Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Genetic Association Analyses
2.3. Serum TBA Level Stratified Analysis
2.4. The Gestational Time of Onset of ICP Symptoms Stratified Analysis
2.5. The Relationship Between the SNVs and Liver Parameters
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Biochemical Analyses
4.3. DNA Extraction
4.4. Selection of the SNVs
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malarkiewicz, P.; Nowacka, U.; Januszaniec, A.; Mankiewicz, A.; Kozłowski, S.; Issat, T. Intrahepatic Cholestasis of Pregnancy during COVID-19 Pandemic. Medicina 2024, 60, 676. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.H.; Greenberg, M.; Metz, T.D.; Pettker, C.M. Society for Maternal-Fetal Medicine Consult Series #53: Intrahepatic cholestasis of pregnancy: Replaces Consult #13, April 2011. Am. J. Obstet. Gynecol. 2021, 224, B2–B9. [Google Scholar] [CrossRef] [PubMed]
- Floreani, A.; Caroli, D.; Lazzari, R.; Memmo, A.; Vidali, E.; Colavito, D.; D’Arrigo, A.; Leon, A.; Romero, R.; Gervasi, M.T. Intrahepatic cholestasis of pregnancy: New insights into its pathogenesis. J. Matern.-Fetal Neonatal Med. 2013, 26, 1410–1415. [Google Scholar] [CrossRef] [PubMed]
- Glantz, A.; Marschall, H.U.; Mattsson, L.A. Intrahepatic cholestasis of pregnancy: Relationships between bile acid levels and fetal complication rates. Hepatology 2004, 40, 467–474. [Google Scholar] [CrossRef]
- Kawakita, T.; Parikh, L.I.; Ramsey, P.S.; Huang, C.C.; Zeymo, A.; Fernandez, M.; Smith, S.; Iqbal, S.N. Predictors of adverse neonatal outcomes in intrahepatic cholestasis of pregnancy. Am. J. Obstet. Gynecol. 2015, 213, 570.e1–570.e8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Majsterek, M.; Wierzchowska-Opoka, M.; Makosz, I.; Kreczyńska, L.; Kimber-Trojnar, Ż.; Leszczyńska-Gorzelak, B. Bile Acids in Intrahepatic Cholestasis of Pregnancy. Diagnostics 2022, 12, 2746. [Google Scholar] [CrossRef] [PubMed]
- Pillarisetty, L.S.; Sharma, A. Pregnancy Intrahepatic Cholestasis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Waheed, A.M.I.; Jaiswal, A.; Yelne, S.; Nandanwar, V. Navigating Perinatal Challenges: A Comprehensive Review of Cholestasis of Pregnancy and Its Impact on Maternal and Fetal Health. Cureus 2024, 16, e58699. [Google Scholar] [CrossRef]
- Zhuo, H.; Fan, J.; Yao, L.; Zheng, L.; Chai, Y. MDR3 rs2109505 and rs1202283 polymorphisms are associated with susceptibility to intrahepatic cholestasis of pregnancy: A meta-analysis. Adv. Clin. Exp. Med. 2023, 32, 1347–1356. [Google Scholar] [CrossRef]
- Obiegbusi, C.N.; Dong, X.J.; Obiegbusi, S.C.; Jin, X.; Okoene, I.K. Predictors of Adverse Fetal Outcomes in Intrahepatic Cholestasis of Pregnancy (ICP): A Narrative Review. Reprod. Sci. 2024, 31, 341–351. [Google Scholar] [CrossRef]
- Copple, B.L.; Li, T. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol. Res. 2016, 104, 9–21. [Google Scholar] [CrossRef]
- Perino, A.; Schoonjans, K. Metabolic Messengers: Bile acids. Nat. Metab. 2022, 4, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.C.; Cali, J.J.; Jelinek, D.F.; Mehrabian, M.; Sparkes, R.S.; Lusis, A.J.; Russell, D.W.; Hobbs, H.H. Cloning of the human cholesterol 7 alpha-hydroxylase gene (CYP7) and localization to chromosome 8q11–q12. Genomics 1992, 14, 153–161. [Google Scholar] [CrossRef]
- De Castro-Orós, I.; Pampín, S.; Cofán, M.; Mozas, P.; Pintó, X.; Salas-Salvadó, J.; Rodríguez-Rey, J.C.; Ros, E.; Civeira, F.; Pocoví, M. Promoter variant −204A > C of the cholesterol 7α-hydroxylase gene: Association with response to plant sterols in humans and increased transcriptional activity in transfected HepG2 cells. Clin. Nutr. 2011, 30, 239–246. [Google Scholar] [CrossRef]
- Sezer, E.; Demirdöğen, C.B.; Demirkaya, Ş.; Bulut, G.; Akkulak, M.; Evin, E.; Adalı, O. Association of cholesterol 7α-hydroxylase (CYP7A1) promoter polymorphism (rs3808607) and cholesterol 24S-hydroxylase (CYP46A1) intron 2 polymorphism (rs754203) with serum lipids, vitamin D levels, and multiple sclerosis risk in the Turkish population. Neurol. Sci. 2022, 43, 2611–2620. [Google Scholar] [CrossRef]
- Lu, Y.; Feskens, E.J.; Boer, J.M.; Müller, M. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis 2010, 210, 14–27. [Google Scholar] [CrossRef]
- Couture, P.; Otvos, J.D.; Cupples, L.A.; Wilson, P.W.; Schaefer, E.J.; Ordovas, J.M. Association of the A-204C polymorphism in the cholesterol 7alpha-hydroxylase gene with variations in plasma low density lipoprotein cholesterol levels in the Framingham Offspring Study. J. Lipid. Res. 1999, 40, 1883–1889. [Google Scholar] [CrossRef]
- Makishima, M.; Okamoto, A.Y.; Repa, J.J.; Tu, H.; Learned, R.M.; Luk, A.; Hull, M.V.; Lustig, K.D.; Mangelsdorf, D.J.; Shan, B. Identification of a nuclear receptor for bile acids. Science 1999, 284, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chiang, J.Y. Nuclear receptors in bile acid metabolism. Drug Metab. Rev. 2013, 45, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Stojancevic, M.; Stankov, K.; Mikov, M. The impact of farnesoid X receptor activation on intestinal permeability in inflammatory bowel disease. Can. J. Gastroenterol. 2012, 26, 31–37. [Google Scholar] [CrossRef]
- Marzolini, C.; Tirona, R.G.; Gervasini, G.; Poonkuzhali, B.; Assem, M.; Lee, W.; Leake, B.F.; Schuetz, J.D.; Schuetz, E.G.; Kim, R.B. A common polymorphism in the bile acid receptor farnesoid X receptor is associated with decreased hepatic target gene expression. Mol. Endocrinol. 2007, 21, 1769–1780. [Google Scholar] [CrossRef]
- Acevedo, J.M.; Hoermann, B.; Schlimbach, T.; Teleman, A.A. Changes in global translation elongation or initiation rates shape the proteome via the Kozak sequence. Sci. Rep. 2018, 8, 4018. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Wang, Q.; Almousa, A.A.; Jansen, L.E.; Choi, Y.H.; Schwarz, U.I.; Kim, R.B. Genetic variation in the farnesoid X-receptor predicts Crohn’s disease severity in female patients. Sci. Rep. 2020, 10, 11725. [Google Scholar] [CrossRef]
- Zhou, S.; You, H.; Qiu, S.; Yu, D.; Bai, Y.; He, J.; Cao, H.; Che, Q.; Guo, J.; Su, Z. A new perspective on NAFLD: Focusing on the crosstalk between peroxisome proliferator-activated receptor alpha (PPARα) and farnesoid X receptor (FXR). Biomed. Pharmacother. 2022, 154, 113577. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zou, Q.; Xu, J.; Zhang, J.; Liu, J. Ligand binding and heterodimerization with retinoid X receptor α (RXRα) induce farnesoid X receptor (FXR) conformational changes affecting coactivator binding. J. Biol. Chem. 2018, 293, 18180–18191. [Google Scholar] [CrossRef]
- Wang, Y.D.; Chen, W.D.; Moore, D.D.; Huang, W. FXR: A metabolic regulator and cell protector. Cell Res. 2008, 18, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism 2021, 114, 154338. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, L.; Jiang, Z. The role of peroxisome proliferator-activated receptors in the regulation of bile acid metabolism. Basic Clin. Pharmacol. Toxicol. 2024, 134, 315–324. [Google Scholar] [CrossRef]
- Yong, E.L.; Li, J.; Liu, M.H. Single gene contributions: Genetic variants of peroxisome proliferator-activated receptor (isoforms alpha, beta/delta and gamma) and mechanisms of dyslipidemias. Curr. Opin. Lipidol. 2008, 19, 106–112. [Google Scholar] [CrossRef]
- Mazzotti, D.R.; Singulane, C.C.; Ota, V.K.; Rodrigues, T.P.; Furuya, T.K.; de Souza, F.J.; Cordeiro, B.G.; Magalhães, C.; Chen, E.S.; Jacomini, A.; et al. PPARα polymorphisms as risk factors for dyslipidemia in a Brazilian population. Mol. Genet. Metab. 2011, 102, 189–193. [Google Scholar] [CrossRef]
- Institute of Medicine (US) and National Research Council (US), Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines; Rasmussen, K.M., Yaktine, A.L., Eds.; National Academies Press (US): Washington, DC, USA, 2009. [Google Scholar] [PubMed]
- Girling, J.; Knight, C.L.; Chappell, L. Royal College of Obstetricians and Gynaecologists. Intrahepatic cholestasis of pregnancy: Green-top Guideline No. 43 June 2022. BJOG 2022, 129, e95–e114. [Google Scholar] [CrossRef]
- Soma-Pillay, P.; Nelson-Piercy, C.; Tolppanen, H.; Mebazaa, A. Physiological changes in pregnancy. Cardiovasc. J. Afr. 2016, 27, 89–94. [Google Scholar] [CrossRef]
- Gagnon, M.; Trottier, J.; Weisnagel, S.J.; Gagnon, C.; Carreau, A.M.; Barbier, O.; Morisset, A.S. Bile acids during pregnancy: Trimester variations and associations with glucose homeostasis. Health Sci. Rep. 2021, 4, e243. [Google Scholar] [CrossRef]
- Zhu, B.; Yin, P.; Ma, Z.; Ma, Y.; Zhang, H.; Kong, H.; Zhu, Y. Characteristics of bile acids metabolism profile in the second and third trimesters of normal pregnancy. Metabolism 2019, 95, 77–83. [Google Scholar] [CrossRef]
- Brites, D.; Rodrigues, C.M.; van-Zeller, H.; Brito, A.; Silva, R. Relevance of serum bile acid profile in the diagnosis of intrahepatic cholestasis of pregnancy in an high incidence area: Portugal. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998, 80, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Nees, J.; Ammon, F.J.; Mueller, J.; Fluhr, H.; Mueller, S. Liver stiffness in pregnant women with intrahepatic cholestasis of pregnancy: A case control study. World J. Hepatol. 2023, 15, 904–913. [Google Scholar] [CrossRef]
- Gao, X.X.; Ye, M.Y.; Liu, Y.; Li, J.Y.; Li, L.; Chen, W.; Lu, X.; Nie, G.; Chen, Y.H. Prevalence and risk factors of intrahepatic cholestasis of pregnancy in a Chinese population. Sci. Rep. 2020, 10, 16307. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, A.L.; Ovadia, C.; Syngelaki, A.; Souretis, K.; Martineau, M.; Girling, J.; Vasavan, T.; Fan, H.M.; Seed, P.T.; Chambers, J.; et al. Re-evaluating diagnostic thresholds for intrahepatic cholestasis of pregnancy: Case-control and cohort study. BJOG 2021, 128, 1635–1644. [Google Scholar] [CrossRef]
- Agarwal, N.; Mahey, R.; Kulshrestha, V.; Kriplani, A.; Saraya, A.; Sachdev, V. Serum Bile Acids in Intrahepatic Cholestasis of Pregnancy (ICP), Versus Pregnant and Nonpregnant Controls in Asian Indian Women and a Proposed Scoring to Optimize Management in ICP. J. Obstet. Gynaecol. India 2022, 72, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Goel, A.; Lingaiah, R.; Pradhan, M.; Katiyar, H.; Aggarwal, R. Serum Bile Acid Levels in Women With Intrahepatic Cholestasis of Pregnancy in India. J. Clin. Exp. Hepatol. 2022, 12, 379–383. [Google Scholar] [CrossRef]
- Schoonejans, J.M.; Fan, H.M.; Mitchell, A.L.; Lövgren-Sandblom, A.; Sukumar, N.; Periyathambi, N.; Weldeselassie, Y.; Seed, P.T.; Molinaro, A.; Marschall, H.U.; et al. Serum bile acid measurements in women of European and South Asian ethnicity with or without gestational diabetes mellitus: A cohort study. BJOG 2024, 131, 1218–1228. [Google Scholar] [CrossRef]
- Geenes, V.; Williamson, C. Intrahepatic cholestasis of pregnancy. World J. Gastroenterol. 2009, 15, 2049–2066. [Google Scholar] [CrossRef]
- Wójcicka-Jagodzińska, J.; Kuczyńska-Sicińska, J.; Czajkowski, K.; Smolarczyk, R. Carbohydrate metabolism in the course of intrahepatic cholestasis in pregnancy. Am. J. Obstet. Gynecol. 1989, 161, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Majewska, A.; Godek, B.; Bomba-Opon, D.; Wielgos, M. Association between intrahepatic cholestasis in pregnancy and gestational diabetes mellitus. A retrospective analysis. Ginekol. Pol. 2019, 90, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Huri, M.; Seravalli, V.; Lippi, C.; Tofani, L.; Galli, A.; Petraglia, F.; Di Tommaso, M. Intrahepatic cholestasis of pregnancy—Time to redefine the reference range of total serum bile acids: A cross-sectional study. BJOG 2022, 129, 1887–1896. [Google Scholar] [CrossRef]
- Berg, B.; Helm, G.; Petersohn, L.; Tryding, N. Cholestasis of pregnancy: Clinical and laboratory studies. Acta Obstet. Gynecol. Scand. 1986, 65, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Reyes, H.; Gonzalez, M.C.; Ribalta, J.; Aburto, H.; Matus, C.; Schramm, G.; Katz, R.; Medina, E. Prevalence of intrahepatic cholestasis of pregnancy in Chile. Ann. Intern. Med. 1978, 88, 487–493. [Google Scholar] [CrossRef]
- Sanhal, C.Y.; Dağlar, K.; Kara, Ö.; Kırbaş, A.; Uygur, D.; Yücel, A. Seasonal Impact in the Frequency of Intrahepatic Cholestasis of Pregnancy. Gynecol. Obstet Reprod. Med. 2016, 22, 5–9. [Google Scholar] [CrossRef]
- Trefflich, I.; Marschall, H.U.; Giuseppe, R.D.; Ståhlman, M.; Michalsen, A.; Lampen, A.; Abraham, K.; Weikert, C. Associations between Dietary Patterns and Bile Acids-Results from a Cross-Sectional Study in Vegans and Omnivores. Nutrients 2019, 12, 47. [Google Scholar] [CrossRef]
- Naumann, S.; Haller, D.; Eisner, P.; Schweiggert-Weisz, U. Mechanisms of Interactions between Bile Acids and Plant Compounds-A Review. Int. J. Mol. Sci. 2020, 21, 6495. [Google Scholar] [CrossRef]
- Dixon, P.H.; Williamson, C. The molecular genetics of intrahepatic cholestasis of pregnancy. Obstet. Med. 2008, 1, 65–71. [Google Scholar] [CrossRef]
- Abu-Hayyeh, S.; Papacleovoulou, G.; Williamson, C. Nuclear receptors, bile acids and cholesterol homeostasis series—Bile acids and pregnancy. Mol. Cell. Endocrinol. 2013, 368, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Zöllner, J.; Williamson, C.; Dixon, P.H. Genetic issues in ICP. Obstet. Med. 2024, 17, 157–161. [Google Scholar] [CrossRef]
- Sookoian, S.; Castaño, G.; Burgueño, A.; Gianotti, T.F.; Pirola, C.J. Association of the multidrug-resistance-associated protein gene (ABCC2) variants with intrahepatic cholestasis of pregnancy. J. Hepatol. 2008, 48, 125–132. [Google Scholar] [CrossRef]
- Müllenbach, R.; Bennett, A.; Tetlow, N.; Patel, N.; Hamilton, G.; Cheng, F.; Chambers, J.; Howard, R.; Taylor-Robinson, S.D.; Williamson, C. ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy. Gut 2005, 54, 829–834. [Google Scholar] [CrossRef]
- Painter, J.N.; Savander, M.; Ropponen, A.; Nupponen, N.; Riikonen, S.; Ylikorkala, O.; Lehesjoki, A.E.; Aittomäki, K. Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur. J. Hum. Genet. 2005, 13, 435–439. [Google Scholar] [CrossRef]
- Castaño, G.; Burgueño, A.; Fernández Gianotti, T.; Pirola, C.J.; Sookoian, S. The influence of common gene variants of the xenobiotic receptor (PXR) in genetic susceptibility to intrahepatic cholestasis of pregnancy. Aliment. Pharmacol. Ther. 2010, 31, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Van Mil, S.W.; Milona, A.; Dixon, P.H.; Mullenbach, R.; Geenes, V.L.; Chambers, J.; Shevchuk, V.; Moore, G.E.; Lammert, F.; Glantz, A.G.; et al. Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy. Gastroenterology 2007, 133, 507–516. [Google Scholar] [CrossRef]
- Lima, L.O.; Almeida, S.; Hutz, M.H.; Fiegenbaum, M. PPARA, RXRA, NR1I2 and NR1I3 gene polymorphisms and lipid and lipoprotein levels in a Southern Brazilian population. Mol. Biol. Rep. 2013, 40, 1241–1247. [Google Scholar] [CrossRef]
- Johnson, P. Studies in cholestasis of pregnancy with special reference to lipids and lipoproteins. Acta Obstet. Gynecol. Scand. Suppl. 1973, 27, 1–80. [Google Scholar] [PubMed]
- Zhan, Y.; Xu, T.; Chen, T.; Wang, X. Intrahepatic cholestasis of pregnancy and maternal dyslipidemia: A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2022, 101, 719–727. [Google Scholar] [CrossRef]
- Jaffe, S.; Normand, N.; Jayaram, A.; Orfanelli, T.; Doulaveris, G.; Passos, M.; Kanninen, T.T.; Bongiovanni, A.M.; Linhares, I.M.; Witkin, S.S. Unique variation in genetic selection among Black North American women and its potential influence on pregnancy outcome. Med. Hypotheses 2013, 81, 919–922. [Google Scholar] [CrossRef]
- Fruchart, J.C. Peroxisome proliferator-activated receptor-alpha (PPARalpha): At the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis 2009, 205, 1–8. [Google Scholar] [CrossRef]
- Changizi, Z.; Kajbaf, F.; Moslehi, A. An Overview of the Role of Peroxisome Proliferator-activated Receptors in Liver Diseases. J. Clin. Transl. Hepatol. 2023, 11, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Moore, D.D. Regulation of Liver Energy Balance by the Nuclear Receptors Farnesoid X Receptor and Peroxisome Proliferator Activated Receptor α. Dig. Dis. 2017, 35, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.V.; Torres, N.; Tovar, A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr. 2013, 4, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Ruscica, M.; Busnelli, M.; Runfola, E.; Corsini, A.; Sirtori, C.R. Impact of PPAR-Alpha Polymorphisms-The Case of Metabolic Disorders and Atherosclerosis. Int. J. Mol. Sci. 2019, 20, 4378. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. ClinVar; [VCV001229509.5]. Available online: https://www.ncbi.nlm.nih.gov/clinvar/variation/VCV001229509.5 (accessed on 16 July 2025).
- Wang, D.; Hartmann, K.; Seweryn, M.; Sadee, W. Interactions Between Regulatory Variants in CYP7A1 (Cholesterol 7α-Hydroxylase) Promoter and Enhancer Regions Regulate CYP7A1 Expression. Circ. Genom. Precis. Med. 2018, 11, e002082. [Google Scholar] [CrossRef]
- Piechota, J.; Jelski, W. Intrahepatic Cholestasis in Pregnancy: Review of the Literature. J. Clin. Med. 2020, 9, 1361. [Google Scholar] [CrossRef]
- Li, L.; Chen, Y.H.; Yang, Y.Y.; Cong, L. Effect of Intrahepatic Cholestasis of Pregnancy on Neonatal Birth Weight: A Meta-Analysis. J. Clin. Res. Pediatr. Endocrinol. 2018, 10, 38–43. [Google Scholar] [CrossRef]
- Zhou, L.; Qi, H.B.; Luo, X. Analysis of clinical characteristics and perinatal outcome of early-onset intrahepatic cholestasis of pregnancy. Zhonghua Fu Chan Ke Za Zhi 2013, 48, 20–24. [Google Scholar]
- ISO Standard No. 9001:2015; Quality Management Systems—Requirements, 5th ed. International Organization for Standardization: Geneva, Switzerland, 2015.
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hagiwara, T.; Kono, S.; Yin, G.; Toyomura, K.; Nagano, J.; Mizoue, T.; Mibu, R.; Tanaka, M.; Kakeji, Y.; Maehara, Y.; et al. Genetic polymorphism in cytochrome P450 7A1 and risk of colorectal cancer: The Fukuoka Colorectal Cancer Study. Cancer Res. 2005, 65, 2979–2982. [Google Scholar] [CrossRef] [PubMed]
- Iwata, R.; Baur, K.; Stieger, B.; Mertens, J.C.; Daly, A.K.; Frei, P.; Braun, J.; Vergopoulos, A.; Stickel, F.; Sabrane, K.; et al. A common polymorphism in the ABCB11 gene is associated with advanced fibrosis in hepatitis C but not in non-alcoholic fatty liver disease. Clin. Sci. 2011, 120, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Grzegorzewska, A.E.; Świderska, M.K.; Mostowska, A.; Warchoł, W.; Jagodziński, P.P. Polymorphisms of Vitamin D Signaling Pathway Genes and Calcium-Sensing Receptor Gene in respect to Survival of Hemodialysis Patients: A Prospective Observational Study. Int. J. Endocrinol. 2016, 2016, 2383216. [Google Scholar] [CrossRef]
- Vasků, V.; Bienertová Vasků, J.; Pávková Goldbergová, M.; Vasků, A. Three retinoid X receptor gene polymorphisms in plaque psoriasis and psoriasis guttata. Dermatology 2007, 214, 118–124. [Google Scholar] [CrossRef]
- Lacquemant, C.; Lepretre, F.; Pineda Torra, I.; Manraj, M.; Charpentier, G.; Ruiz, J.; Staels, B.; Froguel, P. Mutation screening of the PPARalpha gene in type 2 diabetes associated with coronary heart disease. Diabetes Metab. 2000, 26, 393–401. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 25 November 2024).
- Moreno, V.; Gonzalez, J.; Pelegri, D. SNPassoc: SNPs-Based Whole Genome Association Studies. R Package Version 2.1-0. 2022. Available online: https://CRAN.R-project.org/package=SNPassoc (accessed on 25 November 2024).
Parameter | Controls (N = 211) | ICP (N = 96) | p |
---|---|---|---|
Maternal age, (years) (mean ± SD) | 30.68 ± 4.67 | 30.43 ± 4.24 | 0.648 |
<25, n (%) | 19 (9.00%) | 8 (8.33%) | 0.853 |
25–34, n (%) | 145 (68.72%) | 69 (71.88%) | |
≥35, n (%) | 47 (22.27%) | 19 (19.79%) | |
Systolic BP, mmHg (median (IQR)) | 105 [105; 115] | 110 [100; 120] | 0.166 |
Diastolic BP, mmHg (median (IQR)) | 70 [60; 70] | 70 [60; 75] | 0.206 |
Maternal pre-pregnancy BMI (kg/m2) (median (IQR)) | 21.14 [19.63; 23.42] | 21.95 [20.37; 23.63] | 0.109 |
Underweight (<18.5) | 22 (10.43%) | 9 (9.38%) | 0.775 |
Normal weight (18.5 ≤ BMI < 25.0) | 161 (76.30%) | 70 (72.92%) | |
Overweight (25.0 ≤ BMI < 30) | 21 (9.95%) | 13 (13.54%) | |
Obesity (≥30) | 7 (3.32%) | 4 (4.17%) | |
Maternal BMI at delivery (kg/m2) (median (IQR)) | 26.72 [24.64; 29.07] | 26.23 [23.95; 28.94] | 0.131 |
BMI Increase During Pregnancy (kg/m2) (median (IQR)) | 5.21 [4.15; 6.52] | 4.11 [2.94; 5.02] | <0.001 |
Gestational weight gain, n (%) | |||
Inadequate | 52 (24.64%) | 40 (41.67%) | 0.010 |
Adequate | 87 (41.23%) | 32 (33.33%) | |
Excessive | 72 (34.12%) | 24 (25.00%) | |
Number of pregnancies, median (IQR) | 2 [1; 2] | 2 [1; 2] | 0.103 |
Gestational age at delivery (week), median (IQR) | 39 [38; 40] | 37 [36; 39] | <0.001 |
Delivery, n (%) | |||
Preterm < 37 week | 19 (9.00%) | 54 (56.25%) | <0.001 |
Term ≥ 37 week | 192 (91.00%) | 42 (43.75%) | |
Type of delivery, n (%) | 0.037 | ||
Operative | 69 (32.70) | 44 (45.83) | |
Vaginal | 142 (67.30) | 52 (54.17) | |
Newborn sex, n (%) | 0.325 | ||
Female | 89 (42.18) | 47 (48.96) | |
Male | 122 (57.82) | 49 (51.04) | |
Newborn weight (g), (mean ± SD) | 3425.59 ± 433.82 | 3091.03 ± 634.81 | <0.001 |
Placenta weight (g), (mean ± SD) | 620.18 ± 111.37 | 581.06 ± 150.63 | 0.053 |
TB (mg/dL), median [IQR] | — | 0.475 [0.330; 0.720] | — |
ALT (IU/L), median [IQR] | — | 227.50 [67.45; 399.45] | — |
AST (IU/L), median [IQR] | — | 124.00 [51.05; 211.95] | — |
TBA (μmol/L), median [IQR] | 1.10 [0.50; 2.10] | 19.75 [14.93; 33.36] | <0.001 |
ICP classification, n (%) | — | — | |
low (10 ≤ TBA < 40 μmol/L), | 76 (79.17) | ||
moderate (40 ≤ TBA < 100 μmol/L) | 17 (17.71) | ||
high (TBA ≥ 100 μmol/L) | 3 (3.12) | ||
Onset of ICP symptoms (week), median (IQR) | — | 34.00 [30.00; 36.00] | — |
Gene/SNV | Allels | Controls (N = 422) | ICP (N = 192) | OR (95% CI) | χ2 | p |
---|---|---|---|---|---|---|
NR1H4 rs56163822 | G | 414 (0.981) | 187 (0.973) | 1.383 (0.446–4.286) | 0.319 | 0.571 |
T | 8 (0.018) | 5 (0.026) | ||||
CYP7A1 rs3808607 | G | 184 (0.436) | 101 (0.526) | 0.697 (0.495–0.981) | 4.299 | 0.038 |
T | 238 (0.563) | 91 (0.473) | ||||
NR2B1 rs749759 | G | 316 (0.748) | 139 (0.723) | 1.136 (0.773~1.671) | 0.424 | 0.514 |
A | 106 (0.251) | 53 (0.276) | ||||
NR2B1 rs11381416 | (-) | 392 (0.928) | 175 (0.911) | 1.269 (0.682~2.362) | 0.568 | 0.450 |
A | 30 (0.071) | 17 (0.088) | ||||
PPARA rs1800206 | C | 397 (0.94) | 174 (0.906) | 1.642 (0.873~3.089) | 2.412 | 0.120 |
G | 25 (0.059) | 18 (0.093) |
Inheritance Model | Genotypes | Controls (N = 211) | ICP (N = 96) | OR (95% CI) | p | AIC |
---|---|---|---|---|---|---|
NR1H4 rs56163822 | ||||||
Codominant | GG | 203 (96.2) | 91 (94.8) | 1.00 | 0.574 | 385.1 |
GT | 8 (3.8) | 5 (5.2) | 1.39 (0.44–4.38) | |||
TT | 0 (0.0) | 0 (0.0) | — | |||
log-Additive | 0, 1, 2 | 211 (68.7) | 96 (31.3) | 1.39 (0.44–4.38) | 0.574 | 385.1 |
CYP7A1 rs3808607 | ||||||
Codominant | GG | 42 (19.9) | 30 (31.2) | 1.00 | 0.093 | 382.7 |
GT | 100 (47.4) | 41 (42.7) | 0.57 (0.32–1.04) | |||
TT | 69 (32.7) | 25 (26.0) | 0.51 (0.26–0.98) | |||
Dominant | GT + TT | 169 (80.1) | 66 (68.8) | 0.55 (0.32–0.95) | 0.032 | 380.9 |
Recessive | GG + GT | 142 (67.3) | 71 (74.0) | 0.72 (0.42–1.24) | 0.236 | 384.0 |
Overdominant | TT + GG | 111 (52.6) | 55 (57.3) | 1.21 (0.74–1.97) | 0.445 | 384.9 |
log-Additive | 0, 1, 2 | 211 (68.7) | 96 (31.3) | 0.71 (0.51–1.00) | 0.046 | 381.4 |
NR2B1 rs749759 | ||||||
Codominant | GG | 104 (53.1) | 48 (54.5) | 1.00 | 0.779 | 357.1 |
AG | 78 (39.8) | 32 (36.4) | 0.89 (0.52–1.52) | |||
AA | 14 (7.1) | 8 (9.1) | 1.24 (0.49–3.15) | |||
Dominant | AG-AA | 92 (46.9) | 40 (45.5) | 0.94 (0.57–1.56) | 0.817 | 355.5 |
Recessive | GG + AG | 182 (92.9) | 80 (90.9) | 1.30 (0.52–3.22) | 0.575 | 355.3 |
Overdominant | GG + AA | 118 (60.2) | 56 (63.6) | 0.86 (0.51–1.45) | 0.582 | 355.3 |
log-Additive | 0, 1, 2 | 196 (69.0) | 88 (31.0) | 1.01 (0.68–1.50) | 0.955 | 355.6 |
NR2B1 rs11381416 | ||||||
Codominant | -/- | 182 (86.3) | 81 (84.4) | 1.00 | 0.447 | 385.8 |
-/A | 28 (13.3) | 13 (13.5) | 1.04 (0.51–2.12) | |||
A/A | 1 (0.5) | 2 (2.1) | 4.49 (0.40–50.27) | |||
Dominant | -/A+ -/- | 29 (13.7) | 15 (15.6) | 1.16 (0.59–2.29) | 0.665 | 385.3 |
Recessive | A/A + -/A | 210 (99.5) | 94 (97.9) | 4.47 (0.40–49.88) | 0.206 | 383.8 |
Overdominant | A/A + -/- | 183(86.7) | 83(86.5) | 1.02 (0.50 2.08) | 0.948 | 385.4 |
log-Additive | 0, 1, 2 | 211 (68.7) | 96 (31.3) | 1.25 (0.68–2.29) | 0.468 | 384.9 |
PPARA rs1800206 | ||||||
Codominant | CC | 187 (88.6) | 79 (82.3) | 1.00 | 0.323 | 385.2 |
CG | 23 (10.9) | 16 (16.7) | 1.65 (0.83–3.28) | |||
GG | 1 (0.5) | 1 (1.0) | 2.37 (0.15–38.32) | |||
Dominant | CG + GG | 24 (11.4) | 17 (17.7) | 1.68 (0.85–3.29) | 0.138 | 383.2 |
Recessive | CC + CG | 210 (99.5) | 95 (99.0) | 2.21 (0.14–35.72) | 0.581 | 385.1 |
Overdominant | CC + GG | 188 (89.1) | 80 (83.3) | 1.63 (0.82–3.26) | 0.168 | 383.5 |
log-Additive | 0, 1, 2 | 211 (68.7) | 96 (31.3) | 1.63 (0.87–3.05) | 0.134 | 383.2 |
Parameter | <28 Weeks (N = 9) | 28–36 Weeks (N = 69) | ≥37 Weeks (N = 18) | p |
---|---|---|---|---|
ALT (IU/L), median [IQR] | 371.10 [249.75; 396.65] | 213.00 [78.10; 409.00] | 62.80 [17.70; 320.45] | 0.145 |
AST (IU/L), median [IQR] | 208.80 [114.60; 225.55] | 114.40 [57.90; 196.00] | 36.50 [25.55; 179.00] | 0.265 |
TBA (μmol/L), median [IQR] | 19.80 [15.00; 22.90] | 19.70 [14.86; 34.80] | 18.90 [15.00; 28.04] | 0.681 |
Gene/SNV | Genotypes | TBA (μmol/L) | p | ALT (IU/L) | p | AST (IU/L) | p |
---|---|---|---|---|---|---|---|
NR1H4 rs56163822 | GG (N = 91) | 21.20 [15.00; 33.86] | 0.091 | 237.10 [68.00; 400.20] | 0.132 | 131.00 [52.00; 215.10] | 0.117 |
GA (N = 5) | 13.72 [12.10; 18.21] | 59.85 [12.70; 107.00] | 41.20 [14.40; 68.00] | ||||
AA (N = 0) | — | — | — | ||||
CYP7A1 rs3808607 | GG (N = 30) | 22.05 [12.81; 34.30] | 0.619 | 271.00 [148.40; 414.90] | 0.130 | 134.40 [85.30; 236.00] | 0.209 |
GT (N = 41) | 17.54 [14.86; 25.41] | 156.50 [32.60; 318.00] | 103.20 [28.95; 178.50] | ||||
TT (N = 25) | 21.20 [16.20; 28.40] | 245.60 [78.10; 398.70] | 123.45 [48.30; 303.40] | ||||
NR2B1 rs749759 | GG (N = 53) | 22.30 [15.40; 33.30] | 0.623 | 242.10 [68.00; 398.70] | 0.911 | 132.00 [50.10; 215.10] | 0.982 |
GA (N = 33) | 17.60 [15.00; 24.97] | 179.50 [63.50; 352.75] | 108.00 [55.00; 187.05] | ||||
AA (N = 10) | 17.71 [11.49; 54.28] | 265.95 [30.00; 427.30] | 122.35 [28.00; 307.50] | ||||
NR2B1 rs11381416 | -/- (N = 81) | 18.21 [14.86; 25.10] | 0.019 | 213.00 [61.65; 382.10] | 0.060 | 113.20 [48.10; 208.80] | 0.079 |
-/A ((N = 13) | 25.41 [22.00; 58.00] | 277.60 [135.65; 403.00] | 171.30 [72.00; 193.00] | ||||
A/A (N = 2) | 65.40 [34.30; 96.50] | 529.20 [491.60; 566.80] | 336.40 [319.00; 353.80] | ||||
PPARA rs1800206 | CC (N = 79) | 18.37 [14.30; 30.85] | 0.524 | 239.20 [72.50; 399.45] | 0.239 | 124.00 [53.10; 211.95] | 0.232 |
CG (N = 16) | 22.52 [16.35; 36.44] | 118.55 [66.85; 249.20] | 108.00 [51.05; 149.25] | ||||
GG (N = 1) | 24.80 [24.80; 24.80] | 506.10 [506.10; 506.10] | 419.40 [419.40; 419.40] |
Gene | rs Number | Position (GRCh38.p14) | Region | Allele | Allele Frequency in Europe * |
---|---|---|---|---|---|
NR1H4 | rs56163822 | chr12:100493323 | Non Coding Transcript Variant | G > T | G = 0.98, T = 0.02 |
CYP7A1 | rs3808607 | chr8:58500365 | 2KB Upstream Variant | G > T | G = 0.43, T = 0.57 |
NR2B1 | rs749759 | chr9:134432806 | Intron Variant | A > G | A = 0.23, G = 0.77 |
NR2B1 | rs11381416 | chr9:134432216 | Intron Variant | (-) > A | (-) = 0.92, A = 0.08 |
PPARA | rs1800206 | chr22:46218377 | Missense Variant (p.Leu162Val) | C > G | C = 0.94, G = 0.06 |
Gene | SNV | Primer Sequences | Restriction Enzyme |
---|---|---|---|
NR1H4 | rs56163822 | 5′-GCATTCCCACAGTCACAAAC-3′ 5′-TGAGGAAATGCCTAGATGATGA-3′ | BseGI |
CYP7A1 | rs3808607 | 5′-AATTAGCCATTTGTTCATTCTATTAG-3′ 5′-AATGTTTTTCCCAGTTCTCTTTC-3′ | Eco31I |
NR2B1 | rs749759 | 5′-ATAGGGCTTGCCTGCCTAGA-3′ 5′-CTCCACCATAGCCCAAGTGA-3′ | BstXI |
NR2B1 | rs11381416 | 5′-GCCTCCTCCTGGCTGTACTT-3′ 5′-CTCATGACAACTGCCTTGCT-3′ | EcoO109I |
PPARA | rs1800206 | 5′-AACAATAAGTGAGCAACAAAAAAG-3′ 5′-CGTTGTGTGACATCCCGCCAGAAA-3′ | BglI |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piątek, K.; Kurzawińska, G.; Ożarowski, M.; Olbromski, P.J.; Kamiński, A.; Brązert, M.; Karpiński, T.M.; Markwitz, W.; Seremak-Mrozikiewicz, A. Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy. Int. J. Mol. Sci. 2025, 26, 7456. https://doi.org/10.3390/ijms26157456
Piątek K, Kurzawińska G, Ożarowski M, Olbromski PJ, Kamiński A, Brązert M, Karpiński TM, Markwitz W, Seremak-Mrozikiewicz A. Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy. International Journal of Molecular Sciences. 2025; 26(15):7456. https://doi.org/10.3390/ijms26157456
Chicago/Turabian StylePiątek, Krzysztof, Grażyna Kurzawińska, Marcin Ożarowski, Piotr Józef Olbromski, Adam Kamiński, Maciej Brązert, Tomasz M. Karpiński, Wiesław Markwitz, and Agnieszka Seremak-Mrozikiewicz. 2025. "Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy" International Journal of Molecular Sciences 26, no. 15: 7456. https://doi.org/10.3390/ijms26157456
APA StylePiątek, K., Kurzawińska, G., Ożarowski, M., Olbromski, P. J., Kamiński, A., Brązert, M., Karpiński, T. M., Markwitz, W., & Seremak-Mrozikiewicz, A. (2025). Polymorphic Variants of Selected Genes Regulating Bile Acid Homeostasis in Women with Intrahepatic Cholestasis of Pregnancy. International Journal of Molecular Sciences, 26(15), 7456. https://doi.org/10.3390/ijms26157456