Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,793)

Search Parameters:
Keywords = nucleotide metabolism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3707 KiB  
Article
Biodegradation of Both Ethanol and Acetaldehyde by Acetobacter ghanensis JN01
by Hongyan Liu, Jingjing Wang, Qianqian Xu, Xiaoyu Cao, Xinyue Du, Kun Lin and Hai Yan
Catalysts 2025, 15(8), 756; https://doi.org/10.3390/catal15080756 (registering DOI) - 7 Aug 2025
Abstract
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was [...] Read more.
Excessive alcohol consumption is associated with systemic health risks due to the production of acetaldehyde, a primary carcinogen that not only pollutes the environment but also endangers human health. In this study, a promising bacterial strain for biodegrading both ethanol and acetaldehyde was successfully isolated from the traditional fermented food Jiaosu and identified as Acetobacter ghanensis JN01 based on average nucleotide identity (ANI) analysis. Initial ethanol of 1 g/L was completely biodegraded within 4 h, while initial acetaldehyde of 1 g/L was also rapidly removed at 2 or 1 h by whole cells or cell-free extracts (CEs) of JN01, respectively, which indicated that JN01 indeed has a strong ability in the biodegradation of both ethanol and acetaldehyde. Whole-genome sequencing revealed a 2.85 Mb draft genome of JN01 with 57.0% guanine–cytosine (GC) content and the key metabolic genes (adh1, adh2, and aldh) encoding involving alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), co-located with NADH dehydrogenase genes and ethanol-responsive regulatory motifs, supporting the metabolic pathway of transforming ethanol to acetaldehyde, and, subsequently, converting acetaldehyde to acetic acid. Furthermore, selected in vitro safety-related traits of JN01 were also assessed, which is very important in the development of microbial catalysts against both ethanol and acetaldehyde. Full article
(This article belongs to the Section Biocatalysis)
14 pages, 1038 KiB  
Article
Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells
by Yu Han, Bo Yu, Wenao Weng, Liangyu Shi and Jing Zhang
Animals 2025, 15(15), 2324; https://doi.org/10.3390/ani15152324 (registering DOI) - 7 Aug 2025
Abstract
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability [...] Read more.
Deoxynivalenol (DON) is a common mycotoxin that causes immunosuppression in pigs. Its effects on cellular metabolism remain unclear. In this study, we investigate DON-induced metabolic alterations in porcine alveolar macrophage cell line 3D4/21 using non-targeted metabolomics. MTT assays showed DON reduced cell viability in a concentration- and time-dependent manner. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) revealed distinct metabolic profiles between control and DON-treated groups. Metabolomic analysis identified 127 differential metabolites (VIP > 1, p < 0.05), primarily in purine metabolism, glutathione metabolism, and arginine–proline metabolism. Integration with transcriptomic data confirmed that these pathways play key roles in DON-induced immunotoxicity. Specifically, changes in purine metabolism suggested disrupted nucleotide synthesis and energy balance, while glutathione depletion indicated weakened antioxidant defense. These findings provided a systems biology perspective on DON’s metabolic reprogramming of immune cells and identified potential therapeutic targets to reduce mycotoxin-related immunosuppression in swine. Full article
(This article belongs to the Section Animal Physiology)
19 pages, 3173 KiB  
Article
Whole-Genome Resequencing Analysis of Athletic Traits in Grassland-Thoroughbred
by Wenqi Ding, Wendian Gong, Tugeqin Bou, Lin Shi, Yanan Lin, Xiaoyuan Shi, Zheng Li, Huize Wu, Manglai Dugarjaviin and Dongyi Bai
Animals 2025, 15(15), 2323; https://doi.org/10.3390/ani15152323 (registering DOI) - 7 Aug 2025
Abstract
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses [...] Read more.
Speed is not only the primary objective of racehorse breeding but also a crucial indicator for evaluating racehorse performance. This study investigates a newly developed racehorse breed in China. Through whole-genome resequencing, we selected 60 offspring obtained from the crossbreeding of Thoroughbred horses and Xilingol horses for this study. This breed is tentatively named “Grassland-Thoroughbred”, and the samples were divided into two groups based on racing ability: 30 racehorses and 30 non-racehorses. Based on whole-genome sequencing data, the study achieved an average sequencing depth of 25.63×. The analysis revealed strong selection pressure on chromosomes (Chr) 1 and 3. Selection signals were detected using methods such as the nucleotide diversity ratio (π ratio), integrated haplotype score (iHS), fixation index (Fst), and cross-population extended haplotype homozygosity (XP-EHH). Regions ranked in the top 5% by at least three methods were designated as candidate regions. This approach detected 215 candidate genes. Additionally, the Fst method was employed to detect Indels, and the top 1% regions detected were considered candidate regions, covering 661 candidate genes. Functional enrichment analysis of the candidate genes suggests that pathways related to immune regulation, neural signal transmission, muscle contraction, and energy metabolism may significantly influence differences in performance. Among these identified genes, PPARGC1A, FOXO1, SGCD, FOXP2, PRKG1, SLC25A15, CKMT2, and TRAP1 play crucial roles in muscle function, metabolism, sensory perception, and neurobiology, indicating their key significance in shaping racehorse phenotypes. This study not only enhances understanding of the molecular mechanisms underlying racehorse speed but also provides essential theoretical and practical references for the molecular breeding of Grassland-Thoroughbreds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

18 pages, 5124 KiB  
Article
Effects of Different Drying Methods on the Quality of Forest Ginseng Revealed Based on Metabolomics and Enzyme Activity
by Junjia Xing, Xue Li, Wenyu Dang, Limin Yang, Lianxue Zhang, Wei Li, Yan Zhao, Jiahong Han and Enbo Cai
Foods 2025, 14(15), 2753; https://doi.org/10.3390/foods14152753 - 7 Aug 2025
Abstract
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) [...] Read more.
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) method on the quality of FG using metabolomics and enzyme activity. The results revealed that the enzyme activities of dried FG were reduced considerably. PCAD preserved higher enzyme activity than HAD. Metabolomics data demonstrate that HAD promotes the formation of primary metabolites (amino acids, lipids, nucleotides, etc.), whereas PCAD promotes the formation of secondary metabolites (terpenoids, phenolic acids, etc.). A change-transformation network was built by combining the metabolites listed above and their biosynthetic pathways, and it was discovered that these biosynthetic pathways were primarily associated with the mevalonate (MVA) pathway, lipid metabolism, phenylpropane biosynthesis, and nucleotide metabolism. It is also believed that these findings are related to the chemical stimulation induced by thermal degradation and the ongoing catalysis of enzyme responses to drought stress. The facts presented above will give a scientific basis for the selection of FG drying processes, as well as helpful references for increasing the nutritional quality of processed FG. Full article
Show Figures

Figure 1

19 pages, 1551 KiB  
Article
Genome-Wide Association Study Reveals Key Genetic Loci Controlling Oil Content in Soybean Seeds
by Xueyang Wang, Min Zhang, Fuxin Li, Xiulin Liu, Chunlei Zhang, Fengyi Zhang, Kezhen Zhao, Rongqiang Yuan, Sobhi F. Lamlom, Honglei Ren, Hongmei Qiu and Bixian Zhang
Agronomy 2025, 15(8), 1889; https://doi.org/10.3390/agronomy15081889 - 5 Aug 2025
Abstract
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean [...] Read more.
Seed oil represents a key trait in soybeans, which holds substantial economic significance, contributing to roughly 60% of global oilseed production. This research employed genome-wide association mapping to identify genetic loci associated with oil content in soybean seeds. A panel comprising 341 soybean accessions, primarily sourced from Northeast China, was assessed for seed oil content at Heilongjiang Province in three replications over two growing seasons (2021 and 2023) and underwent genotyping via whole-genome resequencing, resulting in 1,048,576 high-quality SNP markers. Phenotypic analysis indicated notable variation in oil content, ranging from 11.00% to 21.77%, with an average increase of 1.73% to 2.28% across all growing regions between 2021 and 2023. A genome-wide association study (GWAS) analysis revealed 119 significant single-nucleotide polymorphism (SNP) loci associated with oil content, with a prominent cluster of 77 SNPs located on chromosome 8. Candidate gene analysis identified four key genes potentially implicated in oil content regulation, selected based on proximity to significant SNPs (≤10 kb) and functional annotation related to lipid metabolism and signal transduction. Notably, Glyma.08G123500, encoding a receptor-like kinase involved in signal transduction, contained multiple significant SNPs with PROVEAN scores ranging from deleterious (−1.633) to neutral (0.933), indicating complex functional impacts on protein function. Additional candidate genes include Glyma.08G110000 (hydroxycinnamoyl-CoA transferase), Glyma.08G117400 (PPR repeat protein), and Glyma.08G117600 (WD40 repeat protein), each showing distinct expression patterns and functional roles. Some SNP clusters were associated with increased oil content, while others correlated with decreased oil content, indicating complex genetic regulation of this trait. The findings provide molecular markers with potential for marker-assisted selection (MAS) in breeding programs aimed at increasing soybean oil content and enhancing our understanding of the genetic architecture governing this critical agricultural trait. Full article
Show Figures

Figure 1

25 pages, 1708 KiB  
Review
miRNAs in Pulmonary Hypertension: Mechanistic Insights and Therapeutic Potential
by Jindong Fang, Hongyang Chen, Zhuangzhuang Jia, Jinjin Dai and Fengli Ma
Biomedicines 2025, 13(8), 1910; https://doi.org/10.3390/biomedicines13081910 - 5 Aug 2025
Abstract
Pulmonary hypertension (PH) is a serious pulmonary vascular disease. Vascular remodeling, metabolic reprogramming, inflammation, and fibrosis are all major pathogenic mechanisms in PH. MicroRNAs (miRNAs) are small RNAs, about 20–24 nucleotides long, that play important regulatory roles in biological processes, and in recent [...] Read more.
Pulmonary hypertension (PH) is a serious pulmonary vascular disease. Vascular remodeling, metabolic reprogramming, inflammation, and fibrosis are all major pathogenic mechanisms in PH. MicroRNAs (miRNAs) are small RNAs, about 20–24 nucleotides long, that play important regulatory roles in biological processes, and in recent years, miRNAs have been found to potentially play a regulatory role in the pathogenesis of PH, and also serve as biomarkers and therapeutic agents for PH. However, there is still a long way to go from these experimental findings to their implementation in clinical practice. This study reviews the potential role of miRNAs in the pathogenesis of PH and suggests future applications of miRNAs in PH. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

22 pages, 5939 KiB  
Article
Single-Nucleus Transcriptome Sequencing Unravels Physiological Differences in Holstein Cows Under Different Physiological States
by Peipei Li, Yaqiang Guo, Yanchun Bao, Caixia Shi, Lin Zhu, Mingjuan Gu, Risu Na and Wenguang Zhang
Genes 2025, 16(8), 931; https://doi.org/10.3390/genes16080931 - 3 Aug 2025
Viewed by 111
Abstract
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk [...] Read more.
Background: Against the backdrop of the large-scale and intensive development of the livestock industry, enhancing the reproductive efficiency of cattle has become a crucial factor in industrial development. Holstein cows, as the most predominant dairy cattle breed globally, are characterized by high milk yield and excellent milk quality. However, their reproductive efficiency is comprehensively influenced by a variety of complex factors, and improving their reproductive performance faces numerous challenges. The ovary, as the core organ of the female reproductive system, plays a decisive role in embryonic development and pregnancy maintenance. It is not only the site where eggs are produced and developed but it also regulates the cow’s estrous cycle, ovulation process, and the establishment and maintenance of pregnancy by secreting various hormones. The normal functioning of the ovary is crucial for the smooth development of the embryo and the successful maintenance of pregnancy. Methods: Currently, traditional sequencing technologies have obvious limitations in deciphering ovarian function and reproductive regulatory mechanisms. To overcome the bottlenecks of traditional sequencing technologies, this study selected Holstein cows as the research subjects. Ovarian samples were collected from one pregnant and one non-pregnant Holstein cow, and single-nucleus transcriptome sequencing technology was used to conduct an in-depth study on the ovarian cells of Holstein cows. Results: By constructing a cell type-specific molecular atlas of the ovaries, nine different cell types were successfully identified. This study compared the proportions of ovarian cell types under different physiological states and found that the proportion of endothelial cells decreased during pregnancy, while the proportions of granulosa cells and luteal cells increased significantly. In terms of functional enrichment analysis, oocytes during both pregnancy and non-pregnancy play roles in the “cell cycle” and “homologous recombination” pathways. However, non-pregnant oocytes are also involved in the “progesterone-mediated oocyte maturation” pathway. Luteal cells during pregnancy mainly function in the “cortisol synthesis and secretion” and “ovarian steroidogenesis” pathways; non-pregnant luteal cells are mainly enriched in pathway processes such as the “AMPK signaling pathway”, “pyrimidine metabolism”, and “nucleotide metabolism”. Cell communication analysis reveals that there are 51 signaling pathways involved in the pregnant ovary, with endothelial cells, granulosa cells, and luteal cells serving as the core communication hubs. In the non-pregnant ovary, there are 48 pathways, and the interaction between endothelial cells and stromal cells is the dominant mode. Conclusions: This study provides new insights into the regulatory mechanisms of reproductive efficiency in Holstein cows. The differences in the proportions of ovarian cell types, functional pathways, and cell communication patterns under different physiological states, especially the increase in the proportions of granulosa cells and luteal cells during pregnancy and the specificity of related functional pathways, indicate that these cells play a crucial role in the reproductive process of cows. These findings also highlight the importance of ovarian cells in pathways such as “cell cycle”, “homologous recombination”, and “progesterone-mediated oocyte maturation”, as well as the cell communication mechanisms in regulating ovarian function and reproductive performance. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

34 pages, 1227 KiB  
Review
Beyond Cutting: CRISPR-Driven Synthetic Biology Toolkit for Next-Generation Microalgal Metabolic Engineering
by Limin Yang and Qian Lu
Int. J. Mol. Sci. 2025, 26(15), 7470; https://doi.org/10.3390/ijms26157470 - 2 Aug 2025
Viewed by 345
Abstract
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent [...] Read more.
Microalgae, with their unparalleled capabilities for sunlight-driven growth, CO2 fixation, and synthesis of diverse high-value compounds, represent sustainable cell factories for a circular bioeconomy. However, industrial deployment has been hindered by biological constraints and the inadequacy of conventional genetic tools. The advent of CRISPR-Cas systems initially provided precise gene editing via targeted DNA cleavage. This review argues that the true transformative potential lies in moving decisively beyond cutting to harness CRISPR as a versatile synthetic biology “Swiss Army Knife”. We synthesize the rapid evolution of CRISPR-derived tools—including transcriptional modulators (CRISPRa/i), epigenome editors, base/prime editors, multiplexed systems, and biosensor-integrated logic gates—and their revolutionary applications in microalgal engineering. These tools enable tunable gene expression, stable epigenetic reprogramming, DSB-free nucleotide-level precision editing, coordinated rewiring of complex metabolic networks, and dynamic, autonomous control in response to environmental cues. We critically evaluate their deployment to enhance photosynthesis, boost lipid/biofuel production, engineer high-value compound pathways (carotenoids, PUFAs, proteins), improve stress resilience, and optimize carbon utilization. Persistent challenges—species-specific tool optimization, delivery efficiency, genetic stability, scalability, and biosafety—are analyzed, alongside emerging solutions and future directions integrating AI, automation, and multi-omics. The strategic integration of this CRISPR toolkit unlocks the potential to engineer robust, high-productivity microalgal cell factories, finally realizing their promise as sustainable platforms for next-generation biomanufacturing. Full article
(This article belongs to the Special Issue Developing Methods and Molecular Basis in Plant Biotechnology)
Show Figures

Figure 1

19 pages, 1584 KiB  
Article
Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy
by Krzysztof Piątek, Grażyna Kurzawińska, Marcin Ożarowski, Piotr Józef Olbromski, Adam Kamiński, Maciej Brązert, Tomasz M. Karpiński, Wiesław Markwitz and Agnieszka Seremak-Mrozikiewicz
Int. J. Mol. Sci. 2025, 26(15), 7456; https://doi.org/10.3390/ijms26157456 - 1 Aug 2025
Viewed by 114
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is [...] Read more.
Intrahepatic cholestasis of pregnancy (ICP) is characterized by the onset of pruritus and elevated serum transaminases and bile acids (BA). The key enzyme in BA synthesis is CYP7A1, and its functions are regulated by various nuclear receptors. The goal of this study is to evaluate the association between CYP7A1, NR1H1, RXRA, and PPARA gene variants and risk of ICP. Five single nucleotide variants (SNVs), rs3808607 (CYP7A1), rs56163822 (NR1H4), rs1800206 (PPARA), rs749759, and rs11381416 (NR2B1), were genotyped in a group of 96 ICP and 211 controls. The T allele of the CYP7A1 (rs3808607) variant may be a protective factor against ICP risk (OR = 0.697, 95% CI: 0.495–0.981, p = 0.038). Genetic model analysis showed that rs3808607 was associated with decreased risk of ICP under dominant (OR = 0.55, 95% CI: 0.32–3.16, p = 0.032, AIC = 380.9) and log-additive models (OR = 0.71, 95% CI: 0.51–1.00, p = 0.046, AIC = 381.4). The A insertion in the rs11381416 NR2B1 variant was associated with the degree of elevation in the liver function tests TBA (34.3 vs. 18.8 μmol/L, p = 0.002), ALT (397.0 vs. 213.0 IU/L, p = 0.017), and AST (186.0 vs. 114.4 IU/L, p = 0.032) in ICP women. Results indicate an association between the CYP7A1 rs3808607 and the risk of ICP and the association of the rs11381416 of the NR2B1 receptor with higher values of liver function tests in women with ICP. A better understanding of the cooperation of proteins involved in BA metabolism may have important therapeutic implications in ICP and other hepatobiliary diseases. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2241 KiB  
Article
PDE Inhibitors and Autophagy Regulators Modulate CRE-Dependent Luciferase Activity in Neuronal Cells from the Mouse Suprachiasmatic Nucleus
by Erik Maronde and Abdelhaq Rami
Molecules 2025, 30(15), 3229; https://doi.org/10.3390/molecules30153229 - 1 Aug 2025
Viewed by 184
Abstract
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly [...] Read more.
Background: Signaling pathways like those depending on cAMP/PKA, calcium/calmodulin/CaMK, MEK-1/MAPK or PI3K/Akt have been described to modulate suprachiasmatic nucleus (SCN) neuronal signaling via influencing transcription factors like CREB. Here, we analyzed the effect of cyclic nucleotide phosphodiesterase inhibitors and structurally similar substances commonly used as autophagy modulators on a cell line stably expressing a cyclic nucleotide element-driven luciferase reporter. Methods: We used an SCN cell line stably transfected with a CRE-luciferase reporter (SCNCRE) to evaluate signaling and vitality responses to various isoform-selective PDE inhibitors and autophagy modulators to evaluate the mechanism of action of the latter. Results: In this study the different impacts of common PDE inhibitors and autophagy modulators on CRE-luciferase activity applied alone and in combination with known CRE-luciferase activating agents showed that (1) PDE3, 4 and 5 are present in SCNCRE cells, with (2) PDE3 being the most active and (3) the autophagy inhibitor 3-Methyladenin (3-MA) displaying PDE inhibitor-like behavior. Conclusions: Experiments provide evidence that, in addition to the extracellular signaling pathways components shown before to be involved in CRE-luciferase activity regulation like cAMP analogs, adenylate cyclase activators and beta-adrenoceptor agonists, cyclic nucleotide metabolism as realized by phosphodiesterase activity, or molecule/agents influencing processes like autophagy or inflammation, modulate transcriptional CRE-dependent activity in these cells. Specifically, we provide evidence that the autophagy inhibitor 3-MA, given that PDEs are expressed, may also act as a PDE inhibitor and inducer of CRE-mediated transcriptional activity. Full article
(This article belongs to the Special Issue Exploring Bioactive Organic Compounds for Drug Discovery, 2nd Edition)
Show Figures

Figure 1

15 pages, 1218 KiB  
Article
Genetic Risk of MASLD in Mongolians: Role of PNPLA3 and FTO SNPs
by Yumchinsuren Tsedendorj, Dolgion Daramjav, Yesukhei Enkhbat, Ganchimeg Dondov, Gantogtokh Dashjamts, Enkhmend Khayankhyarvaa, Amin-Erdene Ganzorig, Bolor Ulziitsogt, Tegshjargal Badamjav, Batbold Batsaikhan, Shiirevnyamba Avirmed and Tulgaa Lonjid
Curr. Issues Mol. Biol. 2025, 47(8), 605; https://doi.org/10.3390/cimb47080605 - 1 Aug 2025
Viewed by 240
Abstract
Background: This study aimed to determine the association between PNPLA3 rs738409, rs2896019, and FTO rs9939609, rs17817449 single-nucleotide polymorphisms and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in Mongolian individuals. Methods: We conducted a case-control study, enrolling 100 MASLD patients and 50 [...] Read more.
Background: This study aimed to determine the association between PNPLA3 rs738409, rs2896019, and FTO rs9939609, rs17817449 single-nucleotide polymorphisms and the risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in Mongolian individuals. Methods: We conducted a case-control study, enrolling 100 MASLD patients and 50 subjects without MASLD. We used the PCR-RFLP technique on three genotype SNPs (rs738409, rs2896019 in PNPLA3, and rs9939609 in FTO). We analyzed liver function and lipid metabolism parameters in the peripheral blood of study participants. A p-value below 0.05 was considered a statistically significant result. Results: This study, which included 150 participants aged 23 to 75, had a mean age of 46.73 ± 11.45 years, with 40% of participants being male (60 individuals). We observed the rs738409 (G), rs2896019 (G), and rs9939609 (A) alleles at a statistically significantly enhanced frequency in the case group (32.5%, 33%, and 21%) compared to the control group (19%, 25%, and 19%), indicating an increased risk of MASLD. The FTO rs17817449 SNP did not show a significant difference between groups. PNPLA3 rs738409 GC/GG genotype (OR = 2.39, p = 0.019) and FTO rs9939609 AT/AA (OR = 2.55, p = 0.025) genotype showed a significant association with MASLD. In the evaluation of the FTO rs9939609, rs17817449, and PNPLA3 rs738409, rs2896019 single-nucleotide polymorphisms among the research individuals, 18.7% had no SNPs, 15.3% had one SNP, 29.3% had two SNPs, 25.3% had three SNPs, and 11.3% had four SNPs. The risk of MASLD increased significantly for individuals having four SNPs (OR = 4.23, p = 0.007). Conclusions: We found that PNPLA3 rs738409 GC/GG genotype and FTO rs9939609 AT/AA genotype are strongly associated with an increased risk of MASLD. Notably, individuals with a higher rate of SNP number, had a significantly higher risk of MASLD. Full article
Show Figures

Figure 1

18 pages, 1711 KiB  
Article
Genome-Wide Association Analysis of Fresh Maize
by Suying Guo, Rengui Zhao and Jinhao Lan
Int. J. Mol. Sci. 2025, 26(15), 7431; https://doi.org/10.3390/ijms26157431 - 1 Aug 2025
Viewed by 114
Abstract
This study measured eight key phenotypic traits across 259 fresh maize inbred lines, including plant height and spike length. A total of 82 single nucleotide polymorphisms (SNPs) significantly associated with these phenotypes were identified by applying a mixed linear model to calculate the [...] Read more.
This study measured eight key phenotypic traits across 259 fresh maize inbred lines, including plant height and spike length. A total of 82 single nucleotide polymorphisms (SNPs) significantly associated with these phenotypes were identified by applying a mixed linear model to calculate the best linear unbiased prediction (BLUP) values and integrating genome-wide genotypic data through genome-wide association analysis (GWAS). A further analysis of significant SNPs contributed to the identification of 63 candidate genes with functional annotations. Notably, 11 major candidate genes were identified from multi-trait association loci, all of which exhibited highly significant P-values (<0.0001) and explained between 7.21% and 12.78% of phenotypic variation. These 11 genes, located on chromosomes 1, 3, 4, 5, 6, and 9, were functionally involved in signaling, metabolic regulation, structural maintenance, and stress response, and are likely to play crucial roles in the growth and physiological processes of fresh maize inbred lines. The functional genes identified in this study have significant implications for the development of molecular markers, the optimization of breeding strategies, and the enhancement of quality in fresh maize. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 9978 KiB  
Article
An Integrated Analysis of Transcriptomics and Metabolomics Elucidates the Role and Mechanism of TRPV4 in Blunt Cardiac Injury
by Liancong Gao, Liu Han, Xiangyu Ma, Huiyan Wang, Mutan Li and Jianhui Cai
Metabolites 2025, 15(8), 512; https://doi.org/10.3390/metabo15080512 - 31 Jul 2025
Viewed by 229
Abstract
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene [...] Read more.
Background/Objectives: Blunt cardiac injury (BCI) is a severe medical condition that may arise as a result of various traumas, including motor vehicle accidents and falls. The main objective of this study was to explore the role and underlying mechanisms of the TRPV4 gene in BCI. Elucidating the function of TRPV4 in BCI may reveal potential novel therapeutic targets for the treatment of this condition. Methods: Rats in each group, including the SD control group (SDCON), the SD blunt-trauma group (SDBT), the TRPV4 gene-knockout control group (KOCON), and the TRPV4 gene-knockout blunt-trauma group (KOBT), were all freely dropped from a fixed height with a weight of 200 g and struck in the left chest with a certain energy, causing BCI. After the experiment, the levels of serum IL-6 and IL-1β were detected to evaluate the inflammatory response. The myocardial tissue structure was observed by HE staining. In addition, cardiac transcriptome analysis was conducted to identify differentially expressed genes, and metabolomics studies were carried out using UHPLC-Q-TOF/MS technology to analyze metabolites. The results of transcriptomics and metabolomics were verified by qRT-PCR and Western blot analysis. Results: Compared with the SDCON group, the levels of serum IL-6 and IL-1β in the SDBT group were significantly increased (p < 0.001), while the levels of serum IL-6 and IL-1β in the KOBT group were significantly decreased (p < 0.001), indicating that the deletion of the TRPV4 gene alleviated the inflammation induced by BCI. HE staining showed that myocardial tissue injury was severe in the SDBT group, while myocardial tissue structure abnormalities were mild in the KOBT group. Transcriptome analysis revealed that there were 1045 upregulated genes and 643 downregulated genes in the KOBT group. These genes were enriched in pathways related to inflammation, apoptosis, and tissue repair, such as p53, apoptosis, AMPK, PPAR, and other signaling pathways. Metabolomics studies have found that TRPV4 regulates nucleotide metabolism, amino-acid metabolism, biotin metabolism, arginine and proline metabolism, pentose phosphate pathway, fructose and mannose metabolism, etc., in myocardial tissue. The combined analysis of metabolic and transcriptional data reveals that tryptophan metabolism and the protein digestion and absorption pathway may be the key mechanisms. The qRT-PCR results corroborated the expression of key genes identified in the transcriptome sequencing, while Western blot analysis validated the protein expression levels of pivotal regulators within the p53 and AMPK signaling pathways. Conclusions: Overall, the deletion of the TRPV4 gene effectively alleviates cardiac injury by reducing inflammation and tissue damage. These findings suggest that TRPV4 may become a new therapeutic target for BCI, providing new insights for future therapeutic strategies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

16 pages, 2207 KiB  
Article
Mitogenomic Insights into Adaptive Evolution of African Ground Squirrels in Arid Environments
by Yamin Xing, Xibao Wang, Yao Chen, Yongquan Shang, Haotian Cai, Liangkai Wang and Xiaoyang Wu
Diversity 2025, 17(8), 538; https://doi.org/10.3390/d17080538 - 31 Jul 2025
Viewed by 222
Abstract
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with [...] Read more.
African ground squirrels (Xerus spp.), the inhabitants of African arid zones, face extreme heat and water scarcity driving selection for metabolic optimization. We assembled and annotated the first mitogenomes of Xerus inauris and Xerus rutilus (16,525–16,517 bp), revealing conserved vertebrate architecture with genus-specific traits. Key features include Xerus rutilus’s elongated ATP6 (680 vs. 605 bp), truncated ATP8ATP6 spacers (4 vs. 43 bp), and tRNA-Pro control regions with 78.1–78.3% AT content. Their nucleotide composition diverged from that of related sciurids, marked by reduced T (25.78–26.9%) and extreme GC skew (−0.361 to −0.376). Codon usage showed strong Arg-CGA bias (RSCU = 3.78–3.88) and species-specific elevations in Xerus rutilus’s UGC-Cys (RSCU = 1.83 vs. 1.17). Phylogenetics positioned Xerus as sister to Ratufa bicolor (Bayesian PP = 0.928; ML = 1.0), aligning with African biogeographic isolation. Critically, we identified significant signatures of positive selection in key mitochondrial genes linked to arid adaptation. Positive selection signals in ND4 (ω = 1.8 × background), ND1, and ATP6 (p < 0.0033) correspond to enhanced proton gradient efficiency and ATP synthesis–molecular adaptations likely crucial for optimizing energy metabolism under chronic water scarcity and thermoregulatory stress in desert environments. Distinct evolutionary rates were observed across mitochondrial genes and complexes: Genes encoding Complex I subunits (ND2, ND6) and Complex III (Cytb) exhibited accelerated evolution in arid-adapted lineages, while genes encoding Complex IV subunits (COXI) and Complex V (ATP8) remained highly conserved. These findings resolve the Xerus mitogenomic diversity, demonstrating adaptive plasticity balancing arid-energy optimization and historical diversification while filling critical genomic gaps for this xeric-adapted lineage. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

Back to TopTop