Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = nutrient-rich organic soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3741 KiB  
Article
Use of Amino Acids and Organic Waste Extracts to Improve the Quality of Liquid Nitrogen–Calcium–Magnesium Fertilizers
by Eglė Didžiulytė and Rasa Šlinkšienė
Sustainability 2025, 17(15), 7081; https://doi.org/10.3390/su17157081 - 5 Aug 2025
Viewed by 61
Abstract
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse [...] Read more.
Agriculture is one of the most important sectors of the global economy, but it increasingly faces sustainability challenges in meeting rising food demands. The intensive use of mineral fertilizers not only improves yields, but also causes negative environmental impacts such as increasing greenhouse gas emissions, water eutrophication, and soil degradation. To develop more sustainable solutions, the focus is on organic fertilizers, which are produced using waste and biostimulants such as amino acids. The aim of this study was to develop and characterize liquid nitrogen–calcium–magnesium fertilizers produced by decomposing dolomite with nitric acid followed by further processing and to enrich them with a powdered amino acid concentrate Naturamin-WSP and liquid extracts from digestate, a by-product of biogas production. Nutrient-rich extracts were obtained using water and potassium hydroxide solutions, with the latter proving more effective by yielding a higher organic carbon content (4495 ± 0.52 mg/L) and humic substances, which can improve soil structure. The produced fertilizers demonstrated favourable physical properties, including appropriate viscosity and density, as well as low crystallization temperatures (eutectic points from –3 to –34 °C), which are essential for storage and application in cold climates. These properties were achieved by adjusting the content of nitrogenous compounds and bioactive extracts. The results of the study show that liquid fertilizers enriched with organic matter can be an effective and more environmentally friendly alternative to mineral fertilizers, contributing to the development of the circular economy and sustainable agriculture. Full article
Show Figures

Figure 1

18 pages, 7363 KiB  
Article
Agronomic Evaluation of Compost Formulations Based on Mining Tailings and Microbial Mats from Geothermal Sources
by María Jesús Puy-Alquiza, Miren Yosune Miranda Puy, Raúl Miranda-Avilés, Pooja Vinod Kshirsagar and Cristina Daniela Moncada Sanchez
Recycling 2025, 10(4), 156; https://doi.org/10.3390/recycling10040156 - 5 Aug 2025
Viewed by 86
Abstract
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, [...] Read more.
This study, conducted in Mexico, evaluates the agricultural potential of three compost formulations BFS1, BFS2, and BFS3 produced from mining tailings and thermophilic microbial mats and collected from geothermal environments. The physicochemical characterization included pH, electrical conductivity (EC), macronutrients (N, P, K, Ca, Mg, and S), micronutrients (Fe, Zn, B, Cu, Mn, Mo, and Ni), organic matter (OM), and the carbon-to-nitrogen (C/N) ratio. All composts exhibited neutral pH values (7.38–7.52), high OM content (38.5–48.4%), and optimal C/N ratios (10.5–13.9), indicating maturity and chemical stability. Nitrogen ranged from 19 to 21 kg·t−1, while potassium and calcium were present in concentrations beneficial for crop development. However, EC values (3.43–3.66 dS/m) and boron levels (>160 ppm) were moderately high, requiring caution in saline soils or with boron-sensitive crops. A semi-quantitative Compost Quality Index (CQI) ranked BFS3 highest due to elevated OM and potassium content, followed by BFS1. BFS2, while rich in nitrogen, scored lower due to excessive boron. One-way ANOVA revealed no significant difference in nitrogen (p > 0.05), but it did reveal significant differences in potassium (p < 0.01) and boron (p < 0.001) among formulations. These results confirm the potential of mining tailings—microbial mat composts are low-cost, nutrient-rich biofertilizers. They are suitable for field crops or as components in nursery substrates, particularly when EC and boron are managed through dilution. This study promotes the circular reuse of geothermal and industrial residues and contributes to sustainable soil restoration practices in mining-affected regions through innovative composting strategies. Full article
Show Figures

Figure 1

14 pages, 2980 KiB  
Article
Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management
by Yizhi Chen, Jianning Guo, Hanyue Zhao, Guangyu Qu, Siqi Han and Caide Huang
Sustainability 2025, 17(15), 6817; https://doi.org/10.3390/su17156817 - 27 Jul 2025
Viewed by 314
Abstract
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional [...] Read more.
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional farming systems. A comparative analysis was conducted on 24 plot soils from two paired organic and conventional farm systems in Beijing, each managed continuously for over 20 years. Our results revealed that soils under organic management consistently contained 10.8% to 73.7% lower heavy metals, along with reduced geo-accumulation indices (Igeo, a standardized metric for soil contamination assessment), indicating decreased contamination risks. In terms of soil fauna, while conventional soils showed higher Collembola abundance, organic farming significantly enhanced Collembola richness and diversity by 20.6% to 55.0%. Microbial sequencing likewise revealed enhanced richness and diversity of bacteria and fungi in organic soils. These microbial communities also displayed shifts in dominant taxa and more stable co-occurrence networks under organic management. Principal component analysis and Mantel tests identified soil pH and nutrients as key drivers of soil biodiversity, while heavy metals also imposed negative influences. Collectively, these findings demonstrate that long-term organic farming not only mitigates environmental risks associated with soil contaminants but also promotes belowground ecological integrity by supporting biodiversity of soil fauna and microbiota. This study highlights the ecological significance of sustained organic practices and provides critical insights for advancing sustainable agricultural developments. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

15 pages, 1823 KiB  
Article
Soil Texture’s Hidden Influence: Decoding Plant Diversity Patterns in Arid Ecosystems
by Shuaiyu Wang, Younian Wang, Zhiwei Li and Chengzhi Li
Soil Syst. 2025, 9(3), 84; https://doi.org/10.3390/soilsystems9030084 - 25 Jul 2025
Viewed by 351
Abstract
Desert plant communities play a vital role in sustaining the stability of arid ecosystems; however, they demonstrate limited resilience to environmental changes. A critical aspect of understanding community assembly mechanisms is determining whether soil texture heterogeneity affects vegetation diversity in arid deserts, especially [...] Read more.
Desert plant communities play a vital role in sustaining the stability of arid ecosystems; however, they demonstrate limited resilience to environmental changes. A critical aspect of understanding community assembly mechanisms is determining whether soil texture heterogeneity affects vegetation diversity in arid deserts, especially under conditions of extreme water scarcity and restricted nutrient availability. This study systematically examined the relationships between plant diversity and soil physicochemical properties across four soil texture types—sand, sandy loam, loamy sand, and silty loam—by selecting four representative desert systems in the Hami region of Xinjiang, China. The objective was to elucidate the mechanisms through which soil texture may impact desert plant species diversity. The findings revealed that silty loam exhibited distinct characteristics in comparison to the other three sandy soil types. Despite its higher nutrient content, silty loam demonstrated the lowest vegetation diversity. The Shannon–Wiener index (H′), Simpson dominance index (C), Margalef richness index (D), and Pielou evenness index (Jsw) for silty loam were all lower compared to those for sand, sandy loam, and loamy sand. However, silty loam exhibited higher values in electrical conductivity (EC), urease activity (SUR), and nutrient content, including soil organic matter (SOM), ammonium nitrogen (NH4+-N), and available potassium (AK), than the other three soil textures. This study underscores the significant regulatory influence of soil texture on plant diversity in arid environments, offering new insights and practical foundations for the conservation and management of desert ecosystems. Full article
Show Figures

Figure 1

17 pages, 1473 KiB  
Article
Stimulation of Maize Growth and Development and Improvement of Soil Properties Using New Specialised Organic-Mineral Materials
by Marzena S. Brodowska, Mirosław Wyszkowski and Ryszard Grzesik
Molecules 2025, 30(14), 3050; https://doi.org/10.3390/molecules30143050 - 21 Jul 2025
Viewed by 228
Abstract
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on [...] Read more.
The use of mineral fertilisers has increased in recent years, but this has had a negative effect on the environment, including causing the water in rivers and lakes to become too rich in nutrients, a process known as eutrophication. Current research focuses on producing fertiliser materials that are environmentally friendly. The aim of this study was to examine the impact of novel specialised organic-mineral fertilisers (OMFs: NP 24-12, NP 10-10, and NP 10-10 Zn+) on the yield and chemical composition of maize. These fertilisers were compared with a control (no fertiliser) and with other fertilisers (mixture of commercial fertilisers (MCFs): NP 24-12 and NP 10-10) that were used as a reference. All fertilisers increased the SPAD index at the fifth leaf unfolded stage of maize, with the majority (apart from OMF NP 10-10) also increasing it at the panicle emergence stage. MCF NP 10-10 had the most positive effect on the plant height, while OMF NP 10-10 had the least positive effect. All fertilisers had a positive effect on maize growth and development, with MCFs NP 10-10 and NP 24-12 having by far the strongest effect on increasing crop yields. The yield of plants fertilised with OMFs NP 24-12, NP 10-10, and NP 10-10 Zn+ was lower than the yields of plants fertilised with MCF NP 24-12 and MCF NP 10-10. OMF NP 10-10 caused a greater increase in the contents of all elements, and OMF NP 24-12 caused a greater increase in most elements (except P and Ca) in maize than MCFs did at an identical NP ratio. OMF NP 10-10 Zn+ was found to have a significant impact on the mineral composition of maize, resulting in a decline in Ca and P levels, along with a notable increase in Mg, Zn, and Cu concentrations. The most significant differences were observed for Cu and Zn. The OMFs, notably NP 24-12 and NP 10-10, exhibited a comparatively diminished acidifying impact in comparison with the MCFs. The application of fertilisers resulted in a significant increase in soil nutrient levels, with most fertilisers increasing the soil N, P, and Zn contents. Additionally, the OMFs led to an increase in Cu. However, MCFs NP 24-12 and NP 10-10 reduced the soil Cu and Mn contents. Studies should include other species as they have different needs. Field experiments are also needed. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Figure 1

21 pages, 5490 KiB  
Article
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Viewed by 315
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify [...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

13 pages, 1293 KiB  
Article
Organic Amendments Enhance Maize Growth by Improving Chemical and Microbial Properties in Coastal Saline–Alkali Soils
by Xiaoyu Huang, Tao Yin, Weijiao Sun, Guili Ge and Wenliang Wei
Plants 2025, 14(14), 2217; https://doi.org/10.3390/plants14142217 - 17 Jul 2025
Viewed by 428
Abstract
Biochar and seaweed fertilizers could improve soil quality and promote plant growth. However, the key soil factors and microbial mechanisms that drive maize growth in coastal saline–alkali soils remain unclear. A soil culture experiment was designed with four treatments—no organic fertilizer (CK), single [...] Read more.
Biochar and seaweed fertilizers could improve soil quality and promote plant growth. However, the key soil factors and microbial mechanisms that drive maize growth in coastal saline–alkali soils remain unclear. A soil culture experiment was designed with four treatments—no organic fertilizer (CK), single seaweed fertilizer (F), single biochar (B), and combined application of seaweed fertilizer and biochar (BF)—to investigate the effects of biochar and seaweed fertilizer on maize growth and its mechanism. The results showed that B and BF significantly increased maize aboveground biomass by 8.86% and 17.28% compared to CK, respectively. The soil organic carbon, total nitrogen, available nitrogen, available phosphorus, available potassium content, and pH of B and BF were significantly increased. Bacterial diversity increased under B and BF, while fungal richness decreased under BF. The changes in the fungal community were mainly affected by soil available nitrogen, but there was no significant correlation between bacterial communities and these indicators. Pearson correlation analysis suggested that the bacterial Chao1 index was significantly positively correlated with maize growth indicators, soil available phosphorus, and available potassium, as well as the bacterial PD whole tree index with leaf area and available phosphorus. The fungal Shannon index was significantly negatively correlated with maize plant height, leaf area, SPAD, aboveground biomass, and soil total nitrogen and available nutrients. Overall, biochar and seaweed fertilization could significantly promote maize growth by improving soil chemical properties and microbial communities in coastal saline–alkali soils. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

22 pages, 1279 KiB  
Review
State of the Art of Biomethane Production in the Mediterranean Region
by Antonio Comparetti, Salvatore Ciulla, Carlo Greco, Francesco Santoro and Santo Orlando
Agronomy 2025, 15(7), 1702; https://doi.org/10.3390/agronomy15071702 - 15 Jul 2025
Viewed by 394
Abstract
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for [...] Read more.
The Mediterranean region is increasingly confronted with intersecting environmental, agricultural, and socio-economic challenges, including biowaste accumulation, soil degradation, and high dependency on imported fossil fuels. Biomethane, a renewable substitute for natural gas, offers a strategic solution that aligns with the region’s need for sustainable energy transition and circular resource management. This review examines the current state of biomethane production in the Mediterranean area, with a focus on anaerobic digestion (AD) technologies, feedstock availability, policy drivers, and integration into the circular bioeconomy (CBE) framework. Emphasis is placed on the valorisation of regionally abundant feedstocks such as olive pomace, citrus peel, grape marc, cactus pear (Opuntia ficus-indica) residues, livestock manure, and the Organic Fraction of Municipal Solid Waste (OFMSW). The multifunctionality of AD—producing renewable energy and nutrient-rich digestate—is highlighted for its dual role in reducing greenhouse gas (GHG) emissions and restoring soil health, especially in areas threatened by desertification such as Sicily (Italy), Spain, Malta, and Greece. The review also explores emerging innovations in biogas upgrading, nutrient recovery, and digital monitoring, along with the role of Renewable Energy Directive III (RED III) and national biomethane strategies in scaling up deployment. Case studies and decentralised implementation models underscore the socio-technical feasibility of biomethane systems across rural and insular territories. Despite significant potential, barriers such as feedstock variability, infrastructural gaps, and policy fragmentation remain. The paper concludes with a roadmap for research and policy to advance biomethane as a pillar of Mediterranean climate resilience, energy autonomy and sustainable agriculture within a circular bioeconomy paradigm. Full article
Show Figures

Figure 1

14 pages, 2403 KiB  
Article
Drought Stress Enhances Mycorrhizal Colonization in Rice Landraces Across Agroecological Zones of Far-West Nepal
by Urmila Dhami, Nabin Lamichhane, Sudan Bhandari, Gunanand Pant, Lal Bahadur Thapa, Chandra Prasad Pokhrel, Nikolaos Monokrousos and Ram Kailash Prasad Yadav
Soil Syst. 2025, 9(3), 72; https://doi.org/10.3390/soilsystems9030072 - 9 Jul 2025
Viewed by 313
Abstract
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, [...] Read more.
Mycorrhizal symbiosis in rice enhances drought adaptation but there are limited studies regarding the frequency and amplitude of mycorrhizae colonization in traditional landraces. This study investigates mycorrhizal colonization frequency (FMS) and intensity (IRS) in 12 rice landraces across three agroecological zones (Tarai, Inner-Tarai, Mid-hill) of Far-West Nepal under drought stress. Field experiments exposed landraces to control, intermittent, and complete drought treatments, with soil properties and root colonization analyzed. Results revealed FMS and IRS variations driven by soil composition and genotype. Mid-hill soils (acidic, high organic matter) showed lower FMS but elevated IRS under drought, while neutral pH in Tarai and silt/clay-rich soils supported higher FMS. Sandy soil in Inner-Tarai also promoted FMS. Drought significantly increased IRS, particularly in Anjana and Sauthiyari (Tarai), Chiudi and Shanti (Inner-Tarai), and Chamade and Jhumke (Mid-hill), which exhibited IRS surges of 171–388%. These landraces demonstrated symbiotic resilience, linking mycorrhizal networks to enhanced nutrient/water uptake. Soil organic matter and nutrient levels amplified IRS responses, underscoring fertility’s role in adaptation. FMS ranged from 50 to 100%, and IRS 1.20–19.74%, with intensity being a stronger drought-tolerance indicator than frequency. The study highlights the conservation urgency for these landraces, as traditional varieties decline due to hybrid adoption. Their drought-inducible mycorrhizal symbiosis offers a sustainable strategy for climate-resilient rice production, emphasizing soil–genotype interactions in agroecological adaptation. Full article
Show Figures

Figure 1

17 pages, 4351 KiB  
Article
Soybean Fermentation Broth Value-Added Phosphorus Fertilizer Boosts Crop Growth via Improved Soil Phosphorus Availability and Rhizosphere Microbial Activity
by Xinyi Zhang, Danyi He, Wuzhihui Huang, Tingyi Wang and Lansheng Deng
Agriculture 2025, 15(13), 1440; https://doi.org/10.3390/agriculture15131440 - 4 Jul 2025
Viewed by 323
Abstract
Excessive application of phosphate fertilizers exacerbates water pollution, while the low phosphorus availability in acidic soils results in diminished phosphorus utilization efficiency of crops. This study conducted a maize pot experiment to investigate the effects of soybean fermentation broth value-added phosphorus fertilizer (SFB-VAPF) [...] Read more.
Excessive application of phosphate fertilizers exacerbates water pollution, while the low phosphorus availability in acidic soils results in diminished phosphorus utilization efficiency of crops. This study conducted a maize pot experiment to investigate the effects of soybean fermentation broth value-added phosphorus fertilizer (SFB-VAPF) on soil phosphorus availability and microbial communities in acidic lateritic red soils during the 31-day seedling stage to determine its growth promotion efficacy. Conducted in Guangzhou, China, under greenhouse conditions, the experimental design comprised 11 treatments: CK (no fertilizer), treatments with P alone at two levels (0.05 and 0.15 g·kg−1), and eight SFB-VAPF treatments combining each P level with four dilutions of soybean fermentation broth (SFB; 100-, 300-, 500-, and 700-fold dilutions). Each treatment had five replications. Application of SFB-VAPF significantly improved the soil chemical attributes, enzyme activities, and promoted maize growth and nutrient accumulation. Compared to the high-P treatments (0.15 g·kg−1 P), low-P SFB-VAPF demonstrated superior enhancement of the soil organic matter (SOM), available nutrients, maize biomass, and nutrient accumulation. The treatment combining 0.05 g·kg−1 P and 100-fold diluted SFB significantly increased the acid phosphatase activity (ACP) by 28.01% and the AP content by 69.63%, while achieving the highest maize biomass. Although SFB-VAPF application reduced the microbial species richness, the combinations of low P with high SFB and high P with low SFB enhanced both the community structural diversity and distribution evenness. SFB-VAPF application reduced the abundance of Alphaproteobacteria, while the Gammaproteobacteria abundance significantly increased in the low-P SFB-VAPF groups. The microbial beta diversity analysis demonstrated that combining 0.05 g·kg−1 P with SFB significantly altered the microbial community structure. The key driving factors included soil EC and SOM, AP, Al-P, and Fe-P contents, with AP content exerting an extremely significant influence on the bacterial community composition and structure (p ≤ 0.001). This study demonstrates that SFB-VAPF enhances soil phosphorus availability, and improves the structural diversity and distribution evenness of microbial communities, thereby promoting crop growth. Critically, SFB synergistically enhances the efficiency of low-concentration phosphorus fertilizers. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 4025 KiB  
Article
Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil
by Ximei Zhao, Fengyun Xiang, Xicheng Wang, Mengchen Yang and Jifu Li
Agronomy 2025, 15(7), 1628; https://doi.org/10.3390/agronomy15071628 - 3 Jul 2025
Viewed by 368
Abstract
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in [...] Read more.
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in rice soils in Chuandian Town, Jingzhou District, Jianghan Plain, central China. The results revealed that the Shrimp treatment significantly increased soil organic matter (SOM), available nitrogen (AN), and available phosphorus (AP) content in the surface soil (0–10 cm) while reducing soil bulk density and improving pore structure. Forestland exhibited higher aggregate stability in deeper soil layers (20–40 cm), particularly in the 0.053–0.25 mm size fraction. Microbial diversity analysis showed that bacterial richness (Chao1 index) and diversity (Shannon index) were significantly higher in the Shrimp and Rapeseed treatments compared to those in the Forestland treatment, with Proteobacteria and Chloroflexi being the dominant bacterial phyla. Fungal communities were dominated by Ascomycota, withfForestland showing greater fungal richness in deeper soil. Soil depth significantly influenced aggregates, nutrients, and microbial diversity, with surface soil exhibiting higher values for these parameters than deeper layers. Redundancy analysis indicated that SOM, AP, and pH were the key drivers of bacterial community variation, while fungal communities were more influenced by nitrogen and porosity. Path analysis further demonstrated that land use patterns indirectly affected microbial diversity via altering aggregate structure and nutrient availability. Overall, the Shrimp treatment outperformed others in improving soil structure and nutrient supply, whereas the Forestland treatment was more conducive to promoting aggregate stability in deeper soil. Land use patterns indirectly regulated microbial communities through modifying soil aggregate structure and nutrient status, thereby influencing soil ecosystem health and stability. This study provides a theoretical basis for the sustainable management of rice soils, suggesting the optimization of rotation patterns in agricultural production to synergistically enhance soil physical, chemical, and biological properties. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

18 pages, 4123 KiB  
Article
Wheat Yield, N Use Efficiency, Soil Properties, and Soil Bacterial Community as Affected by Long-Term Straw Incorporation and Manure Under Wheat–Summer Maize Cropping System in Southern Shanxi Province, China
by Mengni Chen, Zhiguo Yang, Na Yang, Hui Wang, Yongshan Li, Ke Wang, Jian Wang, Qiaolan Fan, Jiancheng Zhang, Jiawei Yuan, Peng Dong and Lu Wang
Plants 2025, 14(12), 1795; https://doi.org/10.3390/plants14121795 - 11 Jun 2025
Viewed by 1416
Abstract
Straw incorporation and manure are recognized as a sustainable farming practice to enhance soil fertility and improve crop yields. However, the effects of straw incorporation in combination with manure on productivity, soil nutrient status, N use efficiency (NUE), and the bacterial community are [...] Read more.
Straw incorporation and manure are recognized as a sustainable farming practice to enhance soil fertility and improve crop yields. However, the effects of straw incorporation in combination with manure on productivity, soil nutrient status, N use efficiency (NUE), and the bacterial community are not well understood in wheat–summer maize rotation systems in the southern Shanxi Province. The five treatments were (1) CK, no fertilization; (2) NP, inorganic N and P fertilizers; (3) NPM, mineral N and P fertilizers plus chicken manure; (4) SNP, mineral N and P fertilizers plus maize straw; and (5) SNPM, mineral N and P fertilizers plus maize straw and chicken manure. The results showed that NP, NPM, SNP, and SNPM significantly increased wheat yields by 56.19%, 76.89%, 111.08%, and 114.30%, compared with CK, respectively. Nitrogen agronomic efficiency (AEN), partial factor productivity (PEPN), apparent recovery efficiency (Apparent REN), and accumulated recovery efficiency (Accumulated REN) increased by 103.36%, 37.19%, 76.39%, and 30.90% in the SNPM treatment, compared with NP. Straw incorporation and manure significantly improved soil fertility. Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflex, Bacteroidota, Planctomycetota, Gemmatimonadota, Armatimonadota, Firmicutes, Methylomirabilota, and Myxococcota were the predominant bacterial phyla. Compared with NP, straw incorporation and manure (NPM, SNP, and SNPM) decreased diversities (richness index, Chao1 index, and Shannon index). Principal coordinates (PCoA) and cluster analyses demonstrated that manure treatments (NPM and SNPM) significantly optimized bacterial community structure. Pearson’s correlation analysis demonstrated that organic matter, total phosphorus, available nitrogen, available phosphorus, and available potassium had significant positive correlations with Halanaerobiaeota but significant negative positive correlations with Chloroflexi, Entotheonellaeota, and Myxococcota. Wheat yields, AEN, PEPN, Apparent REN, and Accumulated REN were primarily and significantly negatively associated with Cyanobacteria. Straw incorporation in combination with manure significantly optimized bacterial community structure, wheat yields, and N use efficiency through improving soil fertility. Collectively, straw incorporation in combination with manure is a promising practice for sustainable development. Full article
(This article belongs to the Special Issue Water and Nitrogen Management in the Soil–Crop System (3rd Edition))
Show Figures

Figure 1

19 pages, 2685 KiB  
Article
Thresholds and Trade-Offs: Fire Severity Modulates Soil Microbial Biomass-Function Coupling in Taiga Forests, Northeast of China
by Huijiao Qu, Siyu Jiang, Zhichao Cheng, Dan Wei, Libin Yang and Jia Zhou
Microorganisms 2025, 13(6), 1318; https://doi.org/10.3390/microorganisms13061318 - 5 Jun 2025
Viewed by 560
Abstract
Forest fires critically disrupt soil ecosystems by altering physicochemical properties and microbial structure-function dynamics. This study assessed short-term impacts of fire intensities (light/moderate/heavy) on microbial communities in Larix gmelinii forests one year post-fire. Using phospholipid fatty acid (PLFA) and Biolog EcoPlate analyses, we [...] Read more.
Forest fires critically disrupt soil ecosystems by altering physicochemical properties and microbial structure-function dynamics. This study assessed short-term impacts of fire intensities (light/moderate/heavy) on microbial communities in Larix gmelinii forests one year post-fire. Using phospholipid fatty acid (PLFA) and Biolog EcoPlate analyses, we found the following: (1) fire reduced soil organic carbon (SOC), dissolved organic carbon (DOC), total nitrogen (TN), and available nitrogen/potassium (AN/AK) via pyrolytic carbon release, while heavy-intensity fires enriched available phosphorus (AP), AN, and AK through ash deposition. (2) Thermal mortality and nutrient-pH-moisture stress persistently suppressed microbial biomass and metabolic activity. Moderate fires increased taxonomic richness but reduced functional diversity, confirming “functional redundancy.” (3) Neither soil microbial biomass nor metabolic activity at the fire site reached pre-fire levels after one year of recovery. Our findings advance post-fire soil restoration frameworks and advocate multi-omics integration to decode fire-adapted functional gene networks, guiding climate-resilient forest management. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

10 pages, 1034 KiB  
Article
Abiotic Nitrite Incorporation into Organic Matter in Volcanic and Non-Volcanic Soil Within Rainforest Ecosystems
by Francisco Matus, Jens Dyckmans, Svenja C. Stock, Carolina Merino, Michaela A. Dippold and Yakov Kuzyakov
Forests 2025, 16(6), 930; https://doi.org/10.3390/f16060930 - 1 Jun 2025
Cited by 1 | Viewed by 406
Abstract
Understanding nitrogen (N) retention mechanisms in pristine humid temperate rainforest soils is critical for effective ecosystem management and nutrient conservation. The potential abiotic transformation of nitrite (NO2) into organic N forms in the absence of microbial activity in these ecosystems [...] Read more.
Understanding nitrogen (N) retention mechanisms in pristine humid temperate rainforest soils is critical for effective ecosystem management and nutrient conservation. The potential abiotic transformation of nitrite (NO2) into organic N forms in the absence of microbial activity in these ecosystems remains largely unexplored, despite its role in mitigating N leaching. This study focuses on the abiotic incorporation of nitrite (NO2) into dissolved organic nitrogen (DON) under anoxic conditions, a mechanistic step not directly evaluated in previous research, which employed 15N-labelled nitrate (NO3). To address this gap, we used 15N-labelled NO2 at 5 and 15 mg L−1 in a lab incubation study under anoxic conditions to trace the contribution of abiotic nitrite transformation to organic N formation in organic matter-rich soils from temperate rainforests developed on both volcanic and non-volcanic parent materials. The added 15N declined rapidly after 15 min by 52% and 60% in both soil solutions, while it started to form labelled DON, increasing by 11% and 34%, after five days of incubation, with the highest accumulation at 15 mg L−1 of 15N-NO2. These results show that up to 77% of the added 15N-NO2 can be abiotically incorporated into the DON of unpolluted old-growth temperate rainforest, whether developed on volcanic or non-volcanic soils. Nitrogen input has a stronger effect than soil parent material from which the soils originate. This reveals the natural resilience of unpolluted temperate rainforests to N loss, with implications for long-term ecosystem stability and nutrient cycling. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Graphical abstract

22 pages, 6506 KiB  
Article
Long-Term Irrigation Deficits Impair Microbial Diversity and Soil Quality in Arid Maize Fields
by Dongdong Zhong, Renhua Sun, Zhen Huo, Jian Chen, Shengtianzi Dong and Hegan Dong
Agronomy 2025, 15(6), 1355; https://doi.org/10.3390/agronomy15061355 - 31 May 2025
Viewed by 572
Abstract
Water scarcity in arid regions poses a severe threat to agricultural sustainability, necessitating optimized irrigation strategies. This study investigates the cumulative impacts of long-term irrigation deficits on soil quality, microbial diversity, and maize yield in the arid maize fields of Xinjiang, China, where [...] Read more.
Water scarcity in arid regions poses a severe threat to agricultural sustainability, necessitating optimized irrigation strategies. This study investigates the cumulative impacts of long-term irrigation deficits on soil quality, microbial diversity, and maize yield in the arid maize fields of Xinjiang, China, where consistent irrigation patterns have been maintained over multiple years. Seven sites were monitored from April 2023 to March 2024, with a single end-of-cycle sampling in March 2024. Using the Irrigation Water Deficit Index (IWDI), the sites were classified into low (LD, 16.37–22.30%), moderate (MD, 30.54–38.10%), and high drought (HD, 47.49–50.00%) categories. The findings reveal that long-term consistent irrigation deficits exacerbate soil salinization, compaction, and nutrient loss, with organic matter declining significantly under HD conditions. Bacterial richness increased by ~6% under HD, driven by stress-tolerant taxa, while fungal diversity decreased by 14–50%, impairing nutrient cycling functions critical for soil health. The Soil Quality Index (SQI) and maize yield declined with drought severity (LD > MD by 26.18% and 21.05%; LD > HD by 45.02% and 13.13%), highlighting the pivotal role of sustained irrigation patterns in maintaining productivity. These results underscore the need for tailored irrigation management in arid regions, such as precision drip irrigation, to mitigate soil degradation and sustain maize yields, providing a scientific foundation for optimizing water use efficiency in water-scarce agroecosystems under long-term irrigation regimes. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

Back to TopTop