Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Cell Viability Assay
2.3. Metabolite Extraction
2.4. Metabolite Identification and Data Analysis
2.5. Integrative Analysis of Metabolomics and Transcriptomics
2.6. Statistical Analysis
3. Results
3.1. Viability of 3D4/21 Cells Following DON Exposure
3.2. PCA Principal Component Analysis
3.3. OPLS-DA Analysis and Iterative Validation
3.4. Metabolic Pathway Analysis
3.5. Integration of Metabolomics Results with Transcriptomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magnoli, A.P.; Poloni, V.L.; Cavaglieri, L. Impact of mycotoxin contamination in the animal feed industry. Curr. Opin. Food Sci. 2019, 29, 99–108. [Google Scholar] [CrossRef]
- Gab-Allah, M.A.; Choi, K.; Kim, B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins 2023, 15, 85. [Google Scholar] [CrossRef]
- Wolf-Hall, C.E.; Hanna, M.A.; Bullerman, L.B. Stability of Deoxynivalenol in Heat-Treated Foods. J. Food Prot. 1999, 62, 962–964. [Google Scholar] [CrossRef]
- Jia, B.; Lin, H.; Yu, S.; Liu, N.; Yu, D.; Wu, A. Mycotoxin deoxynivalenol-induced intestinal flora disorders, dysfunction and organ damage in broilers and pigs. J. Hazard. Mater. 2023, 451, 131172. [Google Scholar] [CrossRef]
- Serviento, A.M.; Brossard, L.; Renaudeau, D. An acute challenge with a deoxynivalenol-contaminated diet has short- and long-term effects on performance and feeding behavior in finishing pigs. J. Anim. Sci. 2018, 96, 5209–5221. [Google Scholar] [CrossRef]
- Reddy, K.E.; Kim, M.; Kim, K.H.; Ji, S.Y.; Baek, Y.; Chun, J.L.; Jung, H.J.; Choe, C.; Lee, H.J.; Kim, M.; et al. Effect of commercially purified deoxynivalenol and zearalenone mycotoxins on microbial diversity of pig cecum contents. Anim. Biosci. 2021, 34, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Panisson, J.C.; Wellington, M.O.; Bosompem, M.A.; Nagl, V.; Schwartz-Zimmermann, H.E.; Columbus, D.A. Urinary and Serum Concentration of Deoxynivalenol (DON) and DON Metabolites as an Indicator of DON Contamination in Swine Diets. Toxins 2023, 15, 120. [Google Scholar] [CrossRef] [PubMed]
- Pierron, A.; Kleber, A.; Mayer, E.; Gerner, W. Effect of DON and ZEN and their metabolites DOM-1 and HZEN on B cell proliferation and antibody production. Front. Immunol. 2024, 15, 1338937. [Google Scholar] [CrossRef]
- de Meis, J.; Aurélio Farias-de-Oliveira, D.; Nunes Panzenhagen, P.H.; Maran, N.; Villa-Verde, D.M.; Morrot, A.; Savino, W. Thymus atrophy and double-positive escape are common features in infectious diseases. J. Parasitol. Res. 2012, 2012, 574020. [Google Scholar] [CrossRef]
- Ren, Z.; Guo, C.; He, H.; Zuo, Z.; Hu, Y.; Yu, S.; Zhong, Z.; Liu, H.; Zhu, L.; Xu, S.; et al. Effects of deoxynivalenol on mitochondrial dynamics and autophagy in pig spleen lymphocytes. Food Chem. Toxicol. 2020, 140, 111357. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Y.; Wu, Z.; Liu, Y. Deoxynivalenol induces spleen damage, apoptosis, and inflammation in mice by increasing mitochondrial reactive oxygen species: Protective effects of curcumin. Food Chem. Toxicol. 2025, 196, 115200. [Google Scholar] [CrossRef]
- He, Y.; Wang, G.; Liu, Y.; Shi, W.; Han, Z.; Wu, J.; Jiang, C.; Wang, S.; Hu, S.; Wen, H.; et al. Characterization of thymus atrophy in piglets infected with highly pathogenic porcine reproductive and respiratory syndrome virus. Vet. Microbiol. 2012, 160, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Patterson, A.D.; Idle, J.R.; Gonzalez, F.J. Xenobiotic metabolomics: Major impact on the metabolome. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Z.; Pacheco, J.A.; Gao, Y.; Deng, S.; Peterson, B.; Shi, X.; Zheng, S.; Tahir, U.A.; Katz, D.H.; Cruz, D.E.; et al. Nontargeted and Targeted Metabolomic Profiling Reveals Novel Metabolite Biomarkers of Incident Diabetes in African Americans. Diabetes 2022, 71, 2426–2437. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, T.; Daneshian, M.; Kamp, H.; Bois, F.Y.; Clench, M.R.; Coen, M.; Donley, B.; Fischer, S.M.; Ekman, D.R.; Fabian, E.; et al. Metabolomics in toxicology and preclinical research. Altex 2013, 30, 209–225. [Google Scholar] [CrossRef] [PubMed]
- Estévez, J.; Vilanova, E.; Sogorb, M.A. Chapter 66—Biomarkers for Testing Toxicity and Monitoring Exposure to Xenobiotics. In Biomarkers in Toxicology, 2nd ed.; Gupta, R.C., Ed.; Academic Press: San Diego, CA, USA, 2019; pp. 1165–1174. [Google Scholar]
- Zhang, J.; Zhao, Q.; Xue, Z.; Zhang, S.; Ren, Z.; Chen, S.; Zhou, A.; Chen, H.; Liu, Y. Deoxynivalenol induces endoplasmic reticulum stress-associated apoptosis via the IRE1/JNK/CHOP pathway in porcine alveolar macrophage 3D4/21 cells. Food Chem. Toxicol. 2023, 180, 114033. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Q.; He, W.; Chen, X.; Wei, Z.; Huang, K. Two-way immune effects of deoxynivalenol in weaned piglets and porcine alveolar macrophages: Due mainly to its exposure dosage. Chemosphere 2020, 249, 126464. [Google Scholar] [CrossRef]
- Ranzenigo, G.; Caloni, F.; Cremonesi, F.; Aad, P.Y.; Spicer, L.J. Effects of Fusarium mycotoxins on steroid production by porcine granulosa cells. Anim. Reprod. Sci. 2008, 107, 115–130. [Google Scholar] [CrossRef]
- Pizzo, F.; Caloni, F.; Schreiber, N.B.; Cortinovis, C.; Spicer, L.J. In vitro effects of deoxynivalenol and zearalenone major metabolites alone and combined, on cell proliferation, steroid production and gene expression in bovine small-follicle granulosa cells. Toxicon 2016, 109, 70–83. [Google Scholar] [CrossRef]
- Pizzo, F.; Caloni, F.; Schutz, L.F.; Totty, M.L.; Spicer, L.J. Individual and combined effects of deoxynivalenol and alpha-zearalenol on cell proliferation and steroidogenesis of granulosa cells in cattle. Environ. Toxicol. Pharmacol. 2015, 40, 722–728. [Google Scholar] [CrossRef]
- Wang, W.; Yu, L.; Li, Z.; Xiao, Y.; Jiang, H.; Tang, Y.L.; Chen, Y.; Xue, H. Dysregulated arginine metabolism in precursor B-cell acute lymphoblastic leukemia in children: A metabolomic study. BMC Pediatr. 2024, 24, 540. [Google Scholar] [CrossRef]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD(+) metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef]
- Wculek, S.K.; Dunphy, G.; Heras-Murillo, I.; Mastrangelo, A.; Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell. Mol. Immunol. 2022, 19, 384–408. [Google Scholar] [CrossRef]
- Soga, T.; Baran, R.; Suematsu, M.; Ueno, Y.; Ikeda, S.; Sakurakawa, T.; Kakazu, Y.; Ishikawa, T.; Robert, M.; Nishioka, T.; et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J. Biol. Chem. 2006, 281, 16768–16776. [Google Scholar] [CrossRef]
- Ikeda, Y.; Fujii, J. The Emerging Roles of gamma-Glutamyl Peptides Produced by gamma-Glutamyltransferase and the Glutathione Synthesis System. Cells 2023, 12, 2831. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Xu, Y.; Zheng, M.; Luo, C.; Lei, H.; Qu, H.; Shu, D. Methionine Attenuates Lipopolysaccharide-Induced Inflammatory Responses via DNA Methylation in Macrophages. ACS Omega 2019, 4, 2331–2336. [Google Scholar] [CrossRef]
- Phang, J.M.; Pandhare, J.; Liu, Y. The metabolism of proline as microenvironmental stress substrate. J. Nutr. 2008, 138, 2008S–2015S. [Google Scholar] [CrossRef]
- Castillo-Salazar, M.; Sanchez-Munoz, F.; Springall Del Villar, R.; Navarrete-Vazquez, G.; Hernandez-DiazCouder, A.; Mojica-Cardoso, C.; Garcia-Jimenez, S.; Toledano-Jaimes, C.; Bernal-Fernandez, G. Nitazoxanide Exerts Immunomodulatory Effects on Peripheral Blood Mononuclear Cells from Type 2 Diabetes Patients. Biomolecules 2021, 11, 1817. [Google Scholar] [CrossRef]
- Mizota, T.; Hishiki, T.; Shinoda, M.; Naito, Y.; Hirukawa, K.; Masugi, Y.; Itano, O.; Obara, H.; Kitago, M.; Yagi, H.; et al. The hypotaurine-taurine pathway as an antioxidative mechanism in patients with acute liver failure. J. Clin. Biochem. Nutr. 2022, 70, 54–63. [Google Scholar] [CrossRef]
- Wu, C.; Tan, X.; Hu, X.; Zhou, M.; Yan, J.; Ding, C. Tumor Microenvironment following Gemcitabine Treatment Favors Differentiation of Immunosuppressive Ly6C(high) Myeloid Cells. J. Immunol. 2020, 204, 212–223. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive Secondary Metabolites from Trichoderma spp. against Phytopathogenic Fungi. Microorganisms 2020, 8, 817. [Google Scholar] [CrossRef] [PubMed]
- Sathyan, G.; Chancellor, M.B.; Gupta, S.K. Effect of OROS controlled-release delivery on the pharmacokinetics and pharmacodynamics of oxybutynin chloride. Br. J. Clin. Pharmacol. 2001, 52, 409–417. [Google Scholar] [CrossRef]
- Muro, P.; Zhang, L.; Li, S.; Zhao, Z.; Jin, T.; Mao, F.; Mao, Z. The emerging role of oxidative stress in inflammatory bowel disease. Front. Endocrinol. 2024, 15, 1390351. [Google Scholar] [CrossRef]
- Lushchak, V.I. Glutathione homeostasis and functions: Potential targets for medical interventions. J. Amino Acids 2012, 2012, 736837. [Google Scholar] [CrossRef]
- Labarrere, C.A.; Kassab, G.S. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front. Microbiol. 2022, 13, 979719. [Google Scholar] [CrossRef]
- Durante, W.; Johnson, F.K.; Johnson, R.A. Arginase: A critical regulator of nitric oxide synthesis and vascular function. Clin. Exp. Pharmacol. Physiol. 2007, 34, 906–911. [Google Scholar] [CrossRef]
- Weingartl, H.M.; Sabara, M.; Pasick, J.; van Moorlehem, E.; Babiuk, L. Continuous porcine cell lines developed from alveolar macrophages: Partial characterization and virus susceptibility. J. Virol. Methods 2002, 104, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Luo, Y.; Liu, R.; Sun, Y.; Zhao, S.; Yu, M.; Cao, J. Large Fragment InDels Reshape Genome Structure of Porcine Alveolar Macrophage 3D4/21 Cells. Genes 2022, 13, 1515. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Ma, Z.; Qian, W. Utilizing integrated bioinformatics and machine learning approaches to elucidate biomarkers linking sepsis to fatty acid metabolism-associated genes. Sci. Rep. 2024, 14, 28972. [Google Scholar] [CrossRef]
- Mikami, O.; Yamaguchi, H.; Murata, H.; Nakajima, Y.; Miyazaki, S. Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets. J. Vet. Sci. 2010, 11, 107–113. [Google Scholar] [CrossRef]
- Camici, M.; Garcia-Gil, M.; Pesi, R.; Allegrini, S.; Tozzi, M.G. Purine-Metabolising Enzymes and Apoptosis in Cancer. Cancers 2019, 11, 1354. [Google Scholar] [CrossRef] [PubMed]
- Ruedas-Torres, I.; Rodríguez-Gómez, I.M.; Sánchez-Carvajal, J.M.; Pallares, F.J.; Barranco, I.; Carrasco, L.; Gómez-Laguna, J. Activation of the extrinsic apoptotic pathway in the thymus of piglets infected with PRRSV-1 strains of different virulence. Vet. Microbiol. 2020, 243, 108639. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial dysfunction and oxidative stress in metabolic disorders—A step towards mitochondria based therapeutic strategies. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Huang, Z.; Xie, N.; Illes, P.; Di Virgilio, F.; Ulrich, H.; Semyanov, A.; Verkhratsky, A.; Sperlagh, B.; Yu, S.G.; Huang, C.; et al. From purines to purinergic signalling: Molecular functions and human diseases. Signal Transduct. Target. Ther. 2021, 6, 162. [Google Scholar] [CrossRef]
- Torchia, N.; Brescia, C.; Chiarella, E.; Audia, S.; Trapasso, F.; Amato, R. Neglected Issues in T Lymphocyte Metabolism: Purine Metabolism and Control of Nuclear Envelope Regulatory Processes. New Insights into Triggering Potential Metabolic Fragilities. Immuno 2024, 4, 521–548. [Google Scholar]
- Wang, Z.; Zhang, H.; Cheng, Q. PDIA4: The basic characteristics, functions and its potential connection with cancer. Biomed. Pharmacother. 2020, 122, 109688. [Google Scholar] [CrossRef]
- Qayyum, N.; Haseeb, M.; Kim, M.S.; Choi, S. Role of Thioredoxin-Interacting Protein in Diseases and Its Therapeutic Outlook. Int. J. Mol. Sci. 2021, 22, 2754. [Google Scholar] [CrossRef]
- Wu, L.; Lin, Y.; Feng, J.; Qi, Y.; Wang, X.; Lin, Q.; Shi, W.; Zheng, E.; Wang, W.; Hou, Z.; et al. The deubiquitinating enzyme OTUD1 antagonizes BH3-mimetic inhibitor induced cell death through regulating the stability of the MCL1 protein. Cancer Cell Int. 2019, 19, 222. [Google Scholar] [CrossRef]
- Deng, C.X.; Wang, R.H. Roles of BRCA1 in DNA damage repair: A link between development and cancer. Hum. Mol. Genet. 2003, 12, R113–R123. [Google Scholar] [CrossRef] [PubMed]
Detection Mode | Differential Metabolomics | ||
---|---|---|---|
All | Up | Down | |
DON vs. Control (Negative mode) | 45 | 19 | 26 |
DON vs. Control (Positive mode) | 77 | 36 | 41 |
Compound Name | Formula | log2(FC) | Regulation |
---|---|---|---|
Harzianopyridone | C14H19NO5 | 6.89 | Up |
Dribendazole | C15H19N3O2S | 5.07 | Up |
Ophthalmic acid | C11H19N3O6 | 4.7 | Up |
Lysyl-Hydroxyproline | C11H21N3O4 | 3.91 | Up |
γ-Glutamylcysteinylserine | C11H19N3O7S | 2.65 | Up |
LENAMPICILLIN | C21H23N3O7S | 2.55 | Up |
2-Acetylpyrrolidine | C6H11NO | 2.4 | Up |
Gravacridonediol methyl ether | C20H21NO5 | 2.25 | Up |
3,11,12-Trihydroxy-1(10)-spirovetiven-2-one | C15H24O4 | 2.04 | Up |
Miserotoxin | C9H17NO8 | 2.00 | Up |
Oxybutynin Chloride | C22H31ClNO3 | −4.83 | Down |
Coutaric acid | C18H27N3O4 | −2.82 | Down |
(±)-2-Methylthiazolidine | C4H9NS | −2.24 | Down |
Cefminox | C16H21N7O7S3 | −2.18 | Down |
THTC | C5H8O2S | −2.17 | Down |
Tyrosyl-Asparagine | C13H17N3O5 | −2.15 | Down |
Valyl-Threonine | C9H18N2O4 | −2.14 | Down |
L-Proline | C5H9NO2 | −2.06 | Down |
Racemethionine | C5H11NO2S | −2.03 | Down |
2-O-alpha-D-Glucopyranosyl-D-glucopyranose | C12H22O11 | −1.87 | Down |
Compound Name | Formula | log2(FC) | Regulation |
---|---|---|---|
Flurocitabine | C9H10FN3O4 | 4.76 | Up |
[(1-oxo-1H-isochromen-3-yl)methoxy]sulfonic acid | C10H8O6S | 3.22 | Up |
Nitazoxanide | C12H9N3O5S | 2.37 | Up |
5-Hexenyl glucosinolate | C13H23NO9S2 | 2.32 | Up |
Carbofenotion | C11H16ClO2PS3 | 2.23 | Up |
2-Deoxy-6-O-sulfo-2-(sulfoamino)-D-glucopyranose | C6H13NO11S2 | 2.05 | Up |
Hypotaurocyamine | C3H9N3O2S | 1.95 | Up |
Nicotinate D-ribonucleoside | C11H14NO6+ | 1.87 | Up |
1-(6-Oxo-6H-benzo[c]chromen-3-yl)-1H-pyrrole-2,5-dione | C17H9NO4 | 1.73 | Up |
Methasulfocarb | C9H11NO4S2 | 1.66 | Up |
(2R,5Z)-4-Methyl-5-[2-(phosphonooxy)ethylidene]-2,5-dihydro-1,3-thiazole-2-carboxylic acid | C7H10NO6PS | −3.42 | Down |
2-(2,6-dihydroxy-3,4-dimethoxycyclohexylidene)acetonitrile | C10H15NO4 | −2.79 | Down |
Nicotinic acid mononucleotide | C11H15NO9P | −2.78 | Down |
Flunidazole | C11H10FN3O3 | −2.42 | Down |
Asparagusic acid syn-S-oxide | C4H6O3S2 | −2.39 | Down |
Ethyl glucuronide | C8H14O7 | −2.21 | Down |
MFCD00215956 | C20H11NO2 | −2.17 | Down |
DIAMIDAFOS | C8H13N2O2P | −2.06 | Down |
AY6315000 | C9H10FNO2 | −2.03 | Down |
Gemcitabine | C9H11F2N3O4 | −1.96 | Down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Yu, B.; Weng, W.; Shi, L.; Zhang, J. Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells. Animals 2025, 15, 2324. https://doi.org/10.3390/ani15152324
Han Y, Yu B, Weng W, Shi L, Zhang J. Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells. Animals. 2025; 15(15):2324. https://doi.org/10.3390/ani15152324
Chicago/Turabian StyleHan, Yu, Bo Yu, Wenao Weng, Liangyu Shi, and Jing Zhang. 2025. "Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells" Animals 15, no. 15: 2324. https://doi.org/10.3390/ani15152324
APA StyleHan, Y., Yu, B., Weng, W., Shi, L., & Zhang, J. (2025). Evaluation of Metabolic Characteristics Induced by Deoxynivalenol in 3D4/21 Cells. Animals, 15(15), 2324. https://doi.org/10.3390/ani15152324