Easy Obtainment and Biological Applicability of Pinocarvyl Acetate by Encapsulating of the Microlicia graveolens Essential Oil in Oil-in-Water Nanoemulsions
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Specimens and Essential Oil Extraction
2.2. Development and Characterization of Nanoemulsion
2.2.1. Preparation of Oil-in-Water Nanoemulsion
2.2.2. Characterization of Nanoemulsion
2.2.3. Accelerated Stability Assay
2.2.4. In Vitro Release
2.3. Antimicrobial Assay
2.3.1. Antibacterial and Antifungal Activities
2.3.2. Evaluation of Trypanocidal Activity
2.4. Evaluation of Cytotoxicity
2.5. Statistical Analysis
3. Results
3.1. Extraction and Characterization of Essential Oil
3.2. Characterization and Stability of Nanoemulsion
3.3. Antibacterial Activity
3.4. Trypanocidal Activity
3.5. Cytotoxicity Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azeredo, C.M.O.; Santos, T.G.; Maia, B.H.L.d.N.S.; Soares, M.J. In vitro biological evaluation of eight different essential oils against Trypanosoma cruzi, with emphasis on Cinnamomum verum essential oil. BMC Complement. Altern. Med. 2014, 14, 309. [Google Scholar] [CrossRef]
- Chagas, A.C.d.S.; Passos, W.M.; Prates, H.T.; Leite, R.C.; Furlong, J.; Fortes, I.C.P. Efeito acaricida de óleos essenciais e concentrados emulsionáveis de Eucalyptus spp em Boophilus microplus. Braz. J. Vet. Res. Anim. Sci. 2002, 39, 247–253. [Google Scholar] [CrossRef]
- Toudahl, A.B.; Filho, S.A.V.; Souza, G.H.B.; Morais, L.D.; Santos, O.D.H.d.; Jäger, A.K. Chemical composition of the essential oil from Microlicia graveolens growing wild in Minas Gerais. Rev. Bras. Farmacogn. 2012, 22, 680–681. [Google Scholar] [CrossRef]
- Romero, R. Revisão taxonômica de Microlicia sect. Chaetostomoides (Melastomataceae). Braz. J. Bot. 2003, 26, 429–435. [Google Scholar] [CrossRef]
- Romero, R.; Caetano, A.P.S.; Santos, K.F.d.; De-Paula, O.C.; Versiane, A.F.A. Three New Species of the Megadiverse Genus Microlicia (Melastomataceae) with Notes on Leaf Anatomy. Syst. Bot. 2023, 48, 564–578. [Google Scholar] [CrossRef]
- Pacifico, R.; Almeda, F.; Fidanza, K. Seven New Species of Microlicia (Melastomataceae: Microlicieae) from Minas Gerais, Brazil. Syst. Bot. 2020, 45, 277–293. [Google Scholar] [CrossRef]
- Pereira, M.d.C.; Pádua, R.d.; Paula, R.d.; Nascimento, M.; Soares, L.; Isidório, R.; Nelson, D. In vitro antiprotozoal activity and cytotoxicity of Microlicia crenulata (DC) Mart extract. Int. J. Med. Aromat. Plants 2013, 3, 423–429. (In English) [Google Scholar]
- Cassiano, D.S.A.; Pacheco, A.G.M.; da Costa, M.M.; Almeida, J.R.G.S.; Vieira, I.J.C.; Branco, A. Antimicrobial activity and chemical analysis of Microlicia hatschbachii Wurdack (Melastomataceae) extract. Nat. Prod. Res. 2014, 28, 333–336. [Google Scholar] [CrossRef]
- Pereira, M.d.C.; Nelson, D.L.; Stoianoff, M.A.R.; Santos, S.G.; Nogueira, L.J.; Coutinho, S.C.; de Carvalho, M.A.R.; Barbosa, L.C.A. Chemical Composition and Antimicrobial Activity of the Essential Oil from Microlicia crenulata. J. Essent. Oil Bear. Plants 2015, 18, 18–28. [Google Scholar] [CrossRef]
- Dein, M.; Wickramasinghe, P.C.K.; Munafo, J.P., Jr. Characterization of Key Odorants in Meehan’s Mint, Meehania cordata. J. Agric. Food Chem. 2020, 68, 10388–10396. [Google Scholar] [CrossRef]
- Moghimi, R.; Ghaderi, L.; Rafati, H.; Aliahmadi, A.; McClements, D.J. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. Coli. Food Chem. 2016, 194, 410–415. (In English) [Google Scholar] [CrossRef]
- Lopes, L.Q.; Santos, C.G.; de Almeida Vaucher, R.; Gende, L.; Raffin, R.P.; Santos, R.C. Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees. Microb. Pathog. 2016, 97, 183–188. (In English) [Google Scholar] [CrossRef] [PubMed]
- Bhawana; Basniwal, R.K.; Buttar, H.S.; Jain, V.K.; Jain, N. Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. J. Agric. Food Chem. 2011, 59, 2056–2061. (In English) [Google Scholar] [CrossRef] [PubMed]
- Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009, 112, 77–83. [Google Scholar] [CrossRef]
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. (In English) [Google Scholar] [CrossRef]
- Kalhapure, R.S.; Suleman, N.; Mocktar, C.; Seedat, N.; Govender, T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J. Pharm. Sci. 2015, 104, 872–905. (In English) [Google Scholar] [CrossRef]
- Fernandez-Fernandez, A.; Manchanda, R.; Kumari, M. Lipid-engineered nanotherapeutics for cancer management. Front. Pharmacol. 2023, 14, 1125093. (In English) [Google Scholar] [CrossRef]
- Pavoni, L.; Perinelli, D.R.; Bonacucina, G.; Cespi, M.; Palmieri, G.F. An Overview of Micro- and Nanoemulsions as Vehicles for Essential Oils: Formulation, Preparation and Stability. Nanomaterials 2020, 10, 135. (In English) [Google Scholar] [CrossRef]
- Yammine, J.; Chihib, N.-E.; Gharsallaoui, A.; Ismail, A.; Karam, L. Advances in essential oils encapsulation: Development, characterization and release mechanisms. Polym. Bull. 2024, 81, 3837–3882. [Google Scholar] [CrossRef]
- Kumar, A.; Kanwar, R.; Mehta, S.K. Nanoemulsion as an effective delivery vehicle for essential oils: Properties, formulation methods, destabilizing mechanisms and applications in agri-food sector. Next Nanotechnol. 2025, 7, 100096. [Google Scholar] [CrossRef]
- Seibert, J.B.; Rodrigues, I.V.; Carneiro, S.P.; Amparo, T.R.; Lanza, J.S.; Frézard, F.J.G.; de Souza, G.H.B.; Santos, O.D.H.d. Seasonality study of essential oil from leaves of Cymbopogon densiflorus and nanoemulsion development with antioxidant activity. Flavour. Fragr. J. 2019, 34, 5–14. [Google Scholar] [CrossRef]
- Seibert, J.B.; Bautista-Silva, J.P.; Amparo, T.R.; Petit, A.; Pervier, P.; Dos Santos Almeida, J.C.; Azevedo, M.C.; Silveira, B.M.; Brandão, G.C.; de Souza, G.H.B.; et al. Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chem. 2019, 287, 61–67. (In English) [Google Scholar] [CrossRef]
- Seibert, J.B.; Viegas, J.S.R.; Almeida, T.C.; Amparo, T.R.; Rodrigues, I.V.; Lanza, J.S.; Frézard, F.J.G.; Soares, R.; Teixeira, L.F.M.; de Souza, G.H.B.; et al. Nanostructured Systems Improve the Antimicrobial Potential of the Essential Oil from Cymbopogon densiflorus Leaves. J. Nat. Prod. 2019, 82, 3208–3220. (In English) [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Ma, Y.; Huang, X.; Song, L.; Guo, H.; Sun, X.; Li, N.; Qiao, M. Stabilization of flaxseed oil nanoemulsions based on flaxseed gum: Effects of temperature, pH and NaCl on stability. LWT 2023, 176, 114512. [Google Scholar] [CrossRef]
- Amparo, T.R.; Anunciação, K.F.D.; Almeida, T.C.; Sousa, L.R.D.; Xavier, V.F.; Seibert, J.B.; Barboza, A.P.M.; Vieira, P.M.A.; Dos Santos, O.D.H.; da Silva, G.N.; et al. Chitosan Nanoparticles Enhance the Antiproliferative Effect of Lapachol in Urothelial Carcinoma Cell Lines. Pharmaceutics 2025, 17, 868. (In English) [Google Scholar] [CrossRef] [PubMed]
- Špaglová, M.; Čuchorová, M.; Čierna, M.; Poništ, S.; Bauerová, K. Microemulsions as Solubilizers and Penetration Enhancers for Minoxidil Release from Gels. Gels 2021, 7, 26. [Google Scholar] [CrossRef]
- Romanha, A.J.; Castro, S.L.; Soeiro Mde, N.; Lannes-Vieira, J.; Ribeiro, I.; Talvani, A.; Bourdin, B.; Blum, B.; Olivieri, B.; Zani, C.; et al. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem. Inst. Oswaldo Cruz 2010, 105, 233–238. (In English) [Google Scholar] [CrossRef]
- Bańkosz, M. Physicochemical Characterization and Kinetics Study of Polymer Carriers with Vitamin C for Controlled Release Applications. Materials 2024, 17, 5502. (In English) [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. (In English) [Google Scholar] [CrossRef]
- Marques, M.C.M.; Oliveira, P.E.A.M. Fenologia de espécies do dossel e do sub-bosque de duas Florestas de Restinga na Ilha do Mel, sul do Brasil. Braz. J. Bot. 2004, 27, 713–723. [Google Scholar] [CrossRef]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention Indices for Frequently Reported Compounds of Plant Essential Oils. J. Phys. Chem. Ref. Data 2011, 40, 043101. [Google Scholar] [CrossRef]
- Forgiarini, A.; Esquena, J.; González, C.; Solans, C. Formation of Nano-emulsions by Low-Energy Emulsification Methods at Constant Temperature. Langmuir 2001, 17, 2076–2083. [Google Scholar] [CrossRef]
- da Silva Gündel, S.; de Souza, M.E.; Quatrin, P.M.; Klein, B.; Wagner, R.; Gündel, A.; Vaucher, R.A.; Santos, R.C.V.; Ourique, A.F. Nanoemulsions containing Cymbopogon flexuosus essential oil: Development, characterization, stability study and evaluation of antimicrobial and antibiofilm activities. Microb. Pathog. 2018, 118, 268–276. (In English) [Google Scholar] [CrossRef]
- Wan, J.; Zhong, S.; Schwarz, P.; Chen, B.; Rao, J. Physical properties, antifungal and mycotoxin inhibitory activities of five essential oil nanoemulsions: Impact of oil compositions and processing parameters. Food Chem. 2019, 291, 199–206. (In English) [Google Scholar] [CrossRef]
- Baldissera, M.D.; Da Silva, A.S.; Oliveira, C.B.; Zimmermann, C.E.; Vaucher, R.A.; Santos, R.C.; Rech, V.C.; Tonin, A.A.; Giongo, J.L.; Mattos, C.B.; et al. Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: In vitro tests. Exp. Parasitol. 2013, 134, 356–361. (In English) [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. (In English) [Google Scholar] [CrossRef]
- Ribeiro, L.N.M.; Breitkreitz, M.C.; Guilherme, V.A.; da Silva, G.H.R.; Couto, V.M.; Castro, S.R.; de Paula, B.O.; Machado, D.; de Paula, E. Natural lipids-based NLC containing lidocaine: From pre-formulation to in vivo studies. Eur. J. Pharm. Sci. 2017, 106, 102–112. (In English) [Google Scholar] [CrossRef] [PubMed]
- Ziani, K.; Chang, Y.; McLandsborough, L.; McClements, D.J. Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J. Agric. Food Chem. 2011, 59, 6247–6255. (In English) [Google Scholar] [CrossRef] [PubMed]
- Restrepo, A.E.; Rojas, J.D.; García, O.R.; Sánchez, L.T.; Pinzón, M.I.; Villa, C.C. Mechanical, barrier, and color properties of banana starch edible films incorporated with nanoemulsions of lemongrass (Cymbopogon citratus) and rosemary (Rosmarinus officinalis) essential oils. Food Sci. Technol. Int. 2018, 24, 705–712. (In English) [Google Scholar] [CrossRef]
- Rossi, G.G.; Guterres, K.B.; Bonez, P.C.; da Silva Gundel, S.; Aggertt, V.A.; Siqueira, F.S.; Ourique, A.F.; Wagnerd, R.; Klein, B.; Santos, R.C.V.; et al. Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb. Pathog. 2017, 113, 335–341. (In English) [Google Scholar] [CrossRef]
- Masson, D.S.; Morais, G.G.; de Morais, J.M.; de Andrade, F.F.; Dos Santos, O.D.H.; de Oliveira, W.P.; Rocha Filho, P.A. Polyhydroxy Alcohols and Peach Oil Addition Influence on Liquid Crystal Formation and Rheological Behavior of O/W Emulsions. J. Dispers. Sci. Technol. 2005, 26, 463–468. [Google Scholar] [CrossRef]
- Wilson, R.J.; Li, Y.; Yang, G.; Zhao, C.-X. Nanoemulsions for drug delivery. Particuology 2022, 64, 85–97. [Google Scholar] [CrossRef]
- Chatzidaki, M.D.; Mitsou, E. Advancements in Nanoemulsion-Based Drug Delivery Across Different Administration Routes. Pharmaceutics 2025, 17, 337. (In English) [Google Scholar] [CrossRef]
- Demiray, H.; Tabanca, N.; Estep, A.S.; Becnel, J.J.; Demirci, B. Chemical composition of the essential oil and n-hexane extract of Stachys tmolea subsp. Tmolea Boiss., an endemic species of Turkey, and their mosquitocidal activity against dengue vector Aesdes aegypti. Saudi Pharm. J. 2019, 27, 877–881. (In English) [Google Scholar] [CrossRef]
- Hulankova, R. Methods for Determination of Antimicrobial Activity of Essential Oils In Vitro-A Review. Plants 2024, 13, 2784. (In English) [Google Scholar] [CrossRef] [PubMed]
- Liu, J.X.; Huang, D.F.; Hao, D.; Hu, Q. Chemical Composition, Antibacterial Activity of the Essential Oil from Roots of Radix aucklandiae against Selected Food-Borne Pathogens. Adv. Biosci. Biotechnol. 2014, 5, 1043–1047. [Google Scholar] [CrossRef]
- Donsì, F.; Ferrari, G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016, 233, 106–120. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.R.; Malik, M.H.; Biswas, S.; Tam, V.H.; Rumbaugh, K.P.; Li, W.; Liu, X. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater. Sci. 2022, 10, 633–653. [Google Scholar] [CrossRef] [PubMed]
- Moller, A.G.; Lindsay, J.A.; Read, T.D. Determinants of Phage Host Range in Staphylococcus Species. Appl. Environ. Microbiol. 2019, 85, e00209-19. (In English) [Google Scholar] [CrossRef]
- Luque-Sastre, L.; Arroyo, C.; Fox, E.M.; McMahon, B.J.; Bai, L.; Li, F.; Fanning, S. Antimicrobial Resistance in Listeria Species. Microbiol. Spectr. 2018, 6, 10.1128. (In English) [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Cardoso, M.d.G.; Gomes, M.d.S.; Azeredo, C.M.O.d.; Batista, L.R.; Soares, M.J.; Rodrigues, L.M.A.; Figueiredo, A.C.S. Biological activity of the essential oils from Cinnamodendron dinisii and Siparuna guianensis. Braz. J. Microbiol. 2015, 46, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Valentim, D.S.S.; Duarte, J.L.; Oliveira, A.; Cruz, R.A.S.; Carvalho, J.C.T.; Conceição, E.C.; Fernandes, C.P.; Tavares-Dias, M. Nanoemulsion from essential oil of Pterodon emarginatus (Fabaceae) shows in vitro efficacy against monogeneans of Colossoma macropomum (Pisces: Serrasalmidae). J. Fish. Dis. 2018, 41, 443–449. (In English) [Google Scholar] [CrossRef] [PubMed]
- Sans-Serramitjana, E.; Fusté, E.; Martínez-Garriga, B.; Merlos, A.; Pastor, M.; Pedraz, J.L.; Esquisabel, A.; Bachiller, D.; Vinuesa, T.; Viñas, M. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients. J. Cyst. Fibros. 2016, 15, 611–618. (In English) [Google Scholar] [CrossRef] [PubMed]
KI a | Compound | Percentage (%) | |
---|---|---|---|
Collection (1) | Collection (2) | ||
939 | α-pinene | 0.85 | 0.67 |
975 | Sabinene | 0.31 | 0.33 |
979 | β-pinene | 6.70 | 5.66 |
990 | Myrcene | 2.94 | 2.68 |
1026 | o-cymene | - | 0.06 |
1029 | Limonene | 1.25 | 1.52 |
1031 | 1,8-cineol | 0.88 | - |
1059 | γ-terpinene | - | 0.02 |
1164 | Pinocarvone | - | 0.38 |
1170 | ρ-mentha-1,5-dien-8-ol | - | 0.08 |
1175 | cis-pinocamphone | - | 0.18 |
1177 | Terpinen-4-ol | - | 0.10 |
1184 | cis-pinocarveol | 0.53 | 0.77 |
1188 | α-terpineol | 0.46 | 0.36 |
1195 | Myrtenal | - | 0.23 |
1200 | cis-4-caranone | - | 0.03 |
1282 | cis-verbenyl acetate | - | 0.17 |
1290 | trans-sabinyl acetate | - | 0.07 |
1298 | trans-pinocarvyl acetate | 1.66 | 3.39 |
1299 | cis-α-necrodol acetate | - | 0.29 |
1312 | cis-pinocarvyl acetate | 83.57 | 76.89 |
1326 | Myrtenyl acetate | - | 0.31 |
1342 | trans-carvyl acetate | - | 0.11 |
1376 | α-copaene | - | 0.26 |
1388 | β-bourbonene | - | 0.18 |
1419 | trans-caryophyllene | - | 0.54 |
1454 | α-humulene | - | 0.17 |
1479 | γ-muurolene | - | 0.22 |
1481 | Germacrene D | - | 1.08 |
1496 | 2-tridecanone | - | 0.06 |
1500 | Bicyclogermacrene | - | 0.32 |
1505 | β-Bisabolene | - | 0.37 |
1523 | δ-cadinene | - | 0.18 |
1531 | trans-γ-bisabolene | - | 0.06 |
1563 | trans-nerolidol | - | 0.17 |
1578 | Spathulenol | - | 0.18 |
1583 | Caryophyllene oxide | - | 0.09 |
1592 | Viridiflorol | 0.86 | - |
1760 | Benzyl benzoate | - | 0.26 |
1949 | Pimaradiene | - | 0.18 |
Hydrocarbon monoterpene | 12.05 | 10.94 | |
Oxygenated monoterpene | 87.10 | 83.36 | |
Hydrocarbon sesquiterpene | - | 3.38 | |
Oxygenated sesquiterpene | 0.86 | 0.76 | |
Hydrocarbon diterpene | - | 0.18 | |
Total identified | 100.01 | 98.62 |
pH | Kinetic Models (R2) | |||
---|---|---|---|---|
Zero Order | First Order | Higuchi | Korsmeyer–Peppas | |
7.5 | 0.8869 | 0.6504 | 0.9184 | 0.9067 |
2.5 | 0.8520 | 0.6127 | 0.9453 | 0.9385 |
Microorganism | IZ (mm) | MIC (mg/mL) * | |||
---|---|---|---|---|---|
EO | CNT | EO | NE | NE-NC | |
Enterococcus faecalis | 16.5 ± 0.5 | 25.3 ± 1.4 | 250.0 | 25.0 | Inactive |
Enterococcus faecium | 9.0 ± 0.0 | 19.8 ± 1.3 | 250.0 | 25.0 | Inactive |
Listeria monocytogenes | 20.0 ± 0.0 | 27.6 ± 0.9 | 250.0 | 3.12 | Inactive |
Staphylococcus aureus | 9.0 ± 0.0 | 21.9 ± 1.9 | 62.5 | 6.25 | Inactive |
Staphylococcus saprophyticus | 12.0 ± 1.0 | 23.8 ± 0.7 | 15.6 | 3.12 | Inactive |
Sample | IC50 on Parasite a (mg/mL) | CC50 on L929 b (mg/mL) |
---|---|---|
EO | 2.3 | 0.62 |
NE | 60.4 | 9.5 |
NE-NC | Inactive | 11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seibert, J.B.; Amparo, T.R.; Sousa, L.R.D.; Rodrigues, I.V.; Petit, A.; Pervier, P.; Azevedo, M.C.; Sales Junior, P.A.; Murta, S.M.F.; Carneiro, C.M.; et al. Easy Obtainment and Biological Applicability of Pinocarvyl Acetate by Encapsulating of the Microlicia graveolens Essential Oil in Oil-in-Water Nanoemulsions. Pharmaceutics 2025, 17, 1130. https://doi.org/10.3390/pharmaceutics17091130
Seibert JB, Amparo TR, Sousa LRD, Rodrigues IV, Petit A, Pervier P, Azevedo MC, Sales Junior PA, Murta SMF, Carneiro CM, et al. Easy Obtainment and Biological Applicability of Pinocarvyl Acetate by Encapsulating of the Microlicia graveolens Essential Oil in Oil-in-Water Nanoemulsions. Pharmaceutics. 2025; 17(9):1130. https://doi.org/10.3390/pharmaceutics17091130
Chicago/Turabian StyleSeibert, Janaína Brandão, Tatiane Roquete Amparo, Lucas Resende Dutra Sousa, Ivanildes Vasconcelos Rodrigues, Alicia Petit, Pauline Pervier, Mariana Costa Azevedo, Policarpo Ademar Sales Junior, Silvane Maria Fonseca Murta, Cláudia Martins Carneiro, and et al. 2025. "Easy Obtainment and Biological Applicability of Pinocarvyl Acetate by Encapsulating of the Microlicia graveolens Essential Oil in Oil-in-Water Nanoemulsions" Pharmaceutics 17, no. 9: 1130. https://doi.org/10.3390/pharmaceutics17091130
APA StyleSeibert, J. B., Amparo, T. R., Sousa, L. R. D., Rodrigues, I. V., Petit, A., Pervier, P., Azevedo, M. C., Sales Junior, P. A., Murta, S. M. F., Carneiro, C. M., Teixeira, L. F. d. M., de Souza, G. H. B., Vieira, P. M. d. A., & Santos, O. D. H. d. (2025). Easy Obtainment and Biological Applicability of Pinocarvyl Acetate by Encapsulating of the Microlicia graveolens Essential Oil in Oil-in-Water Nanoemulsions. Pharmaceutics, 17(9), 1130. https://doi.org/10.3390/pharmaceutics17091130