Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = o/w nanoemulsions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2881 KB  
Article
UiO-66-(COOH)2 Decorated Collagen Fiber Membranes for High-Efficiency Separation of Cationic Surfactant-Stabilized Oil/Water Emulsions: Toward Sustainable and Robust Wastewater Treatment
by Guifang Yang, Qiu Wu, Gao Xiao and Xiaoxia Ye
Polymers 2025, 17(21), 2879; https://doi.org/10.3390/polym17212879 - 29 Oct 2025
Viewed by 300
Abstract
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel [...] Read more.
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel composite membrane (CFM-UiO-66-(COOH)2) fabricated by in situ growth of functionalized UiO-66-(COOH)2 on a mechanically robust collagen fiber membrane (CFM) substrate. The resulting composite leverages the inherent properties of the CFM, along with the controlled generation of charge-neutralization demulsification sites and size-sieving filtration layers from the UiO-66-(COOH)2. This CFM-UiO-66-(COOH)2 exhibited superwetting behavior and achieved efficient separation of cationic surfactant-stabilized oil-in-water micro- and nano-emulsions. Specifically, the CFM-UiO-66-(COOH)2 achieved separation efficiencies exceeding 99.85% for various cationic O/W emulsions, with permeation fluxes ranging from 178.9 to 225.9 L·m−2·h−1. The membrane also demonstrated robust antifouling properties, excellent acid/alkali resistance, high abrasion durability, and good biocompatibility. Importantly, stable performance was maintained over six consecutive separation cycles. These characteristics, combined with the electrostatic interactions between carboxyl groups on the UiO-66-(COOH)2 and cationic contaminants, suggest that CFM-UiO-66-(COOH)2 holds significant potential for practical and sustainable wastewater treatment applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

16 pages, 2080 KB  
Article
Triacylglycerol Crystallinity and Emulsion Colloidal Acid Stability Influence In Vitro Digestion Lipolysis and Bioaccessibility of Long-Chain Omega-3 Fatty Acid-Rich Nanoemulsions
by Jessica D. Ulbikas, Saeed Mirzaee Ghazani, Alejandro G. Marangoni and Amanda J. Wright
Foods 2025, 14(21), 3631; https://doi.org/10.3390/foods14213631 - 24 Oct 2025
Viewed by 470
Abstract
This study investigated the relationships between emulsion droplet triacylglycerol (TAG) crystallinity and colloidal acid stability on in vitro digestion microstructure, lipolysis, and docosahexaenoic acid (DHA) bioaccessibility. Oil-in-water (o/w) nanoemulsions (20 wt%) composed of 50/50 DHA-rich algal oil with either palm stearin (PS) or [...] Read more.
This study investigated the relationships between emulsion droplet triacylglycerol (TAG) crystallinity and colloidal acid stability on in vitro digestion microstructure, lipolysis, and docosahexaenoic acid (DHA) bioaccessibility. Oil-in-water (o/w) nanoemulsions (20 wt%) composed of 50/50 DHA-rich algal oil with either palm stearin (PS) or olein (PO), and either acid-stable Tween 80 (2.0 wt%; AS) or acid-unstable soy lecithin (2.2 wt%; AU) were fast or slow cooled to 37 °C after microfluidization. Similar particle size distributions and D3,2 (~131–142 nm) and D4,3 (~208–239 nm) values were achieved. All emulsions were highly electronegative (~−45–70 mV) and differences (p < 0.05) were due to emulsifier type, as expected, and cooling rate. Next, emulsions were subjected to INFOGEST in vitro digestion for analysis of intestinal lipolysis by free fatty acid titration and DHA bioaccessibility. As expected, AU emulsions flocculated, forming larger aggregates during the gastric phase. Slower lipolysis was observed for the AU emulsions (p < 0.05), attributed to gastric phase aggregation, and lower 2 h lipolysis was observed for the PS emulsions (~74–77%) based on the presence of crystallinity. DHA bioaccessibility was high (~57–88%), especially for the AS emulsions (p < 0.05). Therefore, emulsion colloidal acid stability and TAG physical state significantly impacted emulsion gastric microstructure, digestion, and bioaccessibility. Full article
Show Figures

Figure 1

20 pages, 4429 KB  
Article
Evaluating the Antimicrobial Efficacy of Citral Nano-Emulsion Against Vibrio parahaemolyticus
by Juanjuan Cao, Xiaoxu Zhang, Zihe Qi and Huan Liu
Foods 2025, 14(18), 3272; https://doi.org/10.3390/foods14183272 - 21 Sep 2025
Viewed by 737
Abstract
Citral is extensively utilized in the realm of food preservation owing to its excellent antibacterial activity. Nevertheless, being a common essential oil, citral’s hydrophobic characteristic considerably limits its potential use and marketability. In this study, we prepared hydrophobic citral into an oil-in-water nano-emulsion [...] Read more.
Citral is extensively utilized in the realm of food preservation owing to its excellent antibacterial activity. Nevertheless, being a common essential oil, citral’s hydrophobic characteristic considerably limits its potential use and marketability. In this study, we prepared hydrophobic citral into an oil-in-water nano-emulsion by high-pressure homogenization to address its solubility issues in water. The optical ratio of the citral nano-emulsion was established using a combination of response surface experiments. Subsequently, the citral nano-emulsion was employed to suppress Vibrio parahaemolyticus RIMD 2210633 (V. parahaemolyticus). The findings indicated that the citral nano-emulsion had a minimum inhibitory concentration (MIC) of 0.125 mg/mL and a minimum bactericidal concentration (MBC) of 0.25 mg/mL against V. parahaemolyticus, respectively. Furthermore, the nano-emulsion displayed excellent antibacterial properties, mainly by causing cell envelope damage, and also inhibited the production of virulence factors. Finally, citral nano-emulsion was applied to salmon preservation and efficiently controlled the propagation of V. parahaemolyticus in salmon. Our research has addressed the limitations associated with the application of citral and expanded the applications for its use in the food industry. Full article
Show Figures

Figure 1

16 pages, 1008 KB  
Article
Easy Obtainment and Biological Applicability of Pinocarvyl Acetate by Encapsulating of the Microlicia graveolens Essential Oil in Oil-in-Water Nanoemulsions
by Janaína Brandão Seibert, Tatiane Roquete Amparo, Lucas Resende Dutra Sousa, Ivanildes Vasconcelos Rodrigues, Alicia Petit, Pauline Pervier, Mariana Costa Azevedo, Policarpo Ademar Sales Junior, Silvane Maria Fonseca Murta, Cláudia Martins Carneiro, Luiz Fernando de Medeiros Teixeira, Gustavo Henrique Bianco de Souza, Paula Melo de Abreu Vieira and Orlando David Henrique dos Santos
Pharmaceutics 2025, 17(9), 1130; https://doi.org/10.3390/pharmaceutics17091130 - 29 Aug 2025
Viewed by 799
Abstract
Background/Objectives: The study of biological activity of plants and their metabolites is an important approach for the discovery of new active material. However, little is known of the properties of the Microlicia genus. In addition to natural products, nanotechnology demonstrates considerable potential in [...] Read more.
Background/Objectives: The study of biological activity of plants and their metabolites is an important approach for the discovery of new active material. However, little is known of the properties of the Microlicia genus. In addition to natural products, nanotechnology demonstrates considerable potential in pharmacotherapy. The utilization of nanoemulsions holds considerable promise in enhancing the efficacy of drugs, reducing dose, and therefore, lowering of toxic effects. Methods: In this context, antimicrobial and trypanocidal activities were evaluated to the free and encapsulated essential oil from M. graveolens in oil-in-water (o/w) nanoemulsion. Results: This oil is composed mainly of cis-pinocarvyl acetate (~80.0%). The nanoemulsions were prepared by phase inversion method and showed mean particle size of 58 nm, polydispercity index of 0.09, pH 7.8, zeta potential of −21.9 mV, electrical conductivity of 0.38 mS/cm, and good stability. The essential oil was active against all five Gram-positive bacteria tested, and the formulation enhanced this ability. The cytotoxicity effect on L929 cells was also reduced after encapsulation of this oil in o/w nanoemulsion. In addition, the oil and the nanoemulsion were able to inhibit the growth of Trypanosoma cruzi. Conclusions: Thus, the development of a nanoemulsion loaded with M. graveolens essential oil is an easy and low-cost way to obtain and deliver the cis-pinocarvyl acetate compound as well as allow its use in the treatment of diseases caused mainly by the genus Listeria and Staphylococcus. Full article
Show Figures

Figure 1

36 pages, 6346 KB  
Article
Thermoresponsive Effects in Droplet Size Distribution, Chemical Composition, and Antibacterial Effectivity in a Palmarosa (Cymbopogon martini) O/W Nanoemulsion
by Erick Sánchez-Gaitán, Ramón Rivero-Aranda, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(4), 47; https://doi.org/10.3390/colloids9040047 - 19 Jul 2025
Viewed by 704
Abstract
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with [...] Read more.
The design of emulsions at the nanoscale is a significant application of nanotechnology. For spherical droplets and a given volume of dispersed phase, the nanometre size of droplets inversely increases the total area, A=3Vr, allowing greater contact with organic and inorganic materials during application. In topical applications, not only is cell contact increased, but also permeability in the cell membrane. Nanoemulsions typically achieve kinetic stability rather than thermodynamic stability, so their commercial application requires reasonable resistance to flocculation and coalescence, which can be affected by temperature changes. Therefore, their thermoresponsive characterisation becomes relevant. In this work, we analyse this response in an O/W nanoemulsion of Palmarosa for antibacterial purposes that has already shown stability for one year at controlled room temperature. We now study hysteresis processes and the behaviour of the statistical distribution in droplet size by Dynamic Light Scattering, obtaining remarkable stability under temperature changes up to 50 °C. This includes a maintained chemical composition observed using Fourier Transform Infrared Spectroscopy and the preservation of antibacterial properties analysed through optical density tests on cultures and the Spread-Plate technique for bacteria colony counting. We obtain practically closed hysteresis curves for some tracers of droplet size distributions through controlled thermal cycles between 10 °C and 50 °C, exhibiting a non-linear behaviour in their distribution. In general, the results show notable physical, chemical, and antibacterial stability, suitable for commercial applications. Full article
(This article belongs to the Special Issue Recent Advances on Emulsions and Applications: 3rd Edition)
Show Figures

Graphical abstract

44 pages, 10756 KB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 2497
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

17 pages, 4152 KB  
Article
Characterization of Okra Seed Protein/Rutin Covalent Complex and Its Application in Nanoemulsions
by Chengyun He, Lu Bai, Yingxuan Zhou, Benguo Liu and Sheng Geng
Foods 2025, 14(10), 1672; https://doi.org/10.3390/foods14101672 - 9 May 2025
Cited by 1 | Viewed by 817
Abstract
A covalent complex of okra seed protein (OSP) and rutin was prepared using the alkali-induced method and characterized. Its application in nanoemulsions was also evaluated. Multi-spectral analysis confirmed the formation of the covalent complex, with OSP as the main body. With an increasing [...] Read more.
A covalent complex of okra seed protein (OSP) and rutin was prepared using the alkali-induced method and characterized. Its application in nanoemulsions was also evaluated. Multi-spectral analysis confirmed the formation of the covalent complex, with OSP as the main body. With an increasing rutin dosage during the preparation process, the amount of rutin in the complex progressively ascended, and the α-helix structure and surface hydrophobicity of the complex gradually declined. The complex exhibited remarkable ABTS radical scavenging capacity and reducing power, which were proportional to the total phenolic content. The OSP/rutin complex could be utilized for the fabrication of O/W nanoemulsions, which remained stable in terms of droplet size and appearance after 28 days of storage at both 4 °C and 25 °C. Furthermore, lipid oxidation in the nanoemulsion stabilized by the OSP/rutin covalent complex could be effectively inhibited, and the emulsion could enhance the UV irradiation resistance of lutein loaded in the oil phase. Our results can provide a reference for the development of protein–polyphenol covalent complexes. Full article
Show Figures

Figure 1

20 pages, 6962 KB  
Article
Topical Delivery of Ceramide by Oil-in-Water Nanoemulsion to Retain Epidermal Moisture Content in Dermatitis
by Yu Zhou, Lichun Wu, Yi Zhang, Jia Hu, Jannatul Fardous, Yasuhiro Ikegami and Hiroyuki Ijima
Biomolecules 2025, 15(5), 608; https://doi.org/10.3390/biom15050608 - 22 Apr 2025
Cited by 3 | Viewed by 2743
Abstract
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation [...] Read more.
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation is effective for barrier repair, its clinical application is limited by poor solubility and low skin permeability. To overcome these challenges, this study developed an oil-in-water nanoemulsion (O/W-NE) using ultrasonic emulsification for the efficient transdermal delivery of ceramide C2. Octyldodecanol was selected as the oil phase to enhance ceramide solubility, while glycerin was incorporated to increase aqueous phase viscosity, reduce particle size, and function as a biocompatible penetration enhancer. The optimized nanoemulsion achieved a particle size of 112.5 nm and an encapsulation efficiency of 85%. Its performance was evaluated via in vitro release, ex vivo skin permeation, and in vivo biocompatibility studies. Mechanistic investigations revealed that both particle size and glycerin concentration significantly influenced ceramide penetration into the epidermis and dermis. Additionally, the nanoemulsion exhibited moisturizing and barrier-repair effects in a damaged skin model. Overall, this O/W-NE offers a stable, non-invasive strategy for enhancing ceramide delivery and restoring skin barrier function. Full article
(This article belongs to the Special Issue Molecular Advances in Wound Healing and Skin Regeneration)
Show Figures

Graphical abstract

16 pages, 1557 KB  
Article
Design, Optimization, Manufacture and Characterization of Milbemycin Oxime Nanoemulsions
by Ze-En Li, Yang-Guang Jin, Shao-Zu Hu, Yue Liu, Ming-Hui Duan, Shi-Hao Li, Long-Ji Sun, Fan Yang and Fang Yang
Pharmaceutics 2025, 17(3), 289; https://doi.org/10.3390/pharmaceutics17030289 - 22 Feb 2025
Cited by 1 | Viewed by 1140
Abstract
Background: Despite the rapid development of nanoemulsions in recent years, no method has been established for the preparation of milbemycin oxime nanoemulsions. Milbemycin oxime is a widely used macrolide antibiotic in veterinary medicine, particularly for treating parasitic infections in animals such as dogs. [...] Read more.
Background: Despite the rapid development of nanoemulsions in recent years, no method has been established for the preparation of milbemycin oxime nanoemulsions. Milbemycin oxime is a widely used macrolide antibiotic in veterinary medicine, particularly for treating parasitic infections in animals such as dogs. However, its poor solubility in water limits its bioavailability and therapeutic efficacy. Developing a nanoemulsion formulation can enhance its solubility, stability, and bioavailability, offering a more effective treatment option. Methods: In this experiment, oil-in-water (O/W) milbemycin oxime nanoemulsions were successfully prepared by the phase inversion composition (PIC) method using ethyl butyrate as the oil phase, Tween-80 as the surfactant, and anhydrous ethanol as the co-surfactant. The region of O/W nanoemulsions was identified by constructing a pseudo-ternary phase diagram and, based on this, was screened by determining the droplet size, polydispersity coefficient, and zeta potential of each preparation. Results and Conclusions: The finalized formulation had a 2:1 ratio of surfactant to co-surfactant and a 7:3 ratio of mixed surfactant to oil, and its droplet size, polydispersity index (PDI), and zeta potential were 12.140 ± 0.128 nm, 0.155 ± 0.015, and −4.947 ± 0.768 mV, respectively. Transmission electron microscopy confirmed the spherical uniform distribution of droplets, and the nanoemulsions passed thermodynamic stability tests. The in vitro release of milbemycin oxime nanoemulsions followed first-order kinetic equations. In conclusion, nanoemulsions are an interesting option for the delivery of poorly water-soluble molecules such as milbemycin oxime. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 8630 KB  
Article
Whey Protein Isolate-Encapsulated Astaxanthin Nanoemulsion More Effectively Mitigates Skeletal Muscle Atrophy in Dexamethasone-Induced Mice
by Yuchen Huan, Han Yue, Yanli Song, Wenmei Zhang, Biqian Wei and Qingjuan Tang
Nutrients 2025, 17(5), 750; https://doi.org/10.3390/nu17050750 - 20 Feb 2025
Cited by 1 | Viewed by 1677
Abstract
Background: Skeletal muscle, as the largest organ in the body and the main protein pool, is crucial for various physiological processes, but atrophy of skeletal muscle can result from glucocorticoids, including dexamethasone, or from aging. Astaxanthin (AST) is a ketocarotenoid with a variety [...] Read more.
Background: Skeletal muscle, as the largest organ in the body and the main protein pool, is crucial for various physiological processes, but atrophy of skeletal muscle can result from glucocorticoids, including dexamethasone, or from aging. Astaxanthin (AST) is a ketocarotenoid with a variety of physiological activities. However, the clinical application of AST is hampered by its strong hydrophobicity, intense off-flavors, and susceptibility to oxidation. Methods: In this study, we prepared whey protein isolate (WPI)-encapsulated AST nanoemulsion (WPI-AST, W-A) and investigated its alleviating effects on dexamethasone-induced skeletal muscle atrophy. Results: The optimal concentration of astaxanthin was determined to be 30 mg/mL with an oil/water ratio of 1:5. The W-A was a typical oil-in-water (O/W) emulsion with a particle size of about 110 nm. The bioaccessibility of astaxanthin was significantly improved, with the off-flavors of astaxanthin effectively masked. After oral administration, the W-A further ameliorated skeletal muscle atrophy by inhibiting skeletal muscle catabolism, promoting skeletal muscle production, and inhibiting mitochondrial autophagy compared with the same dose of WPI and AST. In addition to this, the W-A further improved the glycometabolism of skeletal muscle by reducing the expression of Foxo3 and increasing the expression of PGC-1α. Conclusions: In conclusion, the W-A nanoemulsion demonstrated good therapeutic value in alleviating skeletal muscle atrophy. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

17 pages, 3356 KB  
Article
Encapsulation of Canola Oil by Sonication for the Development of Protein and Starch Systems: Physical Characteristics and Rheological Properties
by Reynaldo J. Silva-Paz, Celenia E. Ñope-Quito, Thalia A. Rivera-Ashqui, Nicodemo C. Jamanca-Gonzales, Amparo Eccoña-Sota, Natalia Riquelme and Carla Arancibia
Colloids Interfaces 2025, 9(1), 10; https://doi.org/10.3390/colloids9010010 - 22 Jan 2025
Cited by 1 | Viewed by 1829
Abstract
Canola oil, extracted from Brassica napus, is appreciated for its nutritional profile, but its use in the food industry is limited by its susceptibility to oxidation. This study aimed to evaluate the nanoemulsion of canola oil by sonication to develop stable nanoemulsified [...] Read more.
Canola oil, extracted from Brassica napus, is appreciated for its nutritional profile, but its use in the food industry is limited by its susceptibility to oxidation. This study aimed to evaluate the nanoemulsion of canola oil by sonication to develop stable nanoemulsified gels from protein and starch systems. Two stages were performed. In the first stage, oil-in-water (O/W) nanoemulsions were prepared using soy lecithin and Tween 80 as emulsifiers, analyzing their physical stability by particle size and polydispersity index. The results show that the sonication conditions and emulsifier concentration significantly affected the creaming index and particle size. In the second stage, gels were developed from these nanoemulsions, evaluating their colorimetric and rheological properties. It was observed that the gels presented a viscoelastic behavior suitable for food applications, with a higher luminosity in protein systems. In conclusion, nanoemulsion by sonication improves the stability of canola oil, suggesting its potential use in various food applications. Additional emulsifier combinations and optimization of processing conditions are recommended to further improve the stability and functionality of the encapsulated oil. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

26 pages, 44536 KB  
Article
Polydispersity and Composition Stability in a Long-Term Follow-Up of Palmarosa (Cymbopogon Martini) and Tea Tree (Melaleuca Alternifolia) O/W Nanoemulsions for Antibacterial Use
by Erick Sánchez-Gaitán, Vianney González-López and Francisco Delgado
Colloids Interfaces 2025, 9(1), 5; https://doi.org/10.3390/colloids9010005 - 14 Jan 2025
Cited by 1 | Viewed by 1718
Abstract
There is a growing focus on the design of nanoemulsions because of their valuable properties as an enhanced vehicle for interaction with cells and resistant bacteria. Their potential applications in the health and food industry are numerous. Although they are considered unstable because [...] Read more.
There is a growing focus on the design of nanoemulsions because of their valuable properties as an enhanced vehicle for interaction with cells and resistant bacteria. Their potential applications in the health and food industry are numerous. Although they are considered unstable because of flocculation and coalescence, they are still efficient resources for antibacterial inhibition due to their droplet size. Studies on the interactions between essential oils and an aqueous medium are increasing, in order to efficiently formulate them at the nanometric scale using surfactants, thereby providing them with long-lived droplet size stability. This study used the ultrasonication method for fabrication and Eumulgin as a surfactant to achieve nanometric droplet sizes using two noble essential oils, palmarosa and tea tree. A follow-up for one year tracked a stable droplet size and sustained polydispersity in those emulsions as the most valuable outcome. Moreover, the insights of a thermoresponsive study have been included, also showing a strong stability. The antibacterial properties of the essential oils considered became enhanced, at a comparable scale of an antibiotic, on Salmonella spp. and Bacillus subtilis depending on the nanoscale droplet size. The outcomes suggest the importance of deepening parametric studies of these nanoformulations in terms of concentrations and temperature changes, characterizing their remarkable properties and durability. Full article
Show Figures

Graphical abstract

20 pages, 2155 KB  
Article
Bioaccessibility and Stability Studies on Encapsulated Phenolics and Carotenoids from Olive and Tomato Pomace: Development of a Functional Fruit Beverage
by Maria Katsouli, Ioanna V. Thanou, Evgenia Raftopoulou, Athina Ntzimani, Petros Taoukis and Maria C. Giannakourou
Appl. Sci. 2024, 14(22), 10495; https://doi.org/10.3390/app142210495 - 14 Nov 2024
Cited by 3 | Viewed by 2232
Abstract
This study pertains the encapsulation of bioactive compounds, specifically phenolic compounds and lycopene, extracted from olive and tomato by-products via oil-in-water (O/W) nanoemulsions and their potential application in functional beverages. The effect of various edible oils (olive pomace oil (OPO), sunflower oil (SFO), [...] Read more.
This study pertains the encapsulation of bioactive compounds, specifically phenolic compounds and lycopene, extracted from olive and tomato by-products via oil-in-water (O/W) nanoemulsions and their potential application in functional beverages. The effect of various edible oils (olive pomace oil (OPO), sunflower oil (SFO), corn oil (CO), fish oil (FO), and canola oil (CLA)) in the lipid phase and antioxidants (ascorbic acid and phenolic extracts) in the aqueous phase on the physicochemical properties of oil-in-water (O/W) nanoemulsions enriched with lycopene was evaluated, along with the bioaccessibility of the encapsulated bioactive compounds using the static INFOGEST in vitro simulation protocol for gastrointestinal food digestion. All examined edible oils led to nanoemulsions with uniform droplet sizes (droplet size < 300 nm, droplet distribution < 0.3) and high stability during storage at 4 °C, with FO being the smallest, at 259.3 ± 9.1 nm, and OPO the largest, at 286.6 ± 10.0 nm. Ascorbic acid increased the droplet size by 5–8%, improved droplet distribution, and led to a lower deterioration rate (−0.014 d−1) when compared to the “control” counterparts (−0.037 d−1). Lycopene bioaccessibility was significantly affected by the lipid phase, with OPO exhibiting the highest percentage (53.8 ± 2.6%) and FO the lowest (40.1 ± 2.1%). The OPO nanoemulsion was selected for the development of a functional beverage, showing excellent long-term stability. The phenolic compound concentration remained consistent during storage, and the lycopene degradation rate was minimal, at −0.0088 d−1, resulting in an estimated shelf life of 165 days at 4 °C, based on a 50% reduction in lycopene content. Similarly, phenolic compounds demonstrated high bioaccessibility, without a significant dependence on the lipid phase, and stability during shelf life, enhancing the beverage’s overall antioxidant profile. These results indicate that O/W nanoemulsions are effective delivery systems for functional beverages, offering improved stability and bioaccessibility of lycopene. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

6 pages, 1609 KB  
Proceeding Paper
In Vitro Digestion of Chia Seed Oil Nanoemulsions
by Luciana Julio, Greilis Quintero-Gamero, Estefanía Guiotto and Vanesa Ixtaina
Biol. Life Sci. Forum 2024, 37(1), 3; https://doi.org/10.3390/blsf2024037003 - 31 Oct 2024
Viewed by 997
Abstract
Oil-in-water (O/W) nanoemulsions offer significant potential for protecting and delivering sensitive ingredients such as chia seed oil, which is rich in ω-3 fatty acids (approximately 64% α-linolenic acid, ALA). This research work aimed to study the in vitro fat digestibility of chia [...] Read more.
Oil-in-water (O/W) nanoemulsions offer significant potential for protecting and delivering sensitive ingredients such as chia seed oil, which is rich in ω-3 fatty acids (approximately 64% α-linolenic acid, ALA). This research work aimed to study the in vitro fat digestibility of chia O/W nanoemulsions (Cas1000) with 10% (w/w) of chia oil and 2% (w/w) of sodium caseinate prepared by microfluidization (1000 bar, 3 passes) and characterized through their droplet size, superficial droplet charge, and global stability. In terms of the in vitro fat digestibility, three different matrices were studied: a water solution of sodium caseinate, a chia O/W nanoemulsion, and a bulk chia oil. The particle size distribution, mean diameter, and microstructure were evaluated after in vitro stomach and small intestine simulation according to the INFOGEST method. Free fatty acids (% FFA) produced during lipolysis were quantified at the end of digestion through their neutralization by acid-base volumetric assay. The droplet size of the Cas1000 had slight changes during the gastric phase while a significant variation of this parameter was observed at the end of the intestinal phase. A higher %FFA was obtained in Cas1000 compared to bulk chia oil with values of 58.26 and 38.13%, respectively. The ALA content in the lipid phase was quantified at the end of the gastrointestinal digestion process. The results indicated no significant changes compared to the initial oil, suggesting no losses of active compounds during digestion. Full article
(This article belongs to the Proceedings of VI International Congress la ValSe-Food)
Show Figures

Figure 1

20 pages, 3892 KB  
Article
Exploring the Antifungal Effectiveness of a Topical Innovative Formulation Containing Voriconazole Combined with Pinus sylvestris L. Essential Oil for Onychomycosis
by Safaa Halool Mohammed Al-Suwaytee, Olfa Ben Hadj Ayed, Raja Chaâbane-Banaoues, Tahsine Kosksi, Maytham Razaq Shleghm, Leila Chekir-Ghedira, Hamouda Babba, Souad Sfar and Mohamed Ali Lassoued
Colloids Interfaces 2024, 8(5), 56; https://doi.org/10.3390/colloids8050056 - 17 Oct 2024
Cited by 5 | Viewed by 3211
Abstract
(1) Background: The present study aimed to assess the antifungal effectiveness of a topical innovative formulation containing the association of an antifungal agent, voriconazole (VCZ), and the essential oil of Pinus sylvestris L. (PSEO). (2) Methods: Pseudo-ternary phase diagram and D-optimal mixture design [...] Read more.
(1) Background: The present study aimed to assess the antifungal effectiveness of a topical innovative formulation containing the association of an antifungal agent, voriconazole (VCZ), and the essential oil of Pinus sylvestris L. (PSEO). (2) Methods: Pseudo-ternary phase diagram and D-optimal mixture design approaches were applied for the development and the optimization of the o/w nanoemulsion. The optimized formulation (NE) was subjected to physicochemical characterization and to physical stability studies. In vitro permeation studies were carried out using the Franz cell diffusion system. The antimycotic efficacy against Microsporum canis was carried out in vitro. (3) Results: Optimal nanoemulsion showed great physical stability and was characterized by a small droplet size (19.015 nm ± 0.110 nm), a PDI of 0.146 ± 0.011, a zeta potential of −16.067 mV ± 1.833 mV, a percentage of transmittance of 95.352% ± 0.175%, and a pH of 5.64 ± 0.03. Furthermore, it exhibited a significant enhancement in apparent permeability coefficient (p < 0.05) compared to the VCZ free drug. Finally, NE presented the greatest antifungal activity against Microsporum canis in comparison with VCZ and PSEO tested alone. (4) Conclusions: These promising results suggest that this topical innovative formulation could be a good candidate to treat onychomycosis. Further ex vivo and clinical investigations are needed to support these findings. Full article
Show Figures

Figure 1

Back to TopTop