Neuroinflammation in Radiation Maculopathy: A Pathophysiologic and Imaging Perspective
Simple Summary
Abstract
1. Introduction
1.1. Radiotherapy for Uveal Melanoma
1.2. Non-Invasive Imaging Techniques
2. Materials and Methods
3. Results
3.1. Pathophysiology of Retinal Neuroinflammation in Radiation Maculopathy
3.1.1. Neurovascular Interactions
3.1.2. Glial Activation and Cytokine Dysregulation
3.2. Imaging Parameters of Retinal Neuroinflammation in Radiation Maculopathy
3.2.1. Hyperreflective Retinal Foci
3.2.2. Subretinal Fluid
3.2.3. Ischemia
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Archer, D.B.; Amoaku, W.M.; Gardiner, T.A. Radiation retinopathy—clinical, histopathological, ultrastructural and experimental correlations. Eye 1991, 5, 239–251. [Google Scholar] [CrossRef]
- Brown, G.C.; Shields, J.A.; Sanborn, G.; Augsburger, J.J.; Savino, P.J.; Schatz, N.J. Radiation retinopathy. Ophthalmology 1982, 89, 1494–1501. [Google Scholar] [CrossRef]
- Midena, G.; Parrozzani, R.; Frizziero, L.; Midena, E. Chorioretinal Side Effects of Therapeutic Ocular Irradiation: A Multimodal Imaging Approach. J. Clin. Med. 2020, 9, 3496. [Google Scholar] [CrossRef]
- Hawkins, B.S. Collaborative Ocular Melanoma Study randomized trial of I-125 brachytherapy. Clin. Trials 2011, 8, 661–673. [Google Scholar] [CrossRef]
- Melia, B.M.; Abramson, D.H.; Albert, D.M.; Boldt, H.C.; Earle, J.D.; Hanson, W.F.; Montague, P.; Moy, C.S.; Schachat, A.P.; Simpson, E.R.; et al. Collaborative ocular melanoma study (COMS) randomized trial of I-125 brachytherapy for medium choroidal melanoma I. visual acuity after 3 years COMS report no. 16. Ophthalmology 2001, 108, 348–366. [Google Scholar] [CrossRef]
- Reichstein, D.; Karan, K. Plaque brachytherapy for posterior uveal melanoma in 2018: Improved techniques and expanded indications. Curr. Opin. Ophthalmol. 2018, 29, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Seregard, S.; Pelayes, D.E.; Singh, A.D. Radiation therapy: Uveal tumors. Dev. Ophthalmol. 2013, 52, 36–57. [Google Scholar]
- Fallico, M.; Chronopoulos, A.; Schutz, J.S.; Reibaldi, M. Treatment of radiation maculopathy and radiation-induced macular edema: A systematic review. Surv. Ophthalmol. 2021, 66, 441–460. [Google Scholar] [CrossRef] [PubMed]
- García-O’farrill, N.; Pugazhendhi, S.; Karth, P.A.; Hunter, A.A. Radiation retinopathy intricacies and advances in management. Semin. Ophthalmol. 2021, 37, 417–435. [Google Scholar] [CrossRef]
- Guyer, D.R.; Mukai, S.; Egan, K.M.; Seddon, J.M.; Walsh, S.M.; Gragoudas, E.S. Radiation Maculopathy after Proton Beam Irradiation for Choroidal Melanoma. Ophthalmology 1992, 99, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
- Horgan, N.; Shields, C.L.; Mashayekhi, A.; A Shields, J. Classification and treatment of radiation maculopathy. Curr. Opin. Ophthalmol. 2010, 21, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, A.; Schönbach, E.; Shields, C.L.; Shields, J.A. Early Subclinical Macular Edema in Eyes with Uveal Melanoma: Association with Future Cystoid Macular Edema. Ophthalmology 2015, 122, 1023–1029. [Google Scholar] [CrossRef]
- Groenewald, C.; Konstantinidis, L.; Damato, B. Effects of radiotherapy on uveal melanomas and adjacent tissues. Eye 2012, 27, 163–171. [Google Scholar] [CrossRef]
- Gündüz, K.; Shields, C.L.; Shields, J.A.; Cater, J.; Freire, J.E.; Brady, L.W. Radiation Retinopathy Following Plaque Radiotherapy for Posterior Uveal Melanoma. Arch. Ophthalmol. 1999, 117, 609–614. [Google Scholar] [CrossRef]
- Lebon, C.; Malaise, D.; Rimbert, N.; Billet, M.; Ramasamy, G.; Villaret, J.; Pouzoulet, F.; Matet, A.; Behar-Cohen, F. Role of inflammation in a rat model of radiation retinopathy. J. Neuroinflamm. 2024, 21, 162. [Google Scholar] [CrossRef]
- Parrozzani, R.; Midena, G.; Frizziero, L.; Marchione, G.; Midena, E. RADIATION MACULOPATHY IS ANTICIPATED BY OCT HYPERREFLECTIVE RETINAL FOCI. Retina 2021, 42, 752–759. [Google Scholar] [CrossRef] [PubMed]
- Mularska, W.; Chicheł, A.; Rospond-Kubiak, I. Radiation retinopathy following episcleral brachytherapy for intraocular tumors: Current treatment options. J. Contemp. Brachyther. 2023, 15, 372–382. [Google Scholar] [CrossRef]
- Toutounchian, J.J.; Steinle, J.J.; Makena, P.S.; Waters, C.M.; Wilson, M.W.; Haik, B.G.; Miller, D.D.; Yates, C.R. Modulation of Radiation Injury Response in Retinal Endothelial Cells by Quinic Acid Derivative KZ-41 Involves p38 MAPK. PLoS ONE 2014, 9, e100210. [Google Scholar] [CrossRef]
- Rao, B.; Liu, X.; Xiao, J.; Wu, X.; He, F.; Yang, Q.; Zhao, W.; Lin, X.; Zhang, J. Microglia heterogeneity during neuroinflammation and neurodegeneration in the mouse retina. Anat. Embryol. 2024, 230, 19. [Google Scholar] [CrossRef]
- Frizziero, L.; Midena, G.; Danieli, L.; Torresin, T.; Perfetto, A.; Parrozzani, R.; Pilotto, E.; Midena, E. Hyperreflective Retinal Foci (HRF): Definition and Role of an Invaluable OCT Sign. J. Clin. Med. 2025, 14, 3021. [Google Scholar] [CrossRef] [PubMed]
- Tamplin, M.R.; Wang, J.-K.; Binkley, E.M.; Garvin, M.K.; Hyer, D.E.; Buatti, J.M.; Boldt, H.C.; Grumbach, I.M.; Kardon, R.H. Radiation effects on retinal layers revealed by OCT, OCT-A, and perimetry as a function of dose and time from treatment. Sci. Rep. 2024, 14, 3380. [Google Scholar] [CrossRef]
- Baillif, S.; Maschi, C.; Gastaud, P.; Caujolle, J.P. Intravitreal dexamethasone 0.7-mg implant for radiation macular edema after proton beam therapy for choroidal melanoma. Retina 2013, 33, 1784–1790. [Google Scholar] [CrossRef]
- Veverka, K.K.; AbouChehade, J.E.; Iezzi, R., Jr.; Pulido, J.S. NONINVASIVE GRADING OF RADIATION RETINOPATHY: The Use of Optical Coherence Tomography Angiography. Retina 2015, 35, 2400–2410. [Google Scholar] [CrossRef] [PubMed]
- Midena, E.; Segato, T.; Valenti, M.; Degli Angeli, C.; Bertoja, E.; Piermarocchi, S. The Effect of External Eye Irradiation on Choroidal Circulation. Ophthalmology 1996, 103, 1651–1660. [Google Scholar] [CrossRef]
- Gong, H.; Tang, Y.; Xiao, J.; Liu, Y.; Zeng, R.; Li, Z.; Zhang, S.; Lan, Y. Evaluation of early changes of macular function and morphology by multifocal electroretinograms in patients with nasopharyngeal carcinoma after radiotherapy. Doc. Ophthalmol. 2019, 138, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Damato, B.; Kacperek, A.; Errington, D.; Heimann, H. Proton beam radiotherapy of uveal melanoma. Saudi. J. Ophthalmol. 2013, 27, 151–157. [Google Scholar] [CrossRef]
- Okunieff, P.; Vidyasagar, S. Stem cell senescence: A double-edged sword? J. Natl. Cancer Inst. 2013, 105, 1429–1430. [Google Scholar] [CrossRef]
- Soleimani, M.; Cheraqpour, K.; Koganti, R.; Djalilian, A.R. Cellular senescence and ophthalmic diseases: Narrative review. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 3067–3082. [Google Scholar] [CrossRef]
- Naseripour, M.; Falavarjani, K.G.; Mirshahi, R.; Sedaghat, A. Optical coherence tomography angiography (OCTA) applications in ocular oncology. Eye 2020, 34, 1535–1545. [Google Scholar] [CrossRef]
- Parrozzani, R.; Midena, E.; Trainiti, S.; Londei, D.; Miglionico, G.; Annunziata, T.; Frisina, R.; Pilotto, E.; Frizziero, L. IDENTIFICATION AND CLASSIFICATION OF MACULAR MORPHOLOGIC BIOMARKERS RELATED TO VISUAL ACUITY IN RADIATION MACULOPATHY: A Multimodal Imaging Study. Retina 2020, 40, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, Y.; Boppart, S.A. Review of optical coherence tomography in oncology. J. Biomed. Opt. 2017, 22, 121711. [Google Scholar] [CrossRef]
- Shields, C.L.; Say, E.A.; Samara, W.A.; Khoo, C.T.; Mashayekhi, A.; Shields, J.A. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF THE MACULA AFTER PLAQUE RADIOTHERAPY OF CHOROIDAL MELANOMA: Comparison of Irradiated Versus Nonirradiated Eyes in 65 Patients. Retina 2016, 36, 1493–1505. [Google Scholar] [CrossRef]
- Caminal, J.M.; Flores-Moreno, I.; Arias, L.; Gutiérrez, C.; Piulats, J.M.; Català, J.; Rubio, M.J.; Cobos, E.; García, P.; Pera, J.; et al. INTRAVITREAL DEXAMETHASONE IMPLANT FOR RADIATION MACULOPATHY SECONDARY TO PLAQUE BRACHYTHERAPY IN CHOROIDAL MELANOMA. Retina 2015, 35, 1890–1897. [Google Scholar] [CrossRef]
- Sergouniotis, P.I.; Holder, G.E.; Robson, A.G.; Michaelides, M.; Webster, A.R.; Moore, A.T. High-resolution optical coherence tomography imaging in KCNV2 retinopathy. Br. J. Ophthalmol. 2012, 96, 213–217. [Google Scholar] [CrossRef]
- Sharma, T.; Gella, L.; Raman, R.; Pal, S.S.; Nittala, M.G. Morphological and functional changes in spectral domain optical coherence tomography and microperimetry in macular microhole variants: Spectral domain optical coherence tomography and microperimetry correlation. Indian J. Ophthalmol. 2012, 60, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Helmy, Y.M.; Atta Allah, H.R. Optical coherence tomography classification of diabetic cystoid macular edema. Clin. Ophthalmol. 2013, 7, 1731–1737. [Google Scholar] [CrossRef]
- Midena, E.; Toto, L.; Frizziero, L.; Covello, G.; Torresin, T.; Midena, G.; Danieli, L.; Pilotto, E.; Figus, M.; Mariotti, C.; et al. Validation of an Automated Artificial Intelligence Algorithm for the Quantification of Major OCT Parameters in Diabetic Macular Edema. J. Clin. Med. 2023, 12, 2134. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Spaide, R.F.; Klancnik, J.M., Jr.; Cooney, M.J. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA. Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Sellam, A.; Coscas, F.; Rouic, L.L.-L.; Dendale, R.; Lupidi, M.; Coscas, G.; Desjardins, L.; Cassoux, N. Optical Coherence Tomography Angiography of Macular Features After Proton Beam Radiotherapy for Small Choroidal Melanoma. Arch. Ophthalmol. 2017, 181, 12–19. [Google Scholar] [CrossRef]
- Hope-Ross, M.; Yannuzzi, L.A.; Gragoudas, E.S.; Guyer, D.R.; Slakter, J.S.; Sorenson, J.A.; Krupsky, S.; Orlock, D.A.; Puliafito, C.A. Adverse Reactions due to Indocyanine Green. Ophthalmology 1994, 101, 529–533. [Google Scholar] [CrossRef]
- Powell, B.E.; Chin, K.J.; Finger, P.T. Early anti-VEGF treatment for radiation maculopathy and optic neuropathy: Lessons learned. Eye 2023, 37, 866–874. [Google Scholar] [CrossRef]
- Victor, A.A.; Andayani, G.; Djatikusumo, A.; Yudantha, A.R.; Hutapea, M.M.; Gunardi, T.H.; Soetjoadi, H. Efficacy of Prophylactic Anti-VEGF in Preventing Radiation Retinopathy: A Systematic Review and Meta-Analysis. Clin. Ophthalmol. 2023, 17, 2997–3009. [Google Scholar] [CrossRef]
- Daruich, A.; Matet, A.; Moulin, A.; Kowalczuk, L.; Nicolas, M.; Sellam, A.; Rothschild, P.-R.; Omri, S.; Gélizé, E.; Jonet, L.; et al. Mechanisms of macular edema: Beyond the surface. Prog. Retin. Eye Res. 2018, 63, 20–68. [Google Scholar] [CrossRef]
- Gilli, C.; Kodjikian, L.; Loria, O.; Jabour, C.; Rosier, L.; Nhari, M.; Nguyen, A.M.; Herault, J.; Thariat, J.; Salleron, J.; et al. QUANTITATIVE ANALYSIS OF CHORIOCAPILLARIS ALTERATIONS IN SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY-ANGIOGRAPHY DURING RADIATION RETINOPATHY. Retina 2022, 42, 1995–2003. [Google Scholar] [CrossRef]
- Li, Y.; Say, E.A.T.; Ferenczy, S.; Agni, M.; Shields, C.L. ALTERED PARAFOVEAL MICROVASCULATURE IN TREATMENT-NAIVE CHOROIDAL MELANOMA EYES DETECTED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina 2017, 37, 32–40. [Google Scholar] [CrossRef]
- Lim, L.-A.S.F.; Camp, D.A.; Ancona-Lezama, D.; Mazloumi, M.; Patel, S.P.B.; McLaughlin, J.W.; Ferenczy, S.R.C.; Mashayekhi, A.; Shields, C.L. Wide-Field (15 × 9 mm) Swept-Source Optical Coherence Tomography Angiography Following Plaque Radiotherapy of Choroidal Melanoma: An Analysis of 105 eyes. Asia-Pac. J. Ophthalmol. 2020, 9, 326–334. [Google Scholar] [CrossRef]
- Murray, T.G.; Shah, N.; Houston, S.K.; Markoe, A. Combination therapy with triamcinolone acetonide and bevacizumab for the treatment of severe radiation maculopathy in patients with posterior uveal melanoma. Clin. Ophthalmol. 2013, 7, 1877–1882. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Midena, G.; Parrozzani, R.; Bruno, M.; Pilotto, E.; Midena, E. Neuroinflammation in Radiation Maculopathy: A Pathophysiologic and Imaging Perspective. Cancers 2025, 17, 2528. https://doi.org/10.3390/cancers17152528
Midena G, Parrozzani R, Bruno M, Pilotto E, Midena E. Neuroinflammation in Radiation Maculopathy: A Pathophysiologic and Imaging Perspective. Cancers. 2025; 17(15):2528. https://doi.org/10.3390/cancers17152528
Chicago/Turabian StyleMidena, Giulia, Raffaele Parrozzani, Marisa Bruno, Elisabetta Pilotto, and Edoardo Midena. 2025. "Neuroinflammation in Radiation Maculopathy: A Pathophysiologic and Imaging Perspective" Cancers 17, no. 15: 2528. https://doi.org/10.3390/cancers17152528
APA StyleMidena, G., Parrozzani, R., Bruno, M., Pilotto, E., & Midena, E. (2025). Neuroinflammation in Radiation Maculopathy: A Pathophysiologic and Imaging Perspective. Cancers, 17(15), 2528. https://doi.org/10.3390/cancers17152528