Organic Amendments Enhance Maize Growth by Improving Chemical and Microbial Properties in Coastal Saline–Alkali Soils
Abstract
1. Introduction
2. Results
2.1. Effects of Different Fertilization Treatments on Maize Growth Indicators and Nutrient Uptake
2.2. Effects of Different Fertilization Treatments on Soil Chemical Properties
2.3. Effects of Different Fertilization Treatments on Soil Microbial Community Composition
2.4. Effects of Different Fertilization Treatments on Soil Microbial Richness and Diversity
2.5. Relationships Between Soil Microbial Communities, Soil Properties, and Maize Growth Indicators
3. Discussion
3.1. Effects of Different Fertilization Treatments on Maize Growth
3.2. Effects of Different Fertilization Treatments on Soil Chemical Properties and Soil Microorganisms
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Design
4.3. Sampling and Determination
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Negacz, K.; Malek, Ž.; de Vos, A.; Vellinga, P. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J. Arid. Environ. 2022, 203, 104775. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Q.Y.; Huang, H. Current states and challenges of salt-affected soil remediation by cyanobacteria. Sci. Total Environ. 2019, 669, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, J.L.; Han, L.J.; Tan, J.; Ge, X.Y.; Nan, Q. Biochar addition reduces salinity in salt-affected soils with no impact on soil pH: A meta-analysis. Geoderma 2024, 443, 116845. [Google Scholar] [CrossRef]
- Li, P.; Zhang, H.J.; Deng, J.J.; Fu, L.B.; Chen, H.; Li, C.K.; Xu, L.; Jiao, J.G.; Zhang, S.X.; Wang, J.D.; et al. Cover crop by irrigation and fertilization improves soil health and maize yield: Establishing a soil health index. Appl. Soil Ecol. 2023, 182, 104727. [Google Scholar] [CrossRef]
- Yu, D.D.; Miao, Q.F.; Shi, H.B.; Feng, Z.Z.; Feng, W.Y. Effects of combined application of organic and inorganic fertilizers on physical and chemical properties in saline-alkali soil. Agronomy 2024, 14, 2236. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.A.H.; Rooney, D.W. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, Y.J.; Zhang, Y.B.; Zhou, L.J.; Xie, Z.K.; Zhao, X. Effects of adding different types and amounts of biochar to saline alkali soil on its salt ions and microbial community in northwest China. iScience 2025, 28, 25890042. [Google Scholar] [CrossRef]
- Fischer, B.M.C.; Manzoni, S.; Morillas, L.; Garcia, M.; Johnson, M.S.; Lyon, S.W. Improving agricultural water use efficiency with biochar-a synthesis of biochar effects on water storage and fluxes across scales. Sci. Total Environ. 2019, 657, 853–862. [Google Scholar] [CrossRef]
- Jia, A.Y.; Song, X.J.; Li, S.P.; Liu, Z.P.; Liu, X.T.; Han, Z.X.; Gao, H.Z.; Gao, Q.Q.; Zha, Y.; Liu, Y.; et al. Biochar enhances soil hydrological function by improving the pore structure of saline soil. Agric. Water Manag. 2024, 306, 109170. [Google Scholar] [CrossRef]
- Wang, X.L.; Riaz, M.; Babar, S.; Eldesouki, Z.; Liu, B.; Xia, H.; Li, Y.X.; Wang, J.Y.; Xia, X.Y.; Jiang, C.C. Alterations in the composition and metabolite profiles of the saline-alkali soil microbial community through biochar application. J. Environ. Manag. 2024, 352, 120033. [Google Scholar] [CrossRef] [PubMed]
- Ndoung, O.C.N.; de Figueiredo, C.C.; Ramos, M.L.G. A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon 2021, 7, e08473. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Wei, D.; Yin, D.W.; Zhou, B.K.; Ding, J.L.; Wang, W.; Zhang, J.M.; Qiu, S.J.; Zhang, C.J.; Li, Y.; et al. Investigations of the effect of the amount of biochar on soil porosity and aggregation and crop yields on fertilized black soil in Northern China. PLoS ONE 2020, 15, e0238883. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Q.; Zhou, H.G.; Sun, M.X.; Li, Q.; Fan, H.J.; Yang, R.; Chen, H.M. Improvement of soil structure and bacterial composition by long-term application of seaweed fertilizer. J. Soil Sci. Plant Nut. 2023, 23, 5122–5132. [Google Scholar]
- Hernández-Herrera, R.M.; Sánchez-Hernández, C.V.; Palmeros-Suárez, P.A.; Ocampo-Alvarez, H.; Santacruz-Ruvalcaba, F.; Meza-Canales, I.D.; Becerril-Espinosa, A. Seaweed extract improves growth and productivity of tomato plants under salinity stress. Agronomy 2022, 12, 2495. [Google Scholar] [CrossRef]
- Pei, B.L.; Zhang, Y.P.; Liu, T.; Cao, J.; Ji, H.; Hu, Z.Z.; Wu, X.X.; Wang, F.B.; Lu, Y.; Chen, N.L.; et al. Effects of seaweed fertilizer application on crops’ yield and quality in field conditions in China: A meta-analysis. PLoS ONE 2024, 19, 15. [Google Scholar] [CrossRef]
- Margal, P.B.; Thakare, R.S.; Kamble, B.M.; Patil, V.S.; Patil, K.B.; Titirmare, N.S. Effect of seaweed extracts on crop growth and soil: A review. J. Exp. Agric. Int. 2023, 45, 9–19. [Google Scholar] [CrossRef]
- Seki, M.; Sugihara, S.; Miyazaki, H.; Jegadeesan, M.; Kannan, P.; Bertrand, I. Impact of biochar and manure application on in situ carbon dioxide flux, microbial activity, and carbon budget in degraded cropland soil of Southern India. Land Degrad. Dev. 2022, 33, 1626–1636. [Google Scholar] [CrossRef]
- Meyer, S.; Fischer, D.; Meyer, A.; Karltun, E.; Silvén, M.P. Biochar-fertilizer blends-a valuable soil amendment for asparagus cultivation? J. Soil Sci. Plant Nut. 2022, 22, 691–705. [Google Scholar] [CrossRef]
- Vila, V.V.E.; Rezende, R.; Marques, P.A.A.; Wenneck, G.S.; Nocchi, R.C.D.; Terassi, D.D.; Andrean, A.F.B.A.; Matumoto-Pintro, P.T. Seaweed extract of Ascophyllum nodosum applied in tomato crop as a biostimulant for improving growth, yield and soil fertility in subtropical condition. J. Appl. Phycol. 2023, 35, 2531–2541. [Google Scholar] [CrossRef]
- Shang, X.C.; Zhang, M.M.; Zhang, Y.Q.; Li, Y.Q.; Hou, X.; Yang, L. Combinations of waste seaweed liquid fertilizer and biochar on tomato (Solanum lycopersicum L.) seedling growth in an acid-affected soil of Jiaodong Peninsula, China. Ecotoxicol. Environ. Saf. 2023, 260, 115075. [Google Scholar] [CrossRef]
- Tan, S.M.; Wang, B.; Yun, Q.; Yan, W.R.; Xiao, T.B.; Zhao, Z.X. Enhancing the Growth of Chili Plants and Soil Health: Synergistic Effects of Coconut Shell Biochar and Bacillus sp. Strain Ya-1 on Rhizosphere Microecology and Plant Metabolism. Int. J. Mol. Sci. 2024, 25, 11231. [Google Scholar] [CrossRef] [PubMed]
- Ndiate, N.I.; Saeed, Q.; Haider, F.U.; Liqun, C.; Nkoh, J.N.; Mustafa, A. Co-application of biochar and arbuscular mycorrhizal fungi improves salinity tolerance, growth and lipid metabolism of maize (Zea mays L.) in an alkaline soil. Plants 2021, 10, 2490. [Google Scholar] [CrossRef] [PubMed]
- Thi, L.K.; Yunusa, I.; Rab, M.A.; Zerihun, A.; Nguyen, H.M. Responses in growth, yield and cob protein content of baby corn (Zea mays L.) to amendment of an acid sulfate soil with lime, organic fertiliser and biochar. Crop Pasture Sci. 2022, 74, 90–100. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Guan, H.L.; Wang, R.; Wang, H.J.; Li, Z.C.; Li, W.; Xiang, P.; Xu, W.M. Effects of tobacco stem-derived biochar on soil properties and bacterial community structure under continuous cropping of Bletilla striata. J. Soil Sci. Plant Nut. 2021, 21, 1318–1328. [Google Scholar] [CrossRef]
- Sun, J.L.; Li, H.B.; Wang, Y.N.; Du, Z.L.; Rengel, Z.; Zhang, A.P. Biochar and nitrogen fertilizer promote rice yield by altering soil enzyme activity and microbial community structure. GCB Bioenergy 2022, 14, 1266–1280. [Google Scholar] [CrossRef]
- Karthik, T.; Jayasri, M.A. Systematic study on the effect of seaweed fertilizer on the growth and yield of Vigna radiata (L.) R. Wilczek (Mung bean). J. Agric. Food Res. 2023, 14, 100748. [Google Scholar] [CrossRef]
- Omara, P.; Aula, L.; Otim, F.; Obia, A.; Souza, J.L.B.; Arnall, D.B. Biochar applied with inorganic nitrogen improves soil carbon, nitrate and ammonium content of a sandy loam temperate soil. Nitrogen 2022, 3, 90–100. [Google Scholar] [CrossRef]
- Zhang, J.L.; Yang, J.; Zhang, W.H.; Ji, D.D.; Gao, W.S. Amelioration effect of biochar on nitrogen transformation and secondary salinization of vegetable soils in facilities. J. Soil Sci. Plant Nut. 2023, 23, 4971–4986. [Google Scholar] [CrossRef]
- Cao, D.Y.; Lan, Y.; Chen, W.F.; Yang, X.; Wang, D.; Ge, S.H.; Yang, J.X.; Wang, Q.Y. Successive applications of fertilizers blended with biochar in the soil improve the availability of phosphorus and productivity of maize (Zea mays L.). Eur. J. Agron. 2021, 130, 126344. [Google Scholar] [CrossRef]
- Dong, P.P.; Zhang, Z.M.; Zhang, M.X. Combination of phytoextraction and biochar improves available potassium and alters microbial community structure in soils. Water 2024, 16, 118. [Google Scholar] [CrossRef]
- Buss, W.; Shepherd, J.G.; Heal, K.V.; Mašek, O. Spatial and temporal microscale pH change at the soil-biochar interface. Geoderma 2018, 331, 50–52. [Google Scholar] [CrossRef]
- Tusar, H.M.; Uddin, M.K.; Mia, S.; Suhi, A.A.; Wahid, S.B.; Kasim, S.; Sairi, N.A.; Alam, Z.; Anwar, F. Biochar-acid soil interactions: A review. Sustainability 2023, 15, 13366. [Google Scholar] [CrossRef]
- French, E.; Kaplan, I.; Iyer-Pascuzzi, A.; Nakatsu, C.H.; Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 2021, 7, 256–267. [Google Scholar] [CrossRef]
- He, K.; Liu, Q.B.; Zhang, J.L.; Zhang, G.C.; Li, G.L. Biochar enhances the resistance of legumes and soil microbes to extreme short-term drought. Plants 2023, 12, 4155. [Google Scholar] [CrossRef] [PubMed]
- Shah, T.; Tariq, M.; Muhammad, D. The influence of added biochar on soil microbial biomass in a less fertile alkaline calcareous soil under different management practices. Soil Environ. 2021, 40, 27. [Google Scholar]
- Abdelsattar, A.M.; Elsayed, A.; El-Esawi, M.A.; Heikal, Y.M. Enhancing Stevia rebaudiana growth and yield through exploring beneficial plant-microbe interactions and their impact on the underlying mechanisms and crop sustainability. Plant Physiol. Biochem. 2023, 198, 107673. [Google Scholar] [CrossRef]
- Dangi, S.; Gao, S.D.; Duan, Y.H.; Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol. 2020, 150, 103452. [Google Scholar] [CrossRef]
- Li, X.; Wang, T.; Chang, S.X.; Jiang, X.; Song, Y. Biochar increases soil microbial biomass but has variable effects on microbial diversity: A meta-analysis. Sci. Total Environ. 2020, 749, 141593. [Google Scholar] [CrossRef]
- Widdig, M.; Heintz-Buschart, A.; Schleuss, P.M.; Guhr, A.; Borer, E.T.; Seabloom, E.W.; Spohn, M. Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil. Soil Biol. Biochem. 2020, 151, 108041. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Luo, Z.Z.; Li, L.L.; Nian, L.L.; Li, L.L.; Niu, Y.N.; He, R.Y.; Liu, J.H. Nitrogen fertilization shapes soil microbial diversity and ecosystem multifunctionality by modulating soil nutrients. Microorganisms 2025, 13, 540. [Google Scholar] [CrossRef]
- Rodrigues, M.C.; Rezende, W.M.; Silva, M.E.J.; Faria, S.V.; Zuffo, L.T.; Galvão, J.C.C.; DeLima, R.O. Genotypic variation and relationships among nitrogen-use efficiency and agronomic traits in tropical maize inbred lines. Genet. Mol. Res. 2017, 16, gmr16039757. [Google Scholar] [CrossRef]
- Bao, S.D. Agricultural and Chemistry Analysis of Soil; Agriculture Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Zhao, Y.G.; Zhang, F.H.; Yang, L.; Wang, D.; Wang, W.C. Response of soil bacterial community structure to different reclamation years of abandoned salinized farmland in arid China. Arch. Microbiol. 2019, 201, 1219–1232. [Google Scholar] [CrossRef]
PH (cm) | SD (cm) | LA (cm2) | SPAD | AB (g Plant−1) | |
---|---|---|---|---|---|
CK | 33.58 ± 1.45 c | 1.30 ± 0.01 b | 117.77 ± 8.56 c | 34.28 ± 2.41 b | 4.63 ± 0.07 c |
F | 42.25 ± 4.02 b | 1.36 ± 0.03 b | 134.88 ± 2.98 b | 37.18 ± 1.47 ab | 4.80 ± 0.04 c |
B | 52.00 ± 0.14 a | 1.54 ± 0.02 a | 147.83 ± 0.39 ab | 38.85 ± 0.78 ab | 5.04 ± 0.09 b |
BF | 56.08 ± 0.74 a | 1.55 ± 0.01 a | 157.46 ± 1.97 a | 40.73 ± 0.68 a | 5.43 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Yin, T.; Sun, W.; Ge, G.; Wei, W. Organic Amendments Enhance Maize Growth by Improving Chemical and Microbial Properties in Coastal Saline–Alkali Soils. Plants 2025, 14, 2217. https://doi.org/10.3390/plants14142217
Huang X, Yin T, Sun W, Ge G, Wei W. Organic Amendments Enhance Maize Growth by Improving Chemical and Microbial Properties in Coastal Saline–Alkali Soils. Plants. 2025; 14(14):2217. https://doi.org/10.3390/plants14142217
Chicago/Turabian StyleHuang, Xiaoyu, Tao Yin, Weijiao Sun, Guili Ge, and Wenliang Wei. 2025. "Organic Amendments Enhance Maize Growth by Improving Chemical and Microbial Properties in Coastal Saline–Alkali Soils" Plants 14, no. 14: 2217. https://doi.org/10.3390/plants14142217
APA StyleHuang, X., Yin, T., Sun, W., Ge, G., & Wei, W. (2025). Organic Amendments Enhance Maize Growth by Improving Chemical and Microbial Properties in Coastal Saline–Alkali Soils. Plants, 14(14), 2217. https://doi.org/10.3390/plants14142217