Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,246)

Search Parameters:
Keywords = nuclear transportation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4073 KB  
Conference Report
High-Precision Cross-Sections for Galactic Cosmic Rays: Highlights from XSCRC2024 and Follow-Up Actions
by David Maurin, Fiorenza Donato and Saverio Mariani
Particles 2026, 9(1), 9; https://doi.org/10.3390/particles9010009 - 26 Jan 2026
Viewed by 38
Abstract
The interpretation of high-precision Galactic cosmic-ray data from AMS-02, CALET, DAMPE, etc., is fundamentally limited by nuclear cross-sections uncertainties. This proceeding highlights the results presented at the XSCRC2024 workshop, which aims at bringing together the cosmic-ray, nuclear, and particle physics communities, with the [...] Read more.
The interpretation of high-precision Galactic cosmic-ray data from AMS-02, CALET, DAMPE, etc., is fundamentally limited by nuclear cross-sections uncertainties. This proceeding highlights the results presented at the XSCRC2024 workshop, which aims at bringing together the cosmic-ray, nuclear, and particle physics communities, with the goal of improving cross-section measurements across various domains, from nuclei production for constraining cosmic-ray transport parameters, to antiproton and anti-deuteron production for dark matter searches. This workshop lead to a comprehensive roadmap for new cross-section measurements in the next decade, as well as other outcomes. Full article
Show Figures

Figure 1

20 pages, 1389 KB  
Article
The Evolution Law of Molecular Structure of Vitrain and Durain During Low–Medium Coalification
by Yue Chen, Zan Liu, Huaichang Wang, Changjiang Ji, Liya Wang, Pengpeng Guan, Peilin Wang, Kai Ma and Liyuan Dang
Processes 2026, 14(3), 401; https://doi.org/10.3390/pr14030401 - 23 Jan 2026
Viewed by 116
Abstract
Molecular structural disparities between maceral components are intrinsic factors governing their reactivity and physicochemical behaviors during storage and transportation. To investigate the molecular structural differentiation between vitrain and durain in low- to medium-rank coals (Ro,max = 0.65–1.71%), this study selected samples [...] Read more.
Molecular structural disparities between maceral components are intrinsic factors governing their reactivity and physicochemical behaviors during storage and transportation. To investigate the molecular structural differentiation between vitrain and durain in low- to medium-rank coals (Ro,max = 0.65–1.71%), this study selected samples of long-flame coal and gas coal from the Huanglong Coalfield, coking coal from the Hedong Coalfield, and fat coal from the Weibei Coalfield. The microstructural variations in macroscopic coal components during coalification were analyzed using Fourier transform infrared spectroscopy (FTIR), 13C nuclear magnetic resonance (13C-NMR), and X-ray photoelectron spectroscopy (XPS). The results indicated that the aromatic structures of vitrain are predominantly trisubstituted, with their proportion consistently exceeding that in durain. In contrast, durain exhibits a progressive transition from trisubstituted to pentasubstituted aromatics with increasing coal rank, accompanied by higher aromaticity, condensation degree, and aromatic carbon content. The d002 size of the vitrain decreased from 3.82 to 3.47, while that of the durain decreased from 3.52 to 3.40. Both values showed a gradual decline, with the vitrain exhibiting a larger reduction than the durain. This indicates that the lateral extension of the microcrystalline structure in the durain is more developed, resulting in tighter molecular connections. 13C-NMR analysis further reveals that durain possesses higher falH/fal* and bridge carbon ratios (XBP), along with a lower faS/fa ratio, reflecting a greater degree of aromatic ring condensation. XPS analysis revealed that durain generally contains a higher oxygen-functional group content but lower C-C/C-H content compared to vitrain. Collectively, these findings confirm significant structural divergence between vitrain and durain during coalification, with durain exhibiting more developed aromaticity, structural condensation, and organizational order. Full article
(This article belongs to the Special Issue Phase Behavior Modeling in Unconventional Resources)
16 pages, 7594 KB  
Article
Rooting Ability of Eucalyptus dunnii Maiden Mini-Cuttings Is Conditioned by Stock Plant Nighttime Temperature
by Matías Nión, Silvia Ross, Jaime González-Tálice, Leopoldo Torres, Sofía Bottarro, Mariana Sotelo-Silveira, Selene Píriz-Pezzutto, Fábio Antônio Antonelo and Arthur Germano Fett-Neto
Plants 2026, 15(2), 335; https://doi.org/10.3390/plants15020335 - 22 Jan 2026
Viewed by 54
Abstract
Clonal propagation often must incorporate heaters to warm stock plants and stabilize growth. This study investigates the impact that different temperature regimes for stock plants have on the rooting capacity of mini-cuttings derived therefrom. Experiments were conducted in growth chambers using two clones [...] Read more.
Clonal propagation often must incorporate heaters to warm stock plants and stabilize growth. This study investigates the impact that different temperature regimes for stock plants have on the rooting capacity of mini-cuttings derived therefrom. Experiments were conducted in growth chambers using two clones of Eucalyptus dunnii Maiden, with clone A’s rooting being moderately better that that of clone B in commercial production. Root primordia differentiation and elongation were faster in clone A than clone B. Stock plants were maintained for one month under two temperature conditions: Δ0 (26/26 °C day/night) and Δ10 (26/16 °C). The main results indicate that rooting significantly decreased with the reduction in nocturnal temperature. Clone A exhibited a 38% reduction in rooting, whereas clone B showed a more pronounced decrease of 65%. In cold nights, soluble carbohydrates at the cutting bases dropped by approximately 25% considering both clones, and overall foliar nutrients also decreased. Cutting base transcript profiles revealed that cold nights decreased the expression of efflux auxin transporter PIN1, increased expression of auxin catabolism-related enzyme DAO, and that expression of auxin nuclear receptor TIR1 remained stable. Fine management of clonal gardens by adjusting thermal conditions can optimize the physiological status of donor plants and enhance the rooting potential and establishment of the derived cuttings. Full article
Show Figures

Figure 1

14 pages, 3220 KB  
Article
Effect of Stone Powder Content on the Properties and Microstructure of Nuclear Power-Manufactured Sand Concrete
by Xiangqin Du, Zhilong Liu, Rongfei Chen, Zhenhua Zhao, Xiaobo Hao, Xiaofan Peng and Hongmei Wu
Crystals 2026, 16(1), 66; https://doi.org/10.3390/cryst16010066 - 19 Jan 2026
Viewed by 171
Abstract
Stone powder is an inevitable by-product generated during the processing of manufactured sand and gravel. Waste stone powder has been proven to affect concrete properties and has been applied in the transportation and hydropower fields. This study aims to convert waste granite stone [...] Read more.
Stone powder is an inevitable by-product generated during the processing of manufactured sand and gravel. Waste stone powder has been proven to affect concrete properties and has been applied in the transportation and hydropower fields. This study aims to convert waste granite stone powder (GP) to nuclear power concrete by replacing manufactured sand, investigating its effect on the workability, compressive strength, splitting tensile strength, impermeability, and freezing resistance of nuclear power concrete. The mechanism was further elucidated through thermogravimetric (TG), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP) techniques. The results show that with the increase in GP content, the slump, compressive strength, and splitting tensile strength of concrete increase first and then decrease, and the seepage height under pressure water decreases first and then increases. The workability, strength, and impermeability of concrete are optimal when GP content is 11.0%. Reasonable GP content improves the compactness of concrete by filling pores and optimizing aggregate gradation, resulting in decreases in porosity, with the size being the most probable and average pore size. Full article
Show Figures

Figure 1

22 pages, 2600 KB  
Article
Risk Identification and Chaotic Synchronization Control for Spent Fuel Road Transportation Based on Complex Network Evolution Models
by Wen Chen, Shuliang Zou, Changjun Qiu and Meiyan Gan
Appl. Sci. 2026, 16(2), 994; https://doi.org/10.3390/app16020994 - 19 Jan 2026
Viewed by 80
Abstract
To improve the safety of road transportation of Spent Nuclear Fuel (SNF), this paper proposes a novel approach for risk identification and chaotic synchronous control in SNF road transportation systems. Firstly, a dynamic risk evolution model for the road transportation of SNF is [...] Read more.
To improve the safety of road transportation of Spent Nuclear Fuel (SNF), this paper proposes a novel approach for risk identification and chaotic synchronous control in SNF road transportation systems. Firstly, a dynamic risk evolution model for the road transportation of SNF is developed by analyzing the nonlinear interactions among vehicles, environmental conditions, and human factors using complex network analysis and nonlinear dynamics. Secondly, an enhanced K-shell decomposition method is applied to identify key risk nodes and assess the relative importance of different risk factors, providing a basis for targeted risk control. Finally, a chaotic synchronization control strategy based on Lyapunov stability is proposed to suppress risk divergence and restore system stability. Three targeted control schemes are evaluated by varying the control gain coefficients across the ‘Vehicle–Environment–Human’ dimensions. Simulation results indicate that the strategy prioritizing environmental and human risk control yields the fastest convergence, significantly outperforming vehicle-centric approaches. The results show that prioritizing both environmental and human-factor control is most effective for suppressing chaotic divergence. This provides a solid quantitative basis for the strategic shift from passive defense to active environmental warning, thereby significantly optimizing the dynamic risk management of the SNF transportation system. Full article
Show Figures

Figure 1

14 pages, 4558 KB  
Article
RGMa Nuclear Localization in Skeletal Muscle Cells Reveals a Novel Role in Cell Viability and Proliferation
by Cristhian David Andrade Alfaro, Julia Meireles Nogueira, Christhiam Douglas Caetano Ribeiro, Kirsty Ximena Noboa Carrasco, Ana Luísa Cremonese Lubiana, Ana Maria Alvarenga Fagundes, Natália Paloma Vieira de Souza, Victor Rodrigues Santos, Carolina Cattoni Koh, Walderez Ornelas Dutra and Erika Cristina Jorge
Cells 2026, 15(2), 161; https://doi.org/10.3390/cells15020161 - 15 Jan 2026
Viewed by 238
Abstract
The Repulsive Guidance Molecule a (RGMa) is a multifunctional GPI-anchored protein localized in the sarcolemma and sarcoplasm of the adult skeletal muscle cell. Our research group showed that RGMa overexpression can promote myoblast fusion and induce hypertrophic muscle fibers during in vitro differentiation. [...] Read more.
The Repulsive Guidance Molecule a (RGMa) is a multifunctional GPI-anchored protein localized in the sarcolemma and sarcoplasm of the adult skeletal muscle cell. Our research group showed that RGMa overexpression can promote myoblast fusion and induce hypertrophic muscle fibers during in vitro differentiation. Here, we report that RGMa is expressed in primary skeletal muscle cells cultured in vitro, showing a nuclear localization, revealed by immunostaining with an antibody targeting its C-terminal region (C-RGMa). While RGMa was detected in the nuclei, its canonical receptor, Neogenin, was predominantly found in the perinuclear region. Nuclear RGMa was absent in Neogenin-knockdown cells, suggesting that Neogenin mediates its nuclear transport. Functional assays suggested that RGMa promotes primary skeletal muscle cell viability and proliferation and supports their myogenic commitment. These findings reveal a previously unrecognized nuclear function of RGMa–Neogenin signaling and provide new insights into the regulation of skeletal muscle cell behavior in vitro. Full article
(This article belongs to the Special Issue Gene and Cellular Signaling Related to Muscle)
Show Figures

Figure 1

19 pages, 4319 KB  
Article
Numerical Simulation of Tritiated Water Transfer by Moist Air in Nuclear Power Station
by Yifan Cheng, Xi Xu, Kefeng Lyu, Yang Li, Kun Hu, Yongfang Xia and Xudan Ma
Processes 2026, 14(2), 286; https://doi.org/10.3390/pr14020286 - 14 Jan 2026
Viewed by 167
Abstract
This study investigates the dispersion and condensation behavior of tritiated water vapor released into the atmosphere using moist air as a carrier, with an emphasis on safety optimization for nuclear power plant effluent discharge. A coupled heat and mass transfer model was developed [...] Read more.
This study investigates the dispersion and condensation behavior of tritiated water vapor released into the atmosphere using moist air as a carrier, with an emphasis on safety optimization for nuclear power plant effluent discharge. A coupled heat and mass transfer model was developed and implemented in CFD simulations to analyze the evolution of temperature and relative humidity during the mixing of exhaust moist air with ambient air. The effects of key atmospheric and operational parameters—including the ambient wind speed, turbulence intensity, ambient temperature, relative humidity, and exhaust velocity—were systematically examined. The results indicate that the temperature difference between the exhaust gas and ambient air is the primary factor governing condensation risk. Low wind speeds and weak turbulence favor near-field humidity accumulation, while higher wind speeds and turbulence intensities enhance mixing and dilution, thereby reducing local humidity peaks but extending the downwind impact range. Increasing exhaust velocity strengthens plume rise and long-range transport due to enhanced momentum and latent heat release, mitigating accumulation near the chimney outlet. Furthermore, high ambient temperatures significantly increase the air’s moisture-holding capacity, allowing higher exhaust humidity without inducing condensation. Full article
(This article belongs to the Section Process Safety and Risk Management)
Show Figures

Figure 1

23 pages, 2218 KB  
Review
Mitochondrial DNA Instability and Neuroinflammation: Connecting the Dots Between Base Excision Repair and Neurodegenerative Disease
by Magan N. Pittman, Mary Beth Nelsen, Marlo K. Thompson and Aishwarya Prakash
Genes 2026, 17(1), 82; https://doi.org/10.3390/genes17010082 - 13 Jan 2026
Viewed by 264
Abstract
Neurons have exceptionally high energy demands, sustained by thousands to millions of mitochondria per cell. Each mitochondrion depends on the integrity of its mitochondrial DNA (mtDNA), which encodes essential electron transport chain (ETC) subunits required for oxidative phosphorylation (OXPHOS). The continuous, high-level ATP [...] Read more.
Neurons have exceptionally high energy demands, sustained by thousands to millions of mitochondria per cell. Each mitochondrion depends on the integrity of its mitochondrial DNA (mtDNA), which encodes essential electron transport chain (ETC) subunits required for oxidative phosphorylation (OXPHOS). The continuous, high-level ATP production by OXPHOS generates reactive oxygen species (ROS) that pose a significant threat to the nearby mtDNA. To counter these insults, neurons rely on base excision repair (BER), the principal mechanism for removing oxidative and other small, non-bulky base lesions in nuclear and mtDNA. BER involves a coordinated enzymatic pathway that excises damaged bases and restores DNA integrity, helping maintain mitochondrial genome stability, which is vital for neuronal bioenergetics and survival. When mitochondrial BER is impaired, mtDNA becomes unstable, leading to ETC dysfunction and a self-perpetuating cycle of bioenergetic failure, elevated ROS levels, and continued mtDNA damage. Damaged mtDNA fragments can escape into the cytosol or extracellular space, where they act as damage-associated molecular patterns (DAMPs) that activate innate immune pathways and inflammasome complexes. Chronic activation of these pathways drives sustained neuroinflammation, exacerbating mitochondrial dysfunction and neuronal loss, and functionally links genome instability to innate immune signaling in neurodegenerative diseases. This review summarizes recent advancements in understanding how BER preserves mitochondrial genome stability, affects neuronal health when dysfunctional, and contributes to damage-driven neuroinflammation and neurodegenerative disease progression. We also explore emerging therapeutic strategies to enhance mtDNA repair, optimize its mitochondrial environment, and modulate neuroimmune pathways to counteract neurodegeneration. Full article
(This article belongs to the Special Issue DNA Repair, Genomic Instability and Cancer)
Show Figures

Figure 1

21 pages, 3413 KB  
Article
The Whole Transcriptome Sequencing Profile of Serum-Derived Exosomes and Potential Pathophysiology of Age-Related Hearing Loss
by Guijun Yang, Zhongqin Xie, Yu Huang, Jing Ke, Ziyi Tang, Zhiji Chen, Shaojing Kuang, Feixian Li, Huan Luo, Qin Lai, Bo Wang, Juhong Zhang and Wei Yuan
Diagnostics 2026, 16(2), 248; https://doi.org/10.3390/diagnostics16020248 - 12 Jan 2026
Viewed by 250
Abstract
Objectives: To systematically analyze the expression profiles of long non-coding RNAs (lncRNAs) in serum-derived exosomes from patients with age-related hearing loss (ARHL), and to further identify key regulatory lncRNAs involved in the pathogenesis and progression of ARHL. Methods: Peripheral blood samples were collected [...] Read more.
Objectives: To systematically analyze the expression profiles of long non-coding RNAs (lncRNAs) in serum-derived exosomes from patients with age-related hearing loss (ARHL), and to further identify key regulatory lncRNAs involved in the pathogenesis and progression of ARHL. Methods: Peripheral blood samples were collected from patients with ARHL and age-matched normal-hearing controls. Serum was separated and exosomes were extracted. The exosomes were identified by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blot. Subsequently, total RNA was extracted from the purified exosomes for lncRNA transcriptome sequencing. Based on the sequencing results, we identified differentially expressed lncRNAs and mRNAs and conducted multi-dimensional functional analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome pathway database (Reactome), and Disease Ontology (DO). Finally, four key mRNAs (THAP2, ZNF225, MED12, and RNF141) and four differentially expressed lncRNAs (DE-lncRNAs), namely MSTRG.150961.7, ENSG00000273015, MSTRG.336598.1, and ENSG00000273493, were experimentally verified by quantitative real-time polymerase chain reaction (RT-qPCR) technology. Results: Exosomes were successfully isolated from serum and confirmed by particle size, morphological examination, and the expression of exosome-labeled proteins. A total of 2874 DE-lncRNAs were identified, among which 988 were downregulated and 1886 were upregulated. Similarly, 2132 DE-mRNAs were detected, among which 882 were downregulated and 1250 were upregulated. GO analysis revealed significant enrichment in biological processes such as “phospholipid binding”, “phosphatidylinositol binding”, “phosphatase binding”, “phosphatidylinositol bisphosphate binding”, “phosphatidylinositol-4,5-bisphosphate binding”, “phosphatidylinositol-3,5-bisphosphate phosphatase activity”. KEGG is significantly enriched in signaling pathways including “Wnt signaling pathway”, “Hippo signaling pathway”, “Cushing syndrome”, and “Nucleocytoplasmic transport”. The functional annotations of Reactome were significantly enriched in biomolecular pathways including “tRNA processing”, “Cellular response to heat stress”, “Extra-nuclear estrogen signaling”, “Metabolism of non-coding RNA”, and “CTNNB1 T41 mutants aren’t phosphorylated”. DO is significantly enriched in diseases or pathological conditions such as “hepatitis”, “bacterial infectious disease”, “cystic fibrosis”, and “vasculitis”. Conclusions:THAP2, ZNF225, MED12, and RNF141 may serve as potential candidate biomarker for ARHL. Additionally, lncRNA MSTRG.150961.7, lncRNA MSTRG.336598.1, and lncRNA ENSG00000273493 may play significant roles in the pathogenesis of this condition. Full article
Show Figures

Figure 1

19 pages, 1836 KB  
Protocol
Decoding Cerebrospinal Fluid: Integrative Metabolomics Across Multiple Platforms
by Antoine Presset, Sylvie Bodard, Antoine Lefèvre, Edward Oujagir, Camille Dupuy, Jean-Michel Escoffre and Lydie Nadal-Desbarats
Methods Protoc. 2026, 9(1), 8; https://doi.org/10.3390/mps9010008 - 8 Jan 2026
Viewed by 305
Abstract
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized [...] Read more.
Cerebrospinal fluid (CSF) is a key biological matrix that reflects the physiological and pathological states of the central nervous system (CNS). It supports brain function by regulating ionic balance, facilitating molecular transport, and clearing metabolic waste. In this article, we present a standardized protocol for CSF collection along with an integrative multiplatform metabolomic workflow that combines proton nuclear magnetic resonance spectroscopy (1H-NMRS) and high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS). Integrating these complementary analytical modalities enhances metabolite coverage and improves analytical robustness, enabling a more comprehensive and reliable characterization of the CSF metabolome. This workflow supports the discovery of potential biomarkers and advances our understanding of neurochemical alterations within the CNS. Full article
(This article belongs to the Section Omics and High Throughput)
Show Figures

Figure 1

26 pages, 378 KB  
Review
Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios
by Klaus Schomäcker, Ferdinand Sudbrock, Thomas Fischer, Felix Dietlein, Markus Dietlein, Philipp Krapf and Alexander Drzezga
Int. J. Mol. Sci. 2026, 27(2), 590; https://doi.org/10.3390/ijms27020590 - 6 Jan 2026
Viewed by 409
Abstract
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile [...] Read more.
Airborne iodine-131 plays a pivotal role in both nuclear medicine and nuclear safety due to its radiotoxicity, volatility, and affinity for the thyroid gland. Although the total exhaled activity after medical I-131 therapy is minimal, over 95% of this activity appears in volatile organic forms, which evade standard filtration and reflect metabolic pathways of iodine turnover. Our experimental work in patients and mice confirms the metabolic origin of these species, modulated by thyroidal function. In nuclear reactor environments, both under routine operation and during accidents, organic iodides such as [131I]CH3I have also been identified as major airborne components, often termed “penetrating iodine” due to their low adsorption to conventional filters. This review compares the molecular speciation, environmental persistence, and dosimetric impact of airborne I-131 across clinical, technical, and accidental release scenarios. While routine reactor emissions yield negligible doses (<0.1 µSv/year), severe nuclear incidents like Chernobyl and Fukushima have resulted in significant thyroid exposures. Doses from these events ranged from tens of millisieverts to several Sieverts, particularly in children. We argue that a deeper understanding of chemical forms is essential for effective risk assessment, filtration technology, and emergency preparedness. Iodine-131 exemplifies the dual nature of radioactive substances: in nuclear medicine its radiotoxicity is therapeutically harnessed, whereas in industrial or reactor contexts it represents an unwanted hazard. The same physicochemical properties that enable therapeutic efficacy also determine, in the event of uncontrolled release, the range, persistence, and the potential for unwanted radiotoxic exposure in the general population. In nuclear medicine, exhaled activity after radioiodine therapy is minute but largely organically bound, reflecting enzymatic and metabolic methylation processes. During normal reactor operation, airborne iodine levels are negligible and dominated by inorganic vapors efficiently captured by filtration systems. In contrast, major accidents released large fractions of volatile iodine, primarily as elemental [131I]I2 and organically bound iodine species like [131I]CH3I. The chemical nature of these compounds defined their atmospheric lifetime, transport distance, and deposition pattern, thereby governing the thyroid dose to exposed populations. Chemical speciation is the key determinant across all scenarios. Exhaled iodine in medicine is predominantly organic; routine reactor releases are negligible; severe accidents predominantly release elemental and organic iodine that drive environmental transport and exposure. Integrating these domains shows how chemical speciation governs volatility, mobility, and bioavailability. The novelty of this review lies not in introducing new iodine chemistry, but in the systematic comparative synthesis of airborne radioiodine speciation across medical therapy, routine nuclear operation, and severe accident scenarios, identifying chemical form as the unifying determinant of volatility, environmental transport, and dose. Full article
(This article belongs to the Topic Environmental Toxicology and Human Health—2nd Edition)
21 pages, 21740 KB  
Article
Simulation of Oxygen Diffusion in Lead–Bismuth Eutectic for Gas-Phase Oxygen Management
by Zhihong Tang, Bin Yang, Wenjun Zhang, Ruohan Chen, Shusheng Guo, Junfeng Li, Liyuan Wang and Xing Huang
J. Nucl. Eng. 2026, 7(1), 5; https://doi.org/10.3390/jne7010005 - 1 Jan 2026
Viewed by 213
Abstract
Lead–bismuth eutectic (LBE), while advantageous for advanced nuclear reactors due to its thermophysical properties, faces oxidation and corrosion challenges during operation. This study aims to optimize gas-phase oxygen control by computationally analyzing oxygen transport dynamics in an LBE loop. High-fidelity simulations were performed [...] Read more.
Lead–bismuth eutectic (LBE), while advantageous for advanced nuclear reactors due to its thermophysical properties, faces oxidation and corrosion challenges during operation. This study aims to optimize gas-phase oxygen control by computationally analyzing oxygen transport dynamics in an LBE loop. High-fidelity simulations were performed using ANSYS Fluent and STAR-CCM+ based on the CORRIDA loop geometry, employing detailed meshing for convergence. Steady-state analyses revealed localized oxygen enrichment near the gas–liquid interface (peaking at ∼3×106 wt%), decreasing to ∼5.06.8×108 wt% at the outlet. Transient simulations from an oxygen-deficient state (1×108 wt%) demonstrated distribution stabilization within 150 s, driven by convection-enhanced diffusion. Parametric studies identified a non-monotonic relationship between inlet velocity and oxygen uptake, with optimal performance at 0.7–0.9 m/s, while increasing temperature from 573 K to 823 K monotonically enhanced the outlet concentration by >200% due to improved diffusivity/solubility. The average mass transfer coefficient (0.6–0.7) aligned with literature values (±20% deviation), validating the model’s treatment of interface thermodynamics and turbulence. These findings the advance mechanistic understanding of oxygen transport in LBE and directly inform the design of oxygenation systems and corrosion mitigation strategies for liquid metal-cooled reactors. Full article
Show Figures

Figure 1

19 pages, 3509 KB  
Article
Determining Water Resource Formation at the “Delegen” Nuclear Test Site Using Stable Isotope Analysis
by Almira Aidarkhanova, Ainur Mamyrbayeva, Anastassiya Nadeyeva, Alibek Iskenov, Assan Aidarkhanov, Natalya Larionova and Rinata Yermakova
Water 2026, 18(1), 99; https://doi.org/10.3390/w18010099 - 31 Dec 2025
Viewed by 510
Abstract
Despite the closure of the Semipalatinsk nuclear test site (STS) more than 30 years ago, water continues to transport radioactive contamination beyond the boundaries of the “Degelen” test site. Therefore, assessing the formation of water resources at this test site is highly relevant, [...] Read more.
Despite the closure of the Semipalatinsk nuclear test site (STS) more than 30 years ago, water continues to transport radioactive contamination beyond the boundaries of the “Degelen” test site. Therefore, assessing the formation of water resources at this test site is highly relevant, particularly in terms of forecasting the development of radioactive contamination at the STS. In this case, isotope hydrology is the most promising method for understanding these processes. The aquatic environment at the “Degelen” test site consists of radioactively contaminated tunnel water, streams, and groundwater. This paper presents the research results regarding the determination of stable isotopes of hydrogen and oxygen for the aquatic environment of the “Degelen” test site. 3H concentrations and the chemical composition of water at the site were also determined. Analysis of the water’s isotopic composition (δ2H and δ18O) showed that the tunnel and stream water are formed by precipitation (snowmelt and rain). In summer, when precipitation is low, atmospheric condensation contributes significantly to recharge at the “Degelen” test site. The high radionuclide content of tunnel water leads to the contamination of stream water, and, to a lesser extent, groundwater. The 3H content of tunnel water can reach 260 kBq/L, and that of stream water can reach 58 kBq/L, both of which exceed the established standards in the Republic of Kazakhstan. Full article
(This article belongs to the Section Hydrology)
Show Figures

Graphical abstract

27 pages, 4897 KB  
Article
Inflammatory Co-Regulation of Voltage-Gated Sodium Channels and Na,K-ATPase in Metastatic Breast Cancer
by Steven D. Scahill, Kelly Jean Sherman and Dennis Paul
Int. J. Mol. Sci. 2026, 27(1), 424; https://doi.org/10.3390/ijms27010424 - 31 Dec 2025
Viewed by 240
Abstract
Sodium regulation is a potentially major driver of cancer metastasis. Voltage-gated sodium channels (VGSCs) and Na,K-ATPase are sodium transporters that are upregulated in many advanced carcinomas and are implicated as metastatic drivers. However, little is known about what drives this overexpression, how these [...] Read more.
Sodium regulation is a potentially major driver of cancer metastasis. Voltage-gated sodium channels (VGSCs) and Na,K-ATPase are sodium transporters that are upregulated in many advanced carcinomas and are implicated as metastatic drivers. However, little is known about what drives this overexpression, how these proteins influence metastatic behavior, or whether these complementary sodium transporters are co-regulated in cancer. Using sodium transporter regulation in healthy neurons as a model, the present study demonstrated that the inflammatory mediator tumor necrosis factor alpha (TNFα) affects the expression of VGSCs and Na,K-ATPase in an in vitro model of metastatic breast cancer. Acute TNFα challenge increased RNA for sodium transporter subtypes by 20–100%, TNFα reduced the overall expression of VGSCs by 20–30% at all time-points examined, and long-term administration increased nuclear localization of the α1 subtype of Na,K-ATPase while increasing the overall expression of the α3 subtype. This study established that VGSCs and Na,K-ATPase are co-regulated by TNFα at the RNA level, and it was demonstrated that both TNFα and sodium transport-blocking drugs can significantly impact cellular metastasis-like behavior. Together these data are evidence that inflammation in metastatic breast cancer co-regulates the expression of VGSCs and Na,K-ATPase, and this regulatory system may contribute to carcinogenesis. Full article
(This article belongs to the Special Issue Voltage-Gated Ion Channels and Human Diseases)
Show Figures

Figure 1

21 pages, 5918 KB  
Article
Spectrum-Dependent Burnable Poison Selection for Enhanced Safety and Neutronic Performance in an Epithermal Supercritical Carbon Dioxide-Cooled Reactor
by Yiming Zhong, Jing Wen, Wenbin Wu, Naibin Jiang, Xiaoqi Zhou, Di Lu, Bin Zhang and Lianjie Wang
Energies 2026, 19(1), 207; https://doi.org/10.3390/en19010207 - 30 Dec 2025
Viewed by 181
Abstract
This study investigates the neutronic performance of burnable poisons (BPs) in an epithermal spectrum supercritical carbon dioxide (S-CO2)-cooled reactor. Twelve candidate BP materials are systematically evaluated, including rare-earth oxides (e.g., HfO2, Er2O3, Eu2O [...] Read more.
This study investigates the neutronic performance of burnable poisons (BPs) in an epithermal spectrum supercritical carbon dioxide (S-CO2)-cooled reactor. Twelve candidate BP materials are systematically evaluated, including rare-earth oxides (e.g., HfO2, Er2O3, Eu2O3, etc.) and boron-based compounds (B4C and PACS). The deterministic neutron transport code KYLIN-I with the ENDF/B VI 45-group cross-section library is employed for analysis. According to the calculation results, Eu2O3 effectively suppresses the initial kinf of the epithermal-spectrum fuel assembly to ~1.2 with a relatively low weight fraction (~2.6%) while maintaining a total temperature coefficient (TTC) lower than −1.4 pcm/K throughout the entire burnup period. HfO2 and Er2O3, at approximately 15% weight fraction, achieve TTC values better than −2 pcm/K. Furthermore, both Eu2O3 and HfO2 contribute to maintaining a low, stable power peaking factor (PPF) below 1.24 throughout the burnup process. This study provides a theoretical foundation and technical support for designing an efficient and safe S–CO2-cooled nuclear reactor. It highlights the importance of selecting BP materials that are well-adapted to the neutron spectrum and optimizing the fuel assembly configuration accordingly. Full article
(This article belongs to the Special Issue Nuclear Engineering and Nuclear Fuel Safety)
Show Figures

Figure 1

Back to TopTop