high-resolution images annotated with rotated bounding boxes across three classes (well sites: 3006, industrial and mining lands: 692, drilling: 244), OGF Oriented R-CNN achieves a mean average precision (mAP) of 82.9%, outperforming seven state-of-the-art (SOTA) models by margins of up to 27.6 percentage points (pp) and delivering a cumulative gain of +10.5 pp over Oriented R-CNN. Full article
Show Figures

Figure 1

23 pages, 5792 KB  
Review
A Review of Eddy Current In-Line Inspection Technology for Oil and Gas Pipelines
by Xianbing Liang, Chaojie Xu, Xi Zhang and Wenming Jiang
Processes 2026, 14(2), 247; https://doi.org/10.3390/pr14020247 - 10 Jan 2026
Viewed by 182
Abstract
Pipeline infrastructure constitutes the primary transportation system within the oil and gas industry, where operational safety is critically dependent on advanced in-line inspection technologies. This study presents a comprehensive analysis of eddy current testing (ECT) applications for pipeline integrity assessment. The fundamental principles [...] Read more.
Pipeline infrastructure constitutes the primary transportation system within the oil and gas industry, where operational safety is critically dependent on advanced in-line inspection technologies. This study presents a comprehensive analysis of eddy current testing (ECT) applications for pipeline integrity assessment. The fundamental principles of ECT are first elucidated, followed by a systematic comparative evaluation of five key ECT methodologies: conventional, multi-frequency, remote field, pulsed, and array eddy current techniques. The analysis examines their detection mechanisms, technical specifications, comparative advantages, and current developmental trajectories, with particular emphasis on future technological evolution. Subsequently, integrating global pipeline infrastructure development trends and market requirements, representative designs of pipeline inspection tools are detailed and we review relevant industry applications. Finally, persistent challenges in ECT applications are identified, particularly regarding adaptability to complex operational environments, quantification accuracy for micro-scale defects, and predictive capability for defect progression. This study proposes that future ECT equipment development should prioritize multi-modal integration, miniaturization, and intelligent analysis to enable comprehensive pipeline safety management throughout the entire asset lifecycle. Full article
Show Figures

Figure 1

19 pages, 3161 KB  
Article
Pressure-Dependent Microbial Oil Production with Cutaneotrichosporon oleaginosus Converting Lignocellulosic Hydrolysate
by Fabian Herrmann, Nila Kazemian, Emelie Petzel and Dirk Weuster-Botz
Processes 2026, 14(2), 228; https://doi.org/10.3390/pr14020228 - 8 Jan 2026
Viewed by 294
Abstract
Microbial lipid production from renewable carbon sources, particularly lignocellulosic hydrolysates, is a promising alternative to plant-derived oils and fats for food applications, as it can minimize the land use by utilizing agricultural wastes and byproducts from food production. In this context, a standard [...] Read more.
Microbial lipid production from renewable carbon sources, particularly lignocellulosic hydrolysates, is a promising alternative to plant-derived oils and fats for food applications, as it can minimize the land use by utilizing agricultural wastes and byproducts from food production. In this context, a standard approach to prevent oxygen limitation at reduced air gassing rates during long-term aerobic microbial processes is to operate bioreactors at increased pressure for elevating the gas solubility in the fermentation broth. This study investigates the effect of absolute pressures of up to 2.5 bar on the conversion of the carbon sources (glucose, xylose, and acetate), growth, and lipid biosynthesis by Cutaneotrichosporon oleaginosus converting a synthetic nutrient-rich lignocellulosic hydrolysate at low air gassing rates of 0.1 vessel volume per minute (vvm). Increasing pressure delayed xylose uptake, reduced acetic acid consumption, and reduced biomass formation. Lipid accumulation decreased with increasing pressure, except for fermentations at 1.5 bar, which achieved a maximum lipid content of 83.6% (±1.6, w/w) (weight per weight in %). At an absolute pressure of 1.5 bar, a lipid yield from glucose, xylose, and acetic acid of 38% (w/w) was reached after 6 days of fermentation. The pressure sensitivity of C. oleaginosus may pose challenges on an industrial scale due to the dynamic changes in pressure when the yeast cells pass through the bioreactor. Increasing liquid heights in full-scale bioreactors will result in increased hydrostatic pressures at the bottom, substantially reducing lipid yields, e.g., to only 23% (w/w) at 2.0–2.5 bar, as shown in this study. However, further scale-up studies with dynamic pressure regimes (1–2.5 bar) may help to evaluate scale-up feasibility. Full article
Show Figures

Figure 1

21 pages, 4887 KB  
Article
Innovative PDC Coatings for Corrosion Protection in the Oil and Gas Industry
by Lorena Freire, Ignacio Ezpeleta, Mathieu Boidot, Orhun Oguz, Cem Aciksari and Safhak Turan
Appl. Sci. 2026, 16(2), 658; https://doi.org/10.3390/app16020658 - 8 Jan 2026
Viewed by 166
Abstract
One of the major issues in the energy intensive industries (EIIs) operation is corrosion control. Particularly, in refineries, corrosion causes 33% of malfunctions, especially due to the deterioration of the metallic materials and, therefore, the shortening of the useful life of equipment and [...] Read more.
One of the major issues in the energy intensive industries (EIIs) operation is corrosion control. Particularly, in refineries, corrosion causes 33% of malfunctions, especially due to the deterioration of the metallic materials and, therefore, the shortening of the useful life of equipment and installations. To face this problem, novel polymer-derived ceramic (PDC) coatings have been formulated, developed and characterized by physical and chemical tests. Different formulations were analyzed on a lab-scale through accelerated corrosion tests under acidic environments using electrochemical impedance spectroscopy (EIS) to evaluate their corrosion performance when exposed to near-real operating conditions. The optimized formulation will be used as a barrier in stainless-steel pipelines to improve the energy performance of EIIs by reducing energy losses due to excess cooling of components, maximizing the thermal efficiency of equipment, increasing the service life of equipment and reducing operation and maintenance (O&M) costs and downtime. Full article
Show Figures

Figure 1

23 pages, 3596 KB  
Article
Developing New Water-Based Drilling Fluid Additives for Mitigating Filtration Loss at High Pressure and High Temperature
by Sachitha Sulakshana, Foad Faraji, Hossein Habibi, David J. Hughes, Mardin Abdalqadir and Jagar A. Ali
Processes 2026, 14(2), 208; https://doi.org/10.3390/pr14020208 - 7 Jan 2026
Viewed by 207
Abstract
Sustainable oil and gas development demands eco-friendly and cost-effective drilling fluids. Water-based drilling fluids (WBDFs) are preferred over oil-based alternatives for their lower environmental impact, but they often suffer from excessive fluid loss in permeable formations, leading to thick filter cakes, reduced mud [...] Read more.
Sustainable oil and gas development demands eco-friendly and cost-effective drilling fluids. Water-based drilling fluids (WBDFs) are preferred over oil-based alternatives for their lower environmental impact, but they often suffer from excessive fluid loss in permeable formations, leading to thick filter cakes, reduced mud weight, and operational delays. Conventional chemical additives mitigate this issue but pose environmental and health risks due to their toxicity and non-biodegradability. This study explores the use of biodegradable additives extracted from avocado seed (AS), rambutan shell (RS), tamarind shell (TS) and banana trunk (BT) biomass in four particle sizes of 300, 150, 75 and 32 μm to improve filtration control in WBDFs. All four materials were crushed by ball milling and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray (EDX). In accordance with API Spec 13A recommendations, several water-based drilling fluids (WBDFs), including reference fluid and modified fluids formulated with biodegradable additives at a fixed percentage of 3 wt% and varied particle sizes, were prepared. The rheological and filtration properties of the formulated drilling fluids were investigated by conducting industry-standard rheology and filtration tests under LPLT conditions (100 psi, 25 °C) and HPHT conditions (1500 psi, 75 °C). The results show that 32 μm tamarind shell powder delivered the strongest performance, reducing fluid loss by 82.4% under HPHT conditions and producing the thinnest mud cake (0.33 mm); it also reduced fluid loss by 72.8% under LPLT conditions, outperforming the other biodegradable materials. Full article
Show Figures

Figure 1

15 pages, 4352 KB  
Article
Development of the CO2-Resistant Gel by Designing a Novel CO2-Responsive Polymer for Channel Control in Low-Permeability Reservoirs
by Xiangjuan Meng, Xinjie Xu, Yining Wu, Zhenfeng Ma, Herui Fan, Ziyi Wang, Wenhao Ren, Zhongzheng Xu and Mingwei Zhao
Gels 2026, 12(1), 57; https://doi.org/10.3390/gels12010057 - 7 Jan 2026
Viewed by 200
Abstract
To address the problem of serious gas channeling during CO2 flooding in low-permeability reservoirs, which leads to poor oil recovery, this study developed a CO2-resistant gel using a novel CO2-responsive polymer (ADA) for gas channel control. The ADA [...] Read more.
To address the problem of serious gas channeling during CO2 flooding in low-permeability reservoirs, which leads to poor oil recovery, this study developed a CO2-resistant gel using a novel CO2-responsive polymer (ADA) for gas channel control. The ADA polymer was synthesized via free-radical copolymerization of acrylamide (AM), dimethylaminopropyl methacrylamide (DMAPMA), and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), which introduced protonatable tertiary-amine groups and sulfonate moieties into the polymer backbone. Comprehensive characterizations confirmed the designed structure and adequate thermal stability of the ADA polymer. Rheological tests demonstrated that the ADA polymer solution exhibits significant CO2-triggered viscosity enhancement and excellent shear resistance. When crosslinked with phenolic resin, the resulting ADA gel showed outstanding CO2 tolerance under simulated reservoir conditions (110 °C, 10 MPa). After 600 s of CO2 exposure, the ADA gel retained over 99% of its initial viscosity, whereas a conventional HPAM-based industrial gel degraded to 61% of its original viscosity. The CO2-resistance mechanism involves protonation of tertiary amines to form quaternary ammonium salts, which electrostatically interact with sulfonate groups, creating a reinforced dual-crosslinked network that effectively protects the gel from H+ ion attack. Core flooding experiments confirmed its ability to enhance oil recovery by plugging high-permeability channels and diverting flow, achieving a final recovery of up to 48.5% in heterogeneous cores. This work provides a novel gel system for improving sweep efficiency and storage security during CO2 flooding in low-permeability reservoirs. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

21 pages, 2489 KB  
Article
Assessment of the Yield and Bioactive Compounds of Jambu (Acmella oleracea) Flowers and Leaves Extracted with CO2, 1,1,1,2-Tetrafluoroethane (R-134a), and Propane
by Marcos Antônio Avibar Ruzza, Raquel Laina Barbosa dos Santos, Nikolas Ramos Bernardes, Carlos Toshiyuki Hiranobe, Dener da Silva Souza, Michael Jones da Silva, Erivaldo Antônio da Silva, Renivaldo José dos Santos and Leandro Ferreira-Pinto
ChemEngineering 2026, 10(1), 9; https://doi.org/10.3390/chemengineering10010009 - 7 Jan 2026
Viewed by 159
Abstract
This study compares the extraction of oils and bioactive compounds from Acmella oleracea using supercritical CO2, pressurized R-134a, and propane under systematically designed experimental conditions. Extraction yields ranged from 1.16–3.35% for CO2, 1.90–2.35% for R-134a, and 1.30–5.42% for propane. [...] Read more.
This study compares the extraction of oils and bioactive compounds from Acmella oleracea using supercritical CO2, pressurized R-134a, and propane under systematically designed experimental conditions. Extraction yields ranged from 1.16–3.35% for CO2, 1.90–2.35% for R-134a, and 1.30–5.42% for propane. Propane achieved the highest yields and the fastest plateau (~35 min), producing extracts dominated by unsaturated fatty acids (linoleic acid ≈ 85%). Supercritical CO2 generated the most diverse chemical profile, combining alkamides (spilanthol), triterpenoids (β-amyrone), and lipids, with a plateau at approximately 50 min, whereas R-134a selectively enriched β-amyrin acetate (~70%) with intermediate kinetics (~45 min). These yield values are typical for non-oilseed species, in which the low natural abundance of the target metabolites renders solvent selectivity more relevant than the total extract mass. Statistical modeling (R2 > 0.96) confirmed that pressure was the main driver of CO2 and propane extraction, whereas temperature dominated R-134a performance. The distinct selectivity patterns revealed by Gas chromatography–mass spectrometry (GC-MS) indicate that each solvent generates compositionally different extracts aligned with specific industrial applications in cosmetics, pharmaceuticals, and nutraceuticals. The unified comparison of these three fluids under a consistent experimental design provides practical insights for rational solvent selection: propane favors unsaturated lipids, CO2 preserves multifunctional compositions, and R-134a targets triterpenoid esters, supporting the economic feasibility of producing enriched, solvent-free plant extracts. Full article
Show Figures

Figure 1

19 pages, 5648 KB  
Article
A Composite Material Repair Structure: For Defect Repair of Branch Pipe Fillet Welds in Oil and Gas Pipelines
by Liangshuo Zhao, Yingjie Qiao, Zhongtian Yin, Bo Xie, Bangyu Wang, Jingxue Zhou, Siyu Chen, Zheng Wang, Xiaodong Wang, Xiaohong Zhang, Xiaotian Bian, Xin Zhang, Yan Wu and Peng Wang
Materials 2026, 19(2), 222; https://doi.org/10.3390/ma19020222 - 6 Jan 2026
Viewed by 197
Abstract
In the oil and gas pipeline industry, numerous small-diameter branch pipe fillet welds exist, which are prone to stress concentration because of diverse geometric shapes. The internal welding defects within these welds pose severe hazards to safe production. Specifically, the irregular geometry often [...] Read more.
In the oil and gas pipeline industry, numerous small-diameter branch pipe fillet welds exist, which are prone to stress concentration because of diverse geometric shapes. The internal welding defects within these welds pose severe hazards to safe production. Specifically, the irregular geometry often leads to internal root defects where the weld metal fails to fully penetrate the joint or fuse with the base material (referred to as incomplete penetration and incomplete fusion). This study developed a GF-CF-GF (CF is carbon fiber, GF is glass fiber) sandwich composite reinforcement structure for pipe fittings with these specific internal defects (main pipe: Φ323.9 × 12.5 mm; branch pipe: Φ76 × 5 mm) through a combination of finite element analysis (FEA) and burst test verification. The inherent correlation between structural factors and pressure-bearing capacity was revealed by analyzing the influence of defect sizes. Based on FEA, the repair layer coverage should be designed to be within 400 mm from the defect along the main pipe wall direction and within 100 mm from the defect along the branch pipe wall direction, with required thicknesses of 5.6 mm for incomplete penetration and 3.2 mm for incomplete fusion. Analysis of the actual burst test pressure curve showed that the elastic-plastic transition interval of the repaired pipes increased by approximately 2 MPa compared to normal undamaged pipes, and their pressure-bearing capacities rose by 1.57 MPa (incomplete penetration) and 1.76 MPa (incomplete fusion). These results demonstrate the feasibility of the proposed reinforcement design, which has potential applications in the safety and integrity of oil and gas transportation. Full article
Show Figures

Graphical abstract

24 pages, 3551 KB  
Article
Financial Performance Outcomes of AI-Adoption in Oil and Gas: The Mediating Role of Operational Efficiency
by Eldar Mardanov, Inese Mavlutova and Biruta Sloka
J. Risk Financial Manag. 2026, 19(1), 44; https://doi.org/10.3390/jrfm19010044 - 6 Jan 2026
Viewed by 304
Abstract
The oil and gas sector operates in a high-risk environment defined by capital intensity, regulatory uncertainty, and volatile commodity prices. Although Artificial Intelligence (AI) is widely promoted as a lever for profitability, the mechanisms through which AI adoption translate into financial outcomes remain [...] Read more.
The oil and gas sector operates in a high-risk environment defined by capital intensity, regulatory uncertainty, and volatile commodity prices. Although Artificial Intelligence (AI) is widely promoted as a lever for profitability, the mechanisms through which AI adoption translate into financial outcomes remain insufficiently specified in the oil and gas literature. Grounded in the Resource-Based View and Technology Adoption Theory, this study combines bibliometric mapping of 201 Scopus-indexed publications (2010–2025) with a focused comparative case analysis of important players (BP and Shell), based on publicly reported operational and financial indicators (e.g., operating cost, uptime-related evidence, and return on average capital employed—ROACE). Keyword co-occurrence analysis identifies five thematic clusters showing that efficiency-oriented AI use cases (optimization, automation, predictive maintenance, and digital twins) dominate the research landscape. A thematic synthesis of five highly cited studies further indicates that AI-enabled operational improvements are most consistently linked to measurable cost, productivity, or revenue effects. Case evidence suggests that large-scale predictive maintenance and digital twin programs can support capital efficiency by reducing unplanned downtime and structural costs, contributing to more resilient ROACE trajectories amid price swings. Overall, the findings support a conceptual pathway in which operational efficiency is a primary channel through which AI can create financial value, while underscoring the need for future firm-level empirical mediation tests using standardized KPIs. Full article
Show Figures

Figure 1

51 pages, 4344 KB  
Review
Mechanistic Pathways and Product Selectivity in Pyrolysis of PE, PP and PVC: A Foundation for Applied Chemistry in Europe
by Tim Tetičkovič, Dušan Klinar, Klavdija Rižnar and Darja Pečar
Molecules 2026, 31(2), 202; https://doi.org/10.3390/molecules31020202 - 6 Jan 2026
Viewed by 479
Abstract
Plastic streams dominated by polyethylene (PE) including PE HD/MD (High Density/Medium Density) and PE LD/LLD (Low Density/Linear Low Density), polypropylene (PP), and polyvinyl chloride (PVC) across Europe demand a design framework that links synthesis with end of life reactivity, supporting circular economic goals [...] Read more.
Plastic streams dominated by polyethylene (PE) including PE HD/MD (High Density/Medium Density) and PE LD/LLD (Low Density/Linear Low Density), polypropylene (PP), and polyvinyl chloride (PVC) across Europe demand a design framework that links synthesis with end of life reactivity, supporting circular economic goals and European Union waste management targets. This work integrates polymerization derived chain architecture and depolymerization mechanisms to guide selective valorization of commercial plastic wastes in the European context. Catalytic topologies such as Bronsted or Lewis acidity, framework aluminum siting, micro and mesoporosity, initiators, and strategies for process termination are evaluated under relevant variables including temperature, heating rate, vapor residence time, and pressure as encountered in industrial practice throughout Europe. The analysis demonstrates that polymer chain architecture constrains reaction pathways and attainable product profiles, while additives, catalyst residues, and contaminants in real waste streams can shift radical populations and observed selectivity under otherwise similar operating windows. For example, strong Bronsted acidity and shape selective micropores favor the formation of C2 to C4 olefins and Benzene, Toluene, and Xylene (BTX) aromatics, while weaker acidity and hierarchical porosity help preserve chain length, resulting in paraffinic oils and waxes. Increasing mesopore content shortens contact times and limits undesired secondary cracking. The use of suitable initiators lowers the energy threshold and broadens processing options, whereas diffusion management and surface passivation help reduce catalyst deactivation. In the case of PVC, continuous hydrogen chloride removal and the use of basic or redox co catalysts or ionic liquids reduce the dehydrochlorination temperature and improve fraction purity. Staged dechlorination followed by subsequent residue cracking is essential to obtain high quality output and prevent the release of harmful by products within European Union approved processes. Framing process design as a sequence that connects chain architecture, degradation chemistry, and operating windows supports mechanistically informed selection of catalysts, severity, and residence time, while recognizing that reported selectivity varies strongly with reactor configuration and feed heterogeneity and that focused comparative studies are required to validate quantitative structure to selectivity links. In European post consumer sorting chains, PS and PC are frequently handled as separate fractions or appear in residues with distinct processing routes, therefore they are not included in the polymer set analyzed here. Polystyrene and polycarbonate are outside the scope of this review because they are commonly handled as separate fractions and are typically optimized toward different product slates than the gas, oil, and wax focused pathways emphasized here. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop