Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (827)

Search Parameters:
Keywords = ocular therapeutics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3613 KiB  
Review
Epigenetic Alterations in Age-Related Macular Degeneration: Mechanisms and Implications
by Dana Kisswani, Christina Carroll, Fatima Valdes-Mora and Matt Rutar
Int. J. Mol. Sci. 2025, 26(15), 7601; https://doi.org/10.3390/ijms26157601 - 6 Aug 2025
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease [...] Read more.
Age-related macular degeneration (AMD) is one of the leading causes of irreversible vision loss among the elderly, and is influenced by a combination of genetic and environmental risk factors. While genetic associations in AMD are well-established, the molecular mechanisms underlying disease onset and progression remain poorly understood. A growing body of evidence suggests that epigenetic modifications may serve as a potential missing link regulating gene–environment interactions. This review incorporates recent findings on DNA methylation, including both hypermethylation and hypomethylation patterns affecting genes such as silent mating type information regulation 2 homolog 1 (SIRT1), glutathione S-transferase isoform (GSTM), and SKI proto-oncogene (SKI), which may influence key pathophysiological drivers of AMD. We also examine histone modification patterns, chromatin accessibility, the status of long non-coding RNAs (lncRNAs) in AMD pathogenesis and in regulating pathways pertinent to the pathophysiology of the disease. While the field of ocular epigenetics remains in its infancy, accumulating evidence to date points to a burgeoning role for epigenetic regulation in AMD, pre-clinical studies have yielded promising findings for the prospect of epigenetics as a future therapeutic avenue. Full article
Show Figures

Figure 1

29 pages, 16016 KiB  
Article
An Eye Movement Monitoring Tool: Towards a Non-Invasive Device for Amblyopia Treatment
by Juan Camilo Castro-Rizo, Juan Pablo Moreno-Garzón, Carlos Arturo Narváez Delgado, Nicolas Valencia-Jimenéz, Javier Ferney Castillo García and Alvaro Alexander Ocampo-Gonzalez
Sensors 2025, 25(15), 4823; https://doi.org/10.3390/s25154823 - 6 Aug 2025
Abstract
Amblyopia, commonly affecting children aged 0–6 years, results from disrupted visual processing during early development and often leads to reduced visual acuity in one eye. This study presents the development and preliminary usability assessment of a non-invasive ocular monitoring device designed to support [...] Read more.
Amblyopia, commonly affecting children aged 0–6 years, results from disrupted visual processing during early development and often leads to reduced visual acuity in one eye. This study presents the development and preliminary usability assessment of a non-invasive ocular monitoring device designed to support oculomotor engagement and therapy adherence in amblyopia management. The system incorporates an interactive maze-navigation task controlled via gaze direction, implemented during monocular and binocular sessions. The device tracks lateral and anteroposterior eye movements and generates visual reports, including displacement metrics and elliptical movement graphs. Usability testing was conducted with a non-probabilistic adult sample (n = 15), including individuals with and without amblyopia. The System Usability Scale (SUS) yielded an average score of 75, indicating good usability. Preliminary tests with two adults diagnosed with amblyopia suggested increased eye displacement during monocular sessions, potentially reflecting enhanced engagement rather than direct therapeutic improvement. This feasibility study demonstrates the device’s potential as a supportive, gaze-controlled platform for visual engagement monitoring in amblyopia rehabilitation. Future clinical studies involving pediatric populations and integration of visual stimuli modulation are recommended to evaluate therapeutic efficacy and adaptability for early intervention. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Graphical abstract

19 pages, 1856 KiB  
Article
Combination Therapy with Trehalose and Hyaluronic Acid Restores Tear Lipid Layer Functionality by Ameliorating Inflammatory Response Protein Markers on the Ocular Surface of Dry Eye Patients
by Natarajan Perumal, Caroline Manicam, Eunjin Jeong, Sarah Runde, Norbert Pfeiffer and Franz H. Grus
J. Clin. Med. 2025, 14(15), 5525; https://doi.org/10.3390/jcm14155525 - 5 Aug 2025
Abstract
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a [...] Read more.
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a longitudinal clinical study and subsequent elucidation of the tear proteome and cell signaling changes. Methods: Participants were classified as moderate to severe DED (DRY, n = 35) and healthy (CTRL, n = 23) groups. Specific DED subgroups comprising evaporative (DRYlip) and aqueous-deficient with DRYlip (DRYaqlip) were also classified. Only DED patients received Thealoz® Duo. All participants were clinically examined before (day 0, T1) and after the application of Thealoz® Duo at day 28 (T2) and day 56 (T3). Next, 174 individual tear samples from all groups at three time-points were subjected to proteomics analysis. Results: Clinically, Thealoz® Duo significantly improved the ocular surface disease index at T2 vs. T1 (DRY, p = 1.4 × 10−2; DRYlip, p = 9.2 × 10−3) and T3 vs. T1 (DRY, p = 2.1 × 10−5; DRYlip, p = 1.2 × 10−4), and the tear break-up time at T3 vs. T1 (DRY, p = 3.8 × 10−2; DRYlip, p = 1.4 × 10−2). Thealoz® Duo significantly ameliorated expression of inflammatory response proteins (p < 0.05) at T3, which was observed at T1 (DRY, p = 3.4 × 10−4; DRYlip, p = 7.1 × 10−3; DRYaqlip, p = 2.7 × 10−8). Protein S100-A8 (S100A8), Alpha-1-antitrypsin (SERPINA1), Annexin A1 (ANXA1), and Apolipoprotein A-I (APOA1) were found to be significantly reduced in all the DED subgroups. The application of Thealoz® Duo showed the therapeutic characteristic of the anti-inflammatory mechanism by promoting the expression of (Metalloproteinase inhibitor 1) TIMP1 in all the DED subgroups. Conclusions: Thealoz® Duo substantially improved the DED symptoms and restored the functionality of the tear lipid layer to near normal in DRYlip and DRY patients by ameliorating inflammation. Notably, this study unravels the novel mechanistic alterations underpinning the healing effects of Thealoz® Duo in DED subgroups in a time-dependent manner, which supports the improvement in corresponding clinical attributes. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

35 pages, 1115 KiB  
Review
Resveratrol as a Novel Therapeutic Approach for Diabetic Retinopathy: Molecular Mechanisms, Clinical Potential, and Future Challenges
by Snježana Kaštelan, Suzana Konjevoda, Ana Sarić, Iris Urlić, Ivana Lovrić, Samir Čanović, Tomislav Matejić and Ana Šešelja Perišin
Molecules 2025, 30(15), 3262; https://doi.org/10.3390/molecules30153262 - 4 Aug 2025
Abstract
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut [...] Read more.
Diabetic retinopathy (DR) is a progressive, multifactorial complication of diabetes and one of the major global causes of visual impairment. Its pathogenesis involves chronic hyperglycaemia-induced oxidative stress, inflammation, mitochondrial dysfunction, neurodegeneration, and pathological angiogenesis, as well as emerging systemic contributors such as gut microbiota dysregulation. While current treatments, including anti-vascular endothelial growth factor (anti-VEGF) agents, corticosteroids, and laser photocoagulation, have shown clinical efficacy, they are largely limited to advanced stages of DR, require repeated invasive procedures, and do not adequately address early neurovascular and metabolic abnormalities. Resveratrol (RSV), a naturally occurring polyphenol, has emerged as a promising candidate due to its potent antioxidant, anti-inflammatory, neuroprotective, and anti-angiogenic properties. This review provides a comprehensive analysis of the molecular mechanisms by which RSV exerts protective effects in DR, including modulation of oxidative stress pathways, suppression of inflammatory cytokines, enhancement of mitochondrial function, promotion of autophagy, and inhibition of pathological neovascularisation. Despite its promising pharmacological profile, the clinical application of RSV is limited by poor aqueous solubility, rapid systemic metabolism, and low ocular bioavailability. Various routes of administration, including intravitreal injection, topical instillation, and oral and sublingual delivery, have been investigated to enhance its therapeutic potential. Recent advances in drug delivery systems, including nanoformulations, liposomal carriers, and sustained-release intravitreal implants, offer potential strategies to address these challenges. This review also explores RSV’s role in combination therapies, its potential as a disease-modifying agent in early-stage DR, and the relevance of personalised medicine approaches guided by metabolic and genetic factors. Overall, the review highlights the therapeutic potential and the key translational challenges in positioning RSV as a multi-targeted treatment strategy for DR. Full article
Show Figures

Figure 1

22 pages, 2520 KiB  
Review
The Advance of Single-Cell RNA Sequencing Applications in Ocular Physiology and Disease Research
by Ying Cheng, Sihan Gu, Xueqing Lu and Cheng Pei
Biomolecules 2025, 15(8), 1120; https://doi.org/10.3390/biom15081120 - 4 Aug 2025
Viewed by 65
Abstract
The eye, a complex organ essential for visual perception, is composed of diverse cell populations with specialized functions; however, the complex interplay between these cellular components and their underlying molecular mechanisms remains largely elusive. Traditional biotechnologies, such as bulk RNA sequencing and in [...] Read more.
The eye, a complex organ essential for visual perception, is composed of diverse cell populations with specialized functions; however, the complex interplay between these cellular components and their underlying molecular mechanisms remains largely elusive. Traditional biotechnologies, such as bulk RNA sequencing and in vitro models, are limited in capturing cellular heterogeneity or accurately mimicking the complexity of human ophthalmic diseases. The advent of single-cell RNA sequencing (scRNA-seq) has revolutionized ocular research by enabling high-resolution analysis at the single-cell level, uncovering cellular heterogeneity, and identifying disease-specific gene profiles. In this review, we provide a review of scRNA-seq application advancement in ocular physiology and pathology, highlighting its role in elucidating the molecular mechanisms of various ocular diseases, including myopia, ocular surface and corneal diseases, glaucoma, uveitis, retinal diseases, and ocular tumors. By providing novel insights into cellular diversity, gene expression dynamics, and cell–cell interactions, scRNA-seq has facilitated the identification of novel biomarkers and therapeutic targets, and the further integration of scRNA-seq with other omics technologies holds promise for deepening our understanding of ocular health and diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 1159 KiB  
Review
Neuroinflammation in Radiation Maculopathy: A Pathophysiologic and Imaging Perspective
by Giulia Midena, Raffaele Parrozzani, Marisa Bruno, Elisabetta Pilotto and Edoardo Midena
Cancers 2025, 17(15), 2528; https://doi.org/10.3390/cancers17152528 - 31 Jul 2025
Viewed by 232
Abstract
Background: Radiation maculopathy (RM) is a delayed, sight-threatening complication of ocular radiotherapy. Traditionally regarded as a pure microvascular disease, emerging evidence points to the central role played by retinal neuroinflammation, driven by microglial activation and cytokine dysregulation affecting both the retina and the [...] Read more.
Background: Radiation maculopathy (RM) is a delayed, sight-threatening complication of ocular radiotherapy. Traditionally regarded as a pure microvascular disease, emerging evidence points to the central role played by retinal neuroinflammation, driven by microglial activation and cytokine dysregulation affecting both the retina and the choroid. Hyperreflective retinal foci, neuroinflammatory in origin (I-HRF), visualized through advanced imaging modalities such as spectral domain optical coherence tomography (OCT), have been identified as early and critical biomarkers of both preclinical and clinical retinal neuroinflammation. Materials and Methods: This review synthesizes findings from experimental and clinical studies to explore the pathophysiology of neuroinflammation and the associated imaging parameters in RM. Results: The integration of experimental and clinical evidence specifically underscores the significance of I-HRF as an early indicator of neuroinflammation in RM. OCT enables the identification and quantification of these biomarkers, which are linked to microglial activation and cytokine dysregulation. Conclusions: The pathophysiology of RM has evolved from a predominantly vascular condition to one strongly secondary to neuroinflammatory mechanisms involving the retina and choroid. In particular, I-HRF, as early biomarkers, offers the potential for preclinical diagnosis and therapeutic intervention, paving the way for improved management of this sight-threatening complication. Full article
(This article belongs to the Special Issue Advances in Choroidal Melanoma: From Treatment to Prognosis)
Show Figures

Figure 1

17 pages, 363 KiB  
Systematic Review
Efficacy of GS-441524 for Feline Infectious Peritonitis: A Systematic Review (2018–2024)
by Emma Gokalsing, Joana Ferrolho, Mark S. Gibson, Hugo Vilhena and Sofia Anastácio
Pathogens 2025, 14(7), 717; https://doi.org/10.3390/pathogens14070717 - 19 Jul 2025
Viewed by 1057
Abstract
Feline infectious peritonitis (FIP) is a severe viral disease with a very high fatality rate. GS-441524 is an adenosine analogue that acts as an antiviral and has shown promise in FIP treatment. However, its commercialization in some regions is not yet authorized. To [...] Read more.
Feline infectious peritonitis (FIP) is a severe viral disease with a very high fatality rate. GS-441524 is an adenosine analogue that acts as an antiviral and has shown promise in FIP treatment. However, its commercialization in some regions is not yet authorized. To evaluate the efficacy of GS-441524 based on the published literature, a systematic review was conducted. This systematic review was conducted using PubMed, ScienceDirect, and Google Scholar for studies published from 2018 onwards. Following PRISMA guidelines, 11 studies (totaling 650 FIP cases treated with GS-441524 alone or in combination) were included. Therapeutic efficacy was assessed by FIP form, clinical signs, and dosage. The overall treatment success rate was 84.6%. This rate was higher when GS-441524 was combined with other antivirals and lower in cases of wet FIP or those with neurological complications. Combination therapy with other antivirals may improve outcomes in complicated FIP cases, although further studies are needed. The GS-441524 dosages associated with the best outcomes were 5–10 mg/kg once daily (or equivalent subcutaneous dose), adjusted for FIP type, severity, and presence of neurological/ocular signs. Higher dosages can be used for severe cases or to prevent relapse, but splitting into twice-daily dosing may be necessary to avoid absorption issues. In summary, this synthesis indicates that GS-441524 is a highly promising treatment for FIP, with a high success rate among treated cases. Nevertheless, randomized controlled trials are needed to establish evidence-based therapeutic protocols tailored to different FIP presentations. Full article
Show Figures

Figure 1

26 pages, 6869 KiB  
Review
The Long-Standing Problem of Proliferative Retinopathies: Current Understanding and Critical Cues
by Maurizio Cammalleri and Paola Bagnoli
Cells 2025, 14(14), 1107; https://doi.org/10.3390/cells14141107 - 18 Jul 2025
Viewed by 311
Abstract
Retinal ischemia is implicated in ocular diseases involving aberrant neovessel proliferation that characterizes proliferative retinopathies. Their therapy still remains confined to the intravitreal administration of anti-vascular endothelial growth factor (VEGF) medication, which is limited by side effects and progressive reduction in efficacy. Mimicking [...] Read more.
Retinal ischemia is implicated in ocular diseases involving aberrant neovessel proliferation that characterizes proliferative retinopathies. Their therapy still remains confined to the intravitreal administration of anti-vascular endothelial growth factor (VEGF) medication, which is limited by side effects and progressive reduction in efficacy. Mimicking neovascular diseases in rodents, although of great help for translating fundamental mechanistic findings and assessing therapeutic potential in humans, is limited by the rodent’s short life span, which prevents retinal vessel proliferation over time. However, the oxygen-induced retinopathy (OIR) model, which mimics retinopathy of prematurity, seems to meet some criteria that are common to proliferative retinopathies. The present review provides insight into preclinical models and their suitability to mimic proliferative retinopathies. Further considerations will be applied to emerging approaches and advanced methodologies for the management of proliferative retinopathies, leading to the identification of new therapeutic targets, including our contribution in the field. Major emphasis is given to the possibility of using systemic therapies either alone or in combination with intravitreal anti-VEGF administration to maximize clinical benefits by combining drugs with different modes of action. This review is concluded by an in-depth discussion on future advancements and a critical view of preclinical finding translatability. Despite the major effort of preclinical and clinical research to develop novel therapies, the blockade of VEGF activity still remains the only treatment for proliferative retinopathies for more than twenty years since its first therapeutic application. Full article
Show Figures

Graphical abstract

29 pages, 2844 KiB  
Review
Hsp90 pan and Isoform-Selective Inhibitors as Sensitizers for Cancer Immunotherapy
by Shiying Jia, Neeraj Maurya, Brian S. J. Blagg and Xin Lu
Pharmaceuticals 2025, 18(7), 1025; https://doi.org/10.3390/ph18071025 - 10 Jul 2025
Viewed by 801
Abstract
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that regulate the stability and maturation of numerous client proteins implicated in the regulation of cancer hallmarks. Despite the potential of pan-Hsp90 inhibitors as anticancer therapeutics, their clinical development has been hindered [...] Read more.
The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that regulate the stability and maturation of numerous client proteins implicated in the regulation of cancer hallmarks. Despite the potential of pan-Hsp90 inhibitors as anticancer therapeutics, their clinical development has been hindered by on-target toxicities, particularly ocular and cardiotoxic effects, as well as the induction of pro-survival, compensatory heat shock responses. Together, these and other complications have prompted the development of isoform-selective Hsp90 inhibitors. In this review, we discuss the molecular bases for Hsp90 function and inhibition and emphasize recent advances in isoform-selective targeting. Importantly, we highlight how Hsp90 inhibition can sensitize tumors to cancer immunotherapy by enhancing antigen presentation, reducing immune checkpoint expression, remodeling the tumor microenvironment, and promoting innate immune activation. Special focus is given to Hsp90β-selective inhibitors, which modulate immunoregulatory pathways without eliciting the deleterious effects observed with pan-inhibition. Preclinical and early clinical data support the integration of Hsp90 inhibitors with immune checkpoint blockade and other immunotherapeutic modalities to overcome resistance mechanisms in immunologically cold tumors. Therefore, the continued development of isoform-selective Hsp90 inhibitors offers a promising avenue to potentiate cancer immunotherapy with improved efficacy. Full article
Show Figures

Graphical abstract

19 pages, 2490 KiB  
Article
Linker-Free Hyaluronic Acid-Dexamethasone Conjugates: pH-Responsive Nanocarriers for Targeted Anti-Inflammatory Therapy
by Anton N. Bokatyi, Natallia V. Dubashynskaya, Igor V. Kudryavtsev, Andrey S. Trulioff, Artem A. Rubinstein, Elena N. Vlasova and Yury A. Skorik
Int. J. Mol. Sci. 2025, 26(14), 6608; https://doi.org/10.3390/ijms26146608 - 10 Jul 2025
Viewed by 625
Abstract
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we [...] Read more.
The covalent conjugation of pharmaceutical compounds to polymeric carriers represents an effective strategy for enhancing drug properties, including improved bioavailability, targeted delivery, and sustained release, while reducing systemic toxicity and adverse effects. By exploiting the physicochemical characteristics of biopolymers—particularly molecular charge and weight—we engineered a polymeric platform for glucocorticoid delivery with precisely controlled parameters including particle size, surface charge, targeting capability, and release kinetics. This study reports a linker-free synthesis of hyaluronic acid-dexamethasone (HA-DEX) conjugates through Steglich esterification, catalyzed by 4-dimethylaminopyridine (DMAP), which facilitates the acylation of sterically hindered alcohols. The reaction specifically couples carboxyl groups of hyaluronic acid with the C21 hydroxyl group of dexamethasone. Incorporation of hydrophobic dexamethasone moieties induced self-assembly into nanoparticles featuring a hydrophobic core and negatively charged hydrophilic shell (−20 to −25 mV ζ-potential). In vitro characterization revealed pH-dependent release profiles, with 80–90% dexamethasone liberated in mildly acidic phosphate buffer (pH 5.2) versus 50–60% in phosphate-buffered saline (pH 7.4) over 35 days, demonstrating both sustained release and inflammation-responsive behavior. The conjugates exhibited potent anti-inflammatory activity in a human tumor necrosis factor-α (TNFα)-induced inflammation model. These findings position HA-DEX conjugates as promising candidates for targeted glucocorticoid delivery to specific anatomical sites including ocular, articular, and tympanic tissues, where their combination of CD44-targeting capability, enhanced permeability and retention effects, and stimulus-responsive release can optimize therapeutic outcomes while minimizing off-target effects. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

12 pages, 376 KiB  
Article
Insulin Nanoemulsion Eye Drops for the Treatment of Dry Eye Disease in Sjögren’s Disease: A Randomized Clinical Trial Phase I/II
by Mateus Maia Marzola, Diego Rocha Gutierrez, Beatriz Carneiro Cintra, Adriana de Andrade Batista Murashima, Luciana Facco Dalmolin, Denny Marcos Garcia, Renata Fonseca Vianna Lopez, Fabiola Reis Oliveira and Eduardo Melani Rocha
Vision 2025, 9(3), 54; https://doi.org/10.3390/vision9030054 - 9 Jul 2025
Viewed by 565
Abstract
Dry eye disease (DED) is a hallmark of primary Sjögren’s disease (SjD) and often resists conventional treatments like lubricant eye drops. Insulin nanoemulsions offer a potential solution by improving drug penetration and retention on the ocular surface. In animal models, insulin has shown [...] Read more.
Dry eye disease (DED) is a hallmark of primary Sjögren’s disease (SjD) and often resists conventional treatments like lubricant eye drops. Insulin nanoemulsions offer a potential solution by improving drug penetration and retention on the ocular surface. In animal models, insulin has shown benefits in promoting tear secretion and corneal healing. This study evaluated the safety and efficacy of insulin nanoemulsion eye drops (20 IU/mL, three times daily for 30 days) in patients with SjD. Thirty-two patients were randomized in a double-masked design to receive either insulin or placebo drops. Symptoms (assessed by OSDI questionnaire) and objective measures (tear film breakup time, corneal and conjunctival staining, and Schirmer Test) were recorded at baseline, after 4 weeks of treatment, and at a 4-week follow-up. Twenty-three participants completed the study. Both groups showed significant improvement in symptoms and objective signs after treatment (p < 0.05), but no significant differences were found between the insulin and placebo groups. No clinically relevant adverse effects were reported. Insulin nanoemulsion eye drops are safe for SjD patients, but their therapeutic advantage remains unclear. Further studies with larger samples, extended follow-up, and dose adjustments are needed to better understand their potential. Full article
Show Figures

Figure 1

15 pages, 4245 KiB  
Article
Oxidative Stress and Complement Activation in Aqueous Cells and Vitreous from Patient with Vitreoretinal Diseases: Comparison Between Diabetic ERM and PDR
by Lucia Dinice, Pamela Cosimi, Graziana Esposito, Fabio Scarinci, Andrea Cacciamani, Concetta Cafiero, Luca Placentino, Guido Ripandelli and Alessandra Micera
Antioxidants 2025, 14(7), 841; https://doi.org/10.3390/antiox14070841 - 8 Jul 2025
Viewed by 347
Abstract
Background: Epiretinal membrane (ERM) and proliferative diabetic retinopathy (PDR) belong to the group of vitreoretinal diseases, characterized by impairments at both the retina and the vitreous. The non-diabetic and diabetic forms of ERM (no-dERM and dERM) as well as the PDR are caused [...] Read more.
Background: Epiretinal membrane (ERM) and proliferative diabetic retinopathy (PDR) belong to the group of vitreoretinal diseases, characterized by impairments at both the retina and the vitreous. The non-diabetic and diabetic forms of ERM (no-dERM and dERM) as well as the PDR are caused by microvascular disorder, which frequently occurs in association with inflammation and oxidative stress. To better characterize no-dERM, dERM, and PDR at the biomolecular level, we compared the expression of inflammatory, oxidative, lipidic peroxidation products, and complement receptors. Methods: Twenty-seven ocular fluids from patients who underwent phaco-vitrectomy were categorized as no-dERM (9, 4M/5F; 70.4 ± 6.4), dERM (6, 3M/3F; 73.2 ± 4.9), and PDR (6, 5M/1F; 63.7 ± 7.4). Six cataracts (CTR; 3M/3F; 77.7 ± 9.0) were collected for internal control of aqueous cells. Results: In aqueous cells, p65NFkB, iNOS, Nox1/Nox4, and Nrf2 were significantly upregulated, and Keap1 was downregulated in dERM compared with PDR and no-dERM. In aqueous cells, a significant upregulation for C3aR1mRNA, C5aR1mRNA, and CFHmRNA were observed in dERM. In vitreous, C3a, C5b9, and MDA levels were significantly increased in dERM compared with PDR and no-dERM. Conclusions: Inflammatory and ROS products, as well as C3aR1/C5aR1 and soluble MDA, appear of great interest, as their expression in aqueous and vitreous might have potential prognostic and therapeutic values. Full article
Show Figures

Figure 1

10 pages, 450 KiB  
Article
The Role of Multidisciplinary Ocular and Periocular Cancers Meetings in Uveal Melanoma Management: A 2-Year Analysis
by Gustavo Savino, Monica Maria Pagliara, Maria Grazia Sammarco, Carmela Grazia Caputo, Maria Antonietta Blasi, Roberta Mattei, Sofia Marcelli, Luca Tagliaferri, Bruno Fionda, Giovanni Schinzari, Ernesto Rossi, Luca Zagaria, Tommaso Tartaglione, Luca Ausili Cefaro, Mattia Todaro, Alessandro Moro and Federico Giannuzzi
Cancers 2025, 17(14), 2274; https://doi.org/10.3390/cancers17142274 - 8 Jul 2025
Viewed by 287
Abstract
Purpose: The objective of this study was to evaluate the implementation of a Multidisciplinary Tumor Board (MDTB) strategy in the treatment of patients with uveal melanoma. Methods: A retrospective analysis was conducted on the implementation of MDTB meetings over a 24-month [...] Read more.
Purpose: The objective of this study was to evaluate the implementation of a Multidisciplinary Tumor Board (MDTB) strategy in the treatment of patients with uveal melanoma. Methods: A retrospective analysis was conducted on the implementation of MDTB meetings over a 24-month period. During this time, 72 intraocular tumors were discussed, including 59 confirmed cases of uveal melanoma. The MDTB involved a core group of specialists (e.g., ophthalmologists, oncologists, and radiologists), with other experts included when clinically appropriate. To assess patient satisfaction with the MDTB approach, a structured questionnaire was administered, including items on clarity of communication, perceived quality of care, and overall satisfaction, which were ranked on a 5-point scale. Results: A total of 319 patients with ocular, periocular, or orbital tumors were discussed during the study period, of which, 72 had intraocular tumors. A total of 13 (18%) were diagnosed to have choroidal metastases, whereas 59 (82%) had uveal melanomas. The average time between patient care and MDTB discussion was 15.9 days (IQR: 7.5–16.5). The mean time between the case discussion and the implementation of recommendations (diagnostic, therapeutic, or referral decisions) was 14.8 days (IQR: 6.0–23.75). Overall, 4 (7%) patients were classified as Stage I, 16 (27%) as Stage IIa, 18 (31%) as Stage IIb, 7 (12%) as Stage IIIa, 2 (3%) as Stage IIIb, and 12 (20%) as Stage IV. Regarding the satisfaction questionnaire, all patients (100%) agreed to have the clinical case discussed at the TB even though this could result in a delay in diagnostic/therapeutic implementation. However, only 60% of patients perceived they had been directly involved in the decision-making process. Conclusions: In selected cases of uveal melanoma and other types of cancer, MDTBs should be recognized as a gold standard in cancer care, allowing for comprehensive decision-making that draws on a wide range of highly specialized expertise. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

25 pages, 3432 KiB  
Review
Targeting Skin Neoplasms: A Review of Berberine’s Anticancer Properties
by Anna Duda-Madej, Patrycja Lipska, Szymon Viscardi, Hanna Bazan and Jakub Sobieraj
Cells 2025, 14(14), 1041; https://doi.org/10.3390/cells14141041 - 8 Jul 2025
Viewed by 847
Abstract
Skin cancers are associated with a significant psychological burden across all age groups, particularly as their global incidence continues to rise. Ultraviolet (UV) radiation—primarily UVA and UVB—remains the leading etiological factor, inducing DNA mutations in key genes such as TP53 and BRAF. Among [...] Read more.
Skin cancers are associated with a significant psychological burden across all age groups, particularly as their global incidence continues to rise. Ultraviolet (UV) radiation—primarily UVA and UVB—remains the leading etiological factor, inducing DNA mutations in key genes such as TP53 and BRAF. Among skin cancers, basal cell carcinoma (BCC) is the most prevalent and typically indolent. In contrast, squamous cell carcinoma (SCC) tends to be more invasive, while melanoma is the most aggressive and prone to metastasis. Melanoma is especially concerning due to its rapid dissemination and its occurrence not only on the skin but also in ocular, mucosal, and nail tissues. These challenges, along with rising treatment resistance and mortality, underscore the urgent need for novel anticancer agents. Berberine—a plant-derived isoquinoline alkaloid—has attracted increasing attention for its broad-spectrum anticancer potential, including against skin cancers. In this review, we summarize current evidence regarding berberine’s mechanisms of action in melanoma and SCC, emphasizing both its preventive and therapeutic effects. We further explore its potential as an adjuvant agent in combination with conventional treatments, offering a promising avenue for enhancing the clinical outcomes of skin cancer therapy. Full article
(This article belongs to the Special Issue Recent Advances in Cancer Therapy—Second Edition)
Show Figures

Graphical abstract

3 pages, 168 KiB  
Abstract
FishCOLler: Pilot In Vivo Models of COL4A1/A2 Syndrome in Tractable Fish Embryos Recapitulate Neurovascular and Ocular Pathology and Demonstrate Utility for Whole-Organism Variant Testing and Mechanistic Investigation
by Graziamaria Paradisi, Valeria Bonavolontà, Martina Venditti, Giulia Fasano, Catia Pedalino, Marco Tartaglia and Antonella Lauri
Proceedings 2025, 120(1), 4; https://doi.org/10.3390/proceedings2025120004 - 8 Jul 2025
Viewed by 223
Abstract
Collagen IV α1/α2 heterotrimers are the major constituents of all basement membranes (BM). Consistently, COL4A1/A2 mutations cause a complex multisystem disorder. While mouse models are invaluable, they alone cannot support the rapid functional validation needed for clinical translation. The FishCOLler project establishes zebrafish [...] Read more.
Collagen IV α1/α2 heterotrimers are the major constituents of all basement membranes (BM). Consistently, COL4A1/A2 mutations cause a complex multisystem disorder. While mouse models are invaluable, they alone cannot support the rapid functional validation needed for clinical translation. The FishCOLler project establishes zebrafish as a scalable in vivo platform to model COL4A1/A2 disease, employ rapid assays to monitor key disease traits, and enable mechanistic studies. Our first fish disease faithfully models patient symptoms, i.e., brain hemorrhage and ocular dysgenesis. The work supports FishCOLler as a platform for rapid variant interpretation, therapeutics testing, and highlights potential consequences of gene dosage modulation strategies. Full article
(This article belongs to the Proceedings of The 2nd COL4A1-A2 International Conference)
Back to TopTop