Abstract
Pipeline infrastructure constitutes the primary transportation system within the oil and gas industry, where operational safety is critically dependent on advanced in-line inspection technologies. This study presents a comprehensive analysis of eddy current testing (ECT) applications for pipeline integrity assessment. The fundamental principles of ECT are first elucidated, followed by a systematic comparative evaluation of five key ECT methodologies: conventional, multi-frequency, remote field, pulsed, and array eddy current techniques. The analysis examines their detection mechanisms, technical specifications, comparative advantages, and current developmental trajectories, with particular emphasis on future technological evolution. Subsequently, integrating global pipeline infrastructure development trends and market requirements, representative designs of pipeline inspection tools are detailed and we review relevant industry applications. Finally, persistent challenges in ECT applications are identified, particularly regarding adaptability to complex operational environments, quantification accuracy for micro-scale defects, and predictive capability for defect progression. This study proposes that future ECT equipment development should prioritize multi-modal integration, miniaturization, and intelligent analysis to enable comprehensive pipeline safety management throughout the entire asset lifecycle.