Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios
Abstract
1. Introduction
| Isotope | Half-Life | Main Emissions | Typical Scenarios of Occurrence | Radiological Relevance | Notes/Justification | Inhalation Dose Coefficient (I2, Sv/Bq) |
|---|---|---|---|---|---|---|
| I-123 | 13.2 h | EC, γ | Diagnostic nuclear medicine | Diagnostic only | Short half-life, negligible environmental relevance | 2.1 × 10−10 |
| I-124 | 4.2 d | β+, γ | PET imaging | Diagnostic research | PET tracer, very low activities in clinic only | 1.2 × 10−8 |
| I-125 | 59.4 d | EC, Auger, γ | Brachytherapy seeds | Local therapy only | Low-energy emissions, not airborne relevant | 1.4 × 10−8 |
| I-126 | 13 d | EC, β−, β+, γ | Reactor fission product | Minor | Low cumulative yield, limited impact | 2.6 × 10−8 |
| I-129 | 16 My | β− | Reactor fission, reprocessing, fallout | Long-term tracer (radioecology), negligible acute dose | MBq-scale requires gram quantities in thyroid | 9.6 × 10−8 |
| I-130 | 12.4 h | β−, γ | Reactor accidents | Short-lived contributor | Relevant only immediately after release | 1.9 × 10−9 |
| I-131 | 8.0 d | β−, γ | Therapy, reactor releases, accidents | High contribution on collective doses Widely distributed into environment | Dominates internal dosimetry on a large scale | 2.0 × 10−8 |
| I-132 | 2.3 h | β−, γ | Reactor accidents | Relevant at early stages | Lower dose factor due the short half-live | 3.1 × 10−10 |
| I-133 | 20.8 h | β−, γ | Reactor accidents | Contributes significantly | Early-phase contributor, overshadowed by I-131 | 4.0 × 10−9 |
| I-135 | 6.6 h | β−, γ | Reactor accidents or “iodine pit” in reactor control [13] | Relevant at early stages | Lower dose factor due the short half-live | 9.2 × 10−10 |
2. Radioiodine Isotopes Relevant to Different Scenarios
3. Chemical Form Matters: Mechanisms and Representative Reactions
- (A)
- biological and mucosal environments relevant to medical radioiodine therapy,
- (B)
- routine reactor operation and inspection conditions,
- (C)
- Mo-99 production and spent-fuel reprocessing, and
- (D)
- severe reactor accident scenarios involving radiolysis, high temperatures, structural degradation, and fires.
4. Pathways of Incorporation and Systemic Distribution of Airborne [131I]Iodine
4.1. Transition from Physicochemical Form to Bioavailability
4.2. Thyroidal Iodine Organification
4.3. Dosimetric and Radiobiological Aspects of 131I Uptake in the Thyroid
Cellular Dosimetry
5. Airborne 131I in Practice: Nuclear Medicine, Routine Reactor Operation, and Accidents
5.1. Nuclear Medicine (Post-Therapy Exhalation)
5.2. Routine Operation of Nuclear Power Plants
5.3. Reactor Shutdown and Inspection
5.4. Reprocessing Facilities and Mo-99 Production
5.5. Severe Reactor Accidents
5.5.1. Windscale Fire (Sellafield, 1957)
5.5.2. Three Mile Island, 1979 (Pennsylvania, USA)
5.5.3. Chernobyl Accident (26 April 1986)
5.5.4. Fukushima Daiichi Nuclear Accident (2011)
6. Chemical Form Matters
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bellini, P.; Dondi, F.; Zilioli, V.; Gatta, E.; Cavadini, M.; Cappelli, C.; Viganò, G.L.; Bertagna, F. The Role of Radioiodine Therapy in Differentiated Thyroid Cancer Arising from Struma Ovarii: A Systematic Review. J. Clin. Med. 2024, 13, 7729. [Google Scholar] [CrossRef]
- Palot Manzil, F.F.; Kaur, H. Radioactive Iodine Therapy for Thyroid Malignancies. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Zhang, X.; Wakabayashi, H.; Kayano, D.; Inaki, A.; Kinuya, S. I-131 metaiodobenzylguanidine therapy is a significant treatment option for pheochromocytoma and paraganglioma. Nuklearmedizin 2022, 61, 231–239. [Google Scholar] [CrossRef]
- Sheikhbahaei, S.; Sadaghiani, M.S.; Rowe, S.P.; Solnes, L.B. Neuroendocrine Tumor Theranostics: An Update and Emerging Applications in Clinical Practice. Am. J. Roentgenol. 2021, 217, 495–506. [Google Scholar] [CrossRef]
- Lepareur, N.; Ramée, B.; Mougin-Degraef, M.; Bourgeois, M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023, 15, 1733. [Google Scholar] [CrossRef]
- Goto, H.; Shiraishi, Y.; Okada, S. Recent preclinical and clinical advances in radioimmunotherapy for non-Hodgkin’s lymphoma. Explor. Target. Antitumor Ther. 2024, 5, 208–224. [Google Scholar] [CrossRef]
- Schomäcker, K.; Sudbrock, F.; Fischer, T.; Dietlein, M.; Kobe, C.; Gaidouk, M.; Schicha, H. Exhalation of 131I after radioiodine therapy: Measurements in exhaled air. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 2165–2172. [Google Scholar] [CrossRef]
- Sudbrock, F.; Fischer, T.; Zimmermanns, B.; Drzezga, A.; Schomäcker, K. Exhalation of 131I after radioiodine therapy: Dosimetric considerations based on measurements in exhaled air. J. Environ. Radioact. 2017, 166, 162–165. [Google Scholar] [CrossRef]
- Drozdovitch, V. Radiation Exposure to the Thyroid After the Chernobyl Accident. Front. Endocrinol. 2021, 11, 569041. [Google Scholar] [CrossRef]
- Suzuki, K.; Mitsutake, N.; Saenko, V.; Yamashita, S. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: Possible roles of radiation in carcinogenesis. Cancer Sci. 2015, 106, 127–133. [Google Scholar] [CrossRef]
- Noguchi, H.; Murata, M. Physicochemical speciation of airborne 131I in Japan from Chernobyl. J. Environ. Radioact. 1988, 7, 65–74. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Compendium of Dose Coefficients Based on ICRP Publication 60; 0146-6453; Elsevier: Oxford, UK, 2012. [Google Scholar]
- Root, S.J.; Zhao, H.; Borrelli, R.A.; McKellar, M.G. Thermodynamic analysis on xenon stripping to shorten restart time in molten salt microreactors. Nucl. Eng. Des. 2023, 414, 112606. [Google Scholar] [CrossRef]
- Lin, C.C.; Chao, J.H. Chapter 17—Radiochemistry of Iodine: Relevance to Health and Disease. In Comprehensive Handbook of Iodine; Preedy, V.R., Burrow, G.N., Watson, R., Eds.; Academic Press: San Diego, CA, USA, 2009; pp. 171–182. [Google Scholar]
- Vasilenko, I.Y. Iodine isotopes in radiation hygiene. J. Hyg. Epidemiol. Microbiol. Immunol. 1980, 24, 142–149. [Google Scholar]
- Kessler, J.; Obinger, C.; Eales, G. Factors influencing the study of peroxidase-generated iodine species and implications for thyroglobulin synthesis. Thyroid 2008, 18, 769–774. [Google Scholar] [CrossRef]
- Magnusson, R.P.; Taurog, A.; Dorris, M.L. Mechanisms of thyroid peroxidase- and lactoperoxidase-catalyzed reactions involving iodide. J. Biol. Chem. 1984, 259, 13783–13790. [Google Scholar] [CrossRef]
- Huang, X.; Eggart, D.; Qin, G.; Sarma, B.B.; Gaur, A.; Yang, J.; Pan, Y.; Li, M.; Hao, J.; Yu, H.; et al. Methyl radical chemistry in non-oxidative methane activation over metal single sites. Nat. Commun. 2023, 14, 5716. [Google Scholar] [CrossRef]
- Yang, W.; Guo, J.; Hee, S.; Chen, Y. Recent Advances in Iodine-Mediated Radical Reactions. Adv. Synth. Catal. 2025, 367, e202401486. [Google Scholar] [CrossRef]
- Tigeras, A.; Bachet, M.; Catalette, H.; Simoni, E. PWR iodine speciation and behaviour under normal primary coolant conditions: An analysis of thermodynamic calculations, sensibility evaluations and NPP feedback. Progress. Nucl. Energy 2011, 53, 504–515. [Google Scholar] [CrossRef]
- OECD Nuclear Energy Agency; Committee on the Safety of Nuclear Installations; Working Group on Analysis and Management of Accidents. State of the Art Report on Iodine Chemistry; OECD Nuclear Energy Agency: Paris, France, 2007. [Google Scholar]
- Deuber, H. Iodine-131 species in the stack exhaust air of light water reactors. Nucl. Technol. 1986, 72, 39–43. [Google Scholar]
- Beck, C.L.; Cervantes, J.; Chiswell, S.; Greaney, A.T.; Johnson, K.R.; Levitskaia, T.G.; Martin, L.R.; McDaniel, G.; Noble, S.; Rakos, J.M.; et al. Review of iodine behavior from nuclear fuel dissolution to environmental release. RSC Adv. 2024, 14, 35255–35274. [Google Scholar] [CrossRef]
- Evans, G.J.; Jervis, R.E. Radiochemical studies of iodine behaviour under conditions relevant to nuclear reactor accidents. J. Radioanal. Nucl. Chem. 1992, 161, 121–133. [Google Scholar] [CrossRef]
- Wilhelm, J.G. The release of radioactive iodine from nuclear installations and its retention by filter systems. In Proceedings of the Symposium on Radioiodine Fission Products, Karlsruhe, Germany, 19–23 September 1977; pp. 209–211. [Google Scholar]
- Jubin, R.T.; Haefner, D.R.; Soelberg, N.R. Gas Stream Characteristics for Aqueous Reprocessing Plants; Idaho National Laboratory (INL): Idaho Falls, ID, USA, 2013. [Google Scholar]
- International Atomic Energy Agency. Feasibility of Producing Molybdenum-99 on a Small Scale for Domestic Supply; IAEA: Vienna, Austria, 2010; ISSN 0074-1914. [Google Scholar]
- International Atomic Energy Agency. Management of Radioactive Gaseous Waste from the Production of Molybdenum-99 and Other Medical Isotopes; IAEA: Vienna, Austria, 2003; ISSN 0074-1914. [Google Scholar]
- Doll, C.G.; Sorensen, C.M.; Bowyer, T.W.; Friese, J.I.; Hayes, J.C.; Hoffmann, E.; Kephart, R. Abatement of xenon and iodine emissions from medical isotope production facilities. J. Environ. Radioact. 2014, 130, 33–43. [Google Scholar] [CrossRef]
- Cripps, R.C.; Jäckel, B.; Güntay, S. On the radiolysis of iodide, nitrate and nitrite ions in aqueous solution: An experimental and modelling study. Nucl. Eng. Des. 2011, 241, 3333–3347. [Google Scholar] [CrossRef]
- Jia, T.; Shi, K.; Wang, Y.; Yang, J.; Hou, X. Sequential Separation of Iodine Species in Nitric Acid Media for Speciation Analysis of 129I in a PUREX Process of Spent Nuclear Fuel Reprocessing. Anal. Chem. 2022, 94, 10959–10966. [Google Scholar] [CrossRef]
- Sogalla, R.; Weber, G.; Caroli, J.; Müller, C.; Allelein, H.J. Iodine Behaviour in Large-Scale Containment Experiments; Forschungszentrum Karlsruhe: Karlsruhe, Germany, 2004. [Google Scholar]
- ONE Agency; Committee on the Safety of Nuclear Installations. State-of-the-Art Report on Nuclear Aerosols in Reactor Safety; OECD Nuclear Energy Agency: Paris, France, 2009. [Google Scholar]
- Malá, H.; Rulík, P.; Bečková, V.; Mihalík, J.; Slezáková, M. Particle size distribution of radioactive aerosols after the Fukushima and the Chernobyl accidents. J. Environ. Radioact. 2013, 126, 92–98. [Google Scholar] [CrossRef]
- Bosland, L.; Colombani, J. Review of the potential sources of organic iodides in a NPP containment during a severe accident and remaining uncertainties. Ann. Nucl. Energy 2020, 140, 107127. [Google Scholar] [CrossRef]
- Bosland, L.; Dickinson, S.; Glowa, G.A.; Herranz, L.E.; Kim, H.C.; Powers, D.A.; Salay, M.; Tietze, S. Iodine–paint interactions during nuclear reactor severe accidents. Ann. Nucl. Energy 2014, 74, 184–199. [Google Scholar] [CrossRef]
- Bosland, L.; Leroy, O. Modeling of the decomposition of iodine oxides aerosols (IOx) in the containment—Consequences on the understanding of volatile iodine behaviour in the containment. Progress. Nucl. Energy 2025, 180, 105576. [Google Scholar] [CrossRef]
- Wren, J.C.; Ball, J.M.; Glowa, G.A. The Interaction of Iodine with Organic Material in Containment. Nucl. Technol. 1999, 125, 337–362. [Google Scholar] [CrossRef]
- Coindreau, O.; Lombardi, V.; Chevalier-Jabet, K.; Ingremeau, J.J. Iodine Source Term Uncertainty and Sensitivity Analysis with the Severe Accident Code ASTEC: Focus on Iodine Chemistry, Aerosol Behavior, and Containment Pressurization. Nucl. Technol. 2025, 1–20. [Google Scholar] [CrossRef]
- Wren, J.C.; Ball, J.M.; Glowa, G.A. The Chemistry of Iodine in Containment. Nucl. Technol. 2000, 129, 297–325. [Google Scholar] [CrossRef]
- Drozdovitch, V.; Kryuchkov, V.; Chumak, V.; Kutsen, S.; Golovanov, I.; Bouville, A. Thyroid doses due to Iodine-131 inhalation among Chernobyl cleanup workers. Radiat. Environ. Biophys. 2019, 58, 183–194. [Google Scholar] [CrossRef]
- Sorrenti, S.; Baldini, E.; Pironi, D.; Lauro, A.; D’Orazi, V.; Tartaglia, F.; Tripodi, D.; Lori, E.; Gagliardi, F.; Praticò, M.; et al. Iodine: Its Role in Thyroid Hormone Biosynthesis and Beyond. Nutrients 2021, 13, 4469. [Google Scholar] [CrossRef]
- Oh, J.M.; Ahn, B.C. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021, 11, 6251–6277. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection. Human Respiratory Tract Model for Radiological Protection; 0146-6453; Pergamon Press: Oxford, UK, 1994; pp. 5–39. [Google Scholar]
- Zhu, S.; Jiang, Z.; Jiang, Y.; Dong, Y.; Li, J.; Shi, L. The successive reduction of iodate to iodide driven by iron redox cycling. J. Hazard. Mater. 2024, 480, 136436. [Google Scholar] [CrossRef]
- Gómez Martín, J.C.; Lewis, T.R.; James, A.D.; Saiz-Lopez, A.; Plane, J.M.C. Insights into the Chemistry of Iodine New Particle Formation: The Role of Iodine Oxides and the Source of Iodic Acid. J. Am. Chem. Soc. 2022, 144, 9240–9253. [Google Scholar] [CrossRef]
- Morgan, D.J.; Morgan, A. Studies on the retention and metabolism of inhaled methyl iodide. I. Retention of inhaled methyl iodide. Health Phys. 1967, 13, 1055–1065. [Google Scholar] [CrossRef]
- Bonnefoi, M.S.; Davenport, C.J.; Morgan, K.T. Metabolism and toxicity of methyl iodide in primary dissociated neural cell cultures. Neurotoxicology 1991, 12, 33–46. [Google Scholar]
- Mileson, B.E.; Sweeney, L.M.; Gargas, M.L.; Kinzell, J. Iodomethane human health risk characterization. Inhal. Toxicol. 2009, 21, 583–605. [Google Scholar] [CrossRef]
- Köhrle, J. Selenium, Iodine and Iron-Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int. J. Mol. Sci. 2023, 24, 3393. [Google Scholar] [CrossRef]
- Jing, L.; Zhang, Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front. Endocrinol. 2022, 13, 992883. [Google Scholar] [CrossRef]
- Markou, K.; Georgopoulos, N.; Kyriazopoulou, V.; Vagenakis, A.G. Iodine-Induced hypothyroidism. Thyroid 2001, 11, 501–510. [Google Scholar] [CrossRef]
- Cianchetta, S.; di Bernardo, J.; Romeo, G.; Rhoden, K.J. Perchlorate transport and inhibition of the sodium iodide symporter measured with the yellow fluorescent protein variant YFP-H148Q/I152L. Toxicol. Appl. Pharmacol. 2010, 243, 372–380. [Google Scholar] [CrossRef]
- Schomäcker, K.; Fischer, T.; Sudbrock, F.; Strohe, D.; Weber, S.; Zimmermanns, B.; Dietlein, F.; Krapf, P.; Schicha, H.; Dietlein, M.; et al. Radioiodine Exhalation Following Oral I-131 Administration in a Mouse Model. Biomedicines 2025, 13, 897. [Google Scholar] [CrossRef]
- Björk, K.I.; Langen, B.; Schroff, A.; Shubbar, E.; Helou, K.; Spetz, J.; Forssell-Aronsson, E. Short and long-term effects on the thyroid proteome after 131I exposure. Radiat. Prot. Dosim. 2025, 201, 919–933. [Google Scholar] [CrossRef]
- Remy, H.; Borget, I.; Leboulleux, S.; Guilabert, N.; Lavielle, F.; Garsi, J.; Bournaud, C.; Gupta, S.; Schlumberger, M.; Ricard, M. 131I Effective Half-Life and Dosimetry in Thyroid Cancer Patients. J. Nucl. Med. 2008, 49, 1445–1450. [Google Scholar] [CrossRef]
- Riley, A.S.; McKenzie, G.A.G.; Green, V.; Schettino, G.; England, R.J.A.; Greenman, J. The effect of radioiodine treatment on the diseased thyroid gland. Int. J. Radiat. Biol. 2019, 95, 1718–1727. [Google Scholar] [CrossRef]
- Hänscheid, H.; Lassmann, M.; Verburg, F.A. Determinants of target absorbed dose in radionuclide therapy. Z. Für Med. Phys. 2023, 33, 82–90. [Google Scholar] [CrossRef]
- Sundaram, P.S.; Padma, S.; Sudha, S.; Sasikala, K. Transient cytotoxicity of 131I beta radiation in hyperthyroid patients treated with radioactive iodine. Indian. J. Med. Res. 2011, 133, 401–406. [Google Scholar]
- Parida, G.K.; Bal, C.; Dada, R.; Tripathi, M.; Dwivedi, S. Study of cytogenetic toxicity of low-dose radioiodine therapy in hyperthyroid patients using a micronuclei assay. Nucl. Med. Commun. 2016, 37, 800–804. [Google Scholar]
- Neshasteh-Riz, A.; Koosha, F.; Mohsenifar, A.; Mahdavi, S.R. DNA Damage Induced in Glioblastoma Cells by I-131: A Comparison between Experimental Data and Monte Carlo Simulation. Cell J. 2012, 14, 25–30. [Google Scholar]
- Grzesiuk, W.; Nieminuszczy, J.; Kruszewski, M.; Iwanienko, T.; Plazinska, M.; Bogdanska, M.; Bar-Andziak, E.; Królicki, L.; Grzesiuk, E. DNA damage and its repair in lymphocytes and thyroid nodule cells during radioiodine therapy in patients with hyperthyroidism. J. Mol. Endocrinol. 2006, 37, 527–532. [Google Scholar] [CrossRef]
- Kumar, C.; Samuel, G. Iodine-131 Induces Cell Death by Downregulation of Antiapoptotic Genes in MCF-7 Human Adenocarcinoma Cells. J. Radiat. Cancer Res. 2017, 8, 103–107. [Google Scholar]
- Yang, L.; Ma, J.; Lei, P.; Yi, J.; Ma, Y.; Huang, Z.; Wang, T.; Ping, H.; Ruan, D.; Sun, D.; et al. Advances in Antioxidant Applications for Combating 131I Side Effects in Thyroid Cancer Treatment. Toxics 2023, 11, 529. [Google Scholar]
- Aronoff, G.R.; Friedman, S.J.; Doedens, D.J.; Lavelle, K.J. Increased serum iodide concentration from iodine absorption through wounds treated topically with povidone-iodine. Am. J. Med. Sci. 1980, 279, 173–176. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, R.; Yu, Y.; Guo, K.; Liu, Y. Radioactive iodine-131 induces human thyrocyte cell line HTori 3 cell apoptosis and G2/M arrest in a p53-independent pathway. J. Nucl. Med. 2014, 55, 142. [Google Scholar]
- Cardis, E.; Kesminiene, A.; Ivanov, V.; Malakhova, I.; Shibata, Y.; Khrouch, V.; Drozdovitch, V.; Maceika, E.; Zvonova, I.; Vlassov, O.; et al. Risk of thyroid cancer after exposure to 131I in childhood. J. Natl. Cancer Inst. 2005, 97, 724–732. [Google Scholar] [CrossRef]
- Tronko, M.D.; Howe, G.R.; Bogdanova, T.I.; Bouville, A.C.; Epstein, O.V.; Brill, A.B.; Likhtarev, I.A.; Fink, D.J.; Markov, V.V.; Greenebaum, E.; et al. A Cohort Study of Thyroid Cancer and Other Thyroid Diseases After the Chornobyl Accident: Thyroid Cancer in Ukraine Detected During First Screening. J. Natl. Cancer Inst. 2006, 98, 897–903. [Google Scholar] [CrossRef]
- Eder, S.; Hermann, C.; Lamkowski, A.; Kinoshita, M.; Yamamoto, T.; Abend, M.; Shinomiya, N.; Port, M.; Rump, A. A comparison of thyroidal protection by stable iodine or perchlorate in the case of acute or prolonged radioiodine exposure. Arch. Toxicol. 2020, 94, 3231–3247. [Google Scholar] [CrossRef]
- Schomäcker, K.; Fischer, T.; Eschner, W.; Gaidouk, M.I.; Schicha, H. Exhalation of I-131 after radioiodine therapy (RIT): Time dependence and chemical form. Nuklearmedizin 2001, 40, 15–22. [Google Scholar]
- Ekidin, A.A.; Antonov, K.L.; Vasyanovich, M.E.; Kapustin, I.A.; Filatov, I.Y. Radioiodine Release into the Atmosphere during Normal Operation of Nuclear Power Plants. Radiochemistry 2019, 61, 352–364. [Google Scholar] [CrossRef]
- Wisconsin Department of Health Services Division of Public Health Radiation Protection Section. Prairie Island Environmental Radioactivity Survey 2018; Wisconsin Department of Health Services: Madison, WI, USA, 2021.
- Aurand, K.; Ruf, M.; Schikarski, W.; Schwibach, J. Umweltbelastung durch Radionuklide in Abluft und Abwasser aus Kernkraftwerken in der Bundesrepublik Deutschland; Kernforschungszentrum Karlsruhe (Gesellschaft für Kernforschung mbH): Karlsruhe, Germany, 1972. [Google Scholar]
- Federal Ministry for the Environment Nature Conservation and Nuclear Safety (BMU) Federal Office for Radiation Protection (BfS). Environmental Radioactivity and Radiation Exposure: Annual Report 1999; Federal Ministry for the Environment Nature Conservation and Nuclear Safety (BMU) Federal Office for Radiation Protection (BfS): Bonn/Salzgitter, Germany, 2000.
- Federal Ministry for the Environment Nature Conservation and Nuclear Safety (BMU) Federal Office for Radiation Protection (BfS). Environmental Radioactivity and Radiation Exposure: Annual Report 2006; Federal Ministry for the Environment Nature Conservation and Nuclear Safety (BMU) Federal Office for Radiation Protection (BfS): Bonn/Salzgitter, Germany, 2007.
- ONE Agency. Status and Assessment of Iodine Chemistry; NEA/CSNI/R(2007)1; OECD/NEA: Paris, France, 2007. [Google Scholar]
- Krausmann, E. A State-of-the-Art Report on Iodine Chemistry and Related Mitigation Mechanisms in the Containment; European Commission, Joint Research Centre: Petten, The Netherlands, 2001. [Google Scholar]
- Xie, Y.; Pan, T.; Lei, Q.; Chen, C.; Dong, X.; Yuan, Y.; Maksoud, W.A.; Zhao, L.; Cavallo, L.; Pinnau, I.; et al. Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nat. Commun. 2022, 13, 2878. [Google Scholar] [CrossRef]
- Mokili, B.M.; Abdelouas, A. Sorption efficiency of radioactive iodine compounds by nuclear-grade activated carbon—A review and processing of literature data. Front. Nucl. Eng. 2025, 4, 1553446. [Google Scholar] [CrossRef]
- Haefner, D.R.; Tranter, T.J. Methods of Gas Phase Capture of Iodine from Fuel Reprocessing Off-Gas: A Literature Survey; INL/EXT-07-12299; Idaho National Laboratory: Idaho Falls, ID, USA, 2007. [Google Scholar]
- National Research Council. Analysis of Cancer Risks in Populations Near Nuclear Facilities: Phase I (Including Reference to NUREG-1301, Radiological Effluent Technical Specifications); National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Chareyron, B. Detection of Iodine-131 in the Ambient Air in Europe during January 2017; Commission de Recherche et d’Information Indépendantes sur la Radioactivité (CRIIRAD): Valence, France, 2017. [Google Scholar]
- Institut de Radioprotection et de Sûreté Nucléaire. No Health Risk Related to Airborne Traces of Iodine-131 in France; IRSN: Fontenay-aux-Roses, France, 2011.
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation. Volume I: Sources. Annex C: Exposures from Natural and Man-Made Sources; United Nations: New York, NY, USA, 2000. [Google Scholar]
- International Atomic Energy Agency. Monitoring for Compliance with Exemption and Clearance Levels; Safety Report Series No. 75; IAEA: Vienna, Austria, 2013. [Google Scholar]
- Lee, S.-C.; Kim, T.-W. Study of Iodine Spiking Phenomena in Pressurized Water Reactor in Korea; Korea Atomic Energy Research Institute (KAERI): Daejeon, Korea, 1997; pp. 1–78. [Google Scholar]
- Beahm, E.C.; Weber, C.F.; Kress, T.S.; Parker, G.W. Iodine Chemical Forms in LWR Severe Accidents (NUREG/CR-5732); Nuclear Regulatory Commission: Washington, DC, USA, 1992.
- National Research Council. Potential Exposure to Radioactive Iodine. In Distribution and Administration of Potassium Iodide in the Event of a Nuclear Incident; National Academies Press: Washington, DC, USA; pp. 31–44.
- Environment Agency; Food Standards Agency; Natural Resources Wales; Northern Ireland Environment Agency; Scottish Environment Protection Agency. Radioactivity in Food and the Environment (RIFE-28); Environment Agency: Bristol, UK, 2023. [Google Scholar]
- Environment Agency; Scottish Environment Protection Agency; Northern Ireland Environment and Heritage Service; Food Standards Agency. Radioactivity in Food and the Environment (RIFE-8); Food Standards Agency: London, UK, 2002. [Google Scholar]
- Autorité de Sûreté Nucléaire. Rapport de l’Autorité de Sûreté Nucléaire 2022; ASN: Montrouge, France, 2023; ISBN 979-10-289-1284-7. [Google Scholar]
- Nandanwar, S.U.; Coldsnow, K.; Utgikar, V.; Sabharwall, P.; Eric Aston, D. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment—A review. Chem. Eng. J. 2016, 306, 369–381. [Google Scholar] [CrossRef]
- Muenze, R.; Beyer, G.J.; Ross, R.; Wagner, G.; Novotny, D.; Franke, E.; Jehangir, M.; Pervez, S.; Mushtaq, A. The Fission-Based 99Mo Production Process ROMOL-99 and Its Application to PINSTECH Islamabad. Sci. Technol. Nucl. Install. 2013, 2013, 932546. [Google Scholar]
- Vandecasteele, C.M.; Sonck, M.; Degueldre, D. Accidental release of iodine-131 by IRE at Fleurus: Back experience of Belgium safety authority. Radioprotection 2011, 46, 159–173. [Google Scholar] [CrossRef]
- McNally, R.J.Q.; Wakeford, R.; Bunch, K.J.; Hayes, L.; Vernon, S.; Jeffrey, P.A.; Paley, L.; Elliott, A. Thyroid cancer incidence in cohorts exposed in childhood to (131)I released during the Windscale nuclear reactor accident at Sellafield, England, in 1957. Radiat. Env. Biophys. 2024, 63, 491–503. [Google Scholar] [CrossRef]
- Garland, J.A.; Wakeford, R. Atmospheric emissions from the Windscale accident of October 1957. Atmos. Environ. 2007, 41, 3904–3920. [Google Scholar] [CrossRef]
- Beahm, E.C.; Daish, S.R.; Hopenfeld, J.; Shockey, W.E.; Vovelleque, P. Iodine Speciation and Partitioning in PWR Steam Generator Accidents; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1989. [Google Scholar]
- Beahm, E.C.; Shockley, W.E.; Culberson, O.L. Organic Iodide Formation Following Nuclear Reactor Accidents; DOE Contract DE-AC05-84OR21400; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1985. [Google Scholar]
- U.S. Nuclear Regulatory Commission. Backgrounder: The Accident at Three Mile Island; ML040280573; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 2022.
- Porter-Gertz Consultants, I.; Nuclear Regulatory Commission. Summary of Gaseous Releases to the Environment at Three Mile Island During the Period of March 28 through May 31, 1979; ML19210E973; U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1979.
- Battist, L.; Peterson, H.T., Jr. Radiological Consequences of the Three Mile Island Accident; INIS Reference No. 12575453; U.S. Nuclear Regulatory Commission, Office of Standards Development: Washington, DC, USA, 1979.
- Taghipour, F.; Evans, G.J. Radiolytic Organic Iodide Formation under Nuclear Reactor Accident Conditions. Environ. Sci. Technol. 2000, 34, 3012–3017. [Google Scholar] [CrossRef]
- Fabrikant, J.I. Health effects of the nuclear accident at Three Mile Island. Health Phys. 1981, 40, 151–161. [Google Scholar]
- ONE Agency; International Atomic Energy Agency. Chernobyl: Chapter II. The Release, Dispersion, Deposition and Behaviour of Radionuclides; Nuclear Energy Agency: Paris, France; Organisation for Economic Co-operation and Development: Paris, France, 1995. [Google Scholar]
- ONE Agency; Committee on the Safety of Nuclear Installations. The Chernobyl Reactor Accident Source Term: Development of a Consensus View; CSNI-R(95)24; OECD/NEA: Paris, France, 1996. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation: Annex J—Exposures and Effects of the Chernobyl Accident; UNSCEAR 2000 Report, Annex J; United Nations: New York, NY, USA, 2000. [Google Scholar]
- Ory, C.; Leboulleux, S.; Salvatore, D.; Le Guen, B.; De Vathaire, F.; Chevillard, S.; Schlumberger, M. Consequences of atmospheric contamination by radioiodine: The Chernobyl and Fukushima accidents. Endocrine 2021, 71, 298–309. [Google Scholar] [CrossRef]
- Foreman, M.R.S.J. An introduction to serious nuclear accident chemistry. Cogent Chem. 2015, 1, 1049111. [Google Scholar] [CrossRef]
- Paatero, J.; Hatakka, A.; Jantunen, M.; Reponen, A.; Lehto, J.; Jaakkola, T.; Suomela, M. Radioactive Fallout in Finland from the Chernobyl Accident, Environmental Radioactivity Measurements, May 1986; Finnish Centre for Radiation and Nuclear Safety (STUK): Helsinki, Finland, 1987.
- Leroy, O.; Bosland, L. Study of the stability of iodine oxides (IxOy) aerosols in severe accident conditions. Ann. Nucl. Energy 2023, 181, 109526. [Google Scholar] [CrossRef]
- Masson, O.; Tschiersch, J.; Lebel, L.S.; Wershofen, H.; Mietelski, J.W.; Steinhauser, G.; Blanchardon, E.; Cantrel, L.; Grégoire, A.-C.; Quelo, D. Radioiodine Releases in Nuclear Emergency Scenarios. In Nuclear Emergencies; Steinhauser, G., Ed.; Current Topics in Environmental Health and Preventive Medicine; Springer Nature: Singapore, 2019; pp. 175–204. [Google Scholar]
- Drozdovitch, V.; Minenko, V.; Khrouch, V.; Leshcheva, S.; Gavrilin, Y.; Khrutchinsky, A.; Kukhta, T.; Kutsen, S.; Luckyanov, N.; Shinkarev, S.; et al. Thyroid dose estimates for a cohort of Belarusian children exposed to radiation from the Chernobyl accident. Radiat. Res. 2013, 179, 597–609. [Google Scholar] [CrossRef]
- Brenner, A.V.; Tronko, M.D.; Hatch, M.; Bogdanova, T.I.; Oliynik, V.A.; Lubin, J.H.; Zablotska, L.B.; Tereschenko, V.P.; McConnell, R.J.; Zamotaeva, G.A.; et al. I-131 dose response for incident thyroid cancers in Ukraine related to the Chornobyl accident. Environ. Health Perspect. 2011, 119, 933–939. [Google Scholar] [CrossRef]
- Shakhtarin, V.V.; Tsyb, A.F.; Stepanenko, V.F.; Orlov, M.Y.; Kopecky, K.J.; Davis, S. Iodine deficiency, radiation dose, and the risk of thyroid cancer among children and adolescents in the Bryansk region of Russia following the Chernobyl power station accident. Int. J. Epidemiol. 2003, 32, 584–591. [Google Scholar] [CrossRef]
- Zarzycki, W.; Zonenberg, A.; Telejko, B.; Kinalska, I. Iodine prophylaxis in the aftermath of the Chernobyl accident in the area of Sejny in north-eastern Poland. Horm. Metab. Res. 1994, 26, 293–296. [Google Scholar] [CrossRef]
- U.S. Nuclear Regulatory Commission. Literature Review: Evaluation of Implementation Strategies for Potassium Iodide (KI); U.S. Nuclear Regulatory Commission, Office of Nuclear Security and Incident Response: Washington, DC, USA, 2024.
- World Health Organization; Paile, W.; Blomqvist, L. Guidelines for Iodine Prophylaxis Following Nuclear Accidents: 1999 Update; World Health Organization: Geneva, Switzerland, 1999. [Google Scholar]
- International Atomic Energy Agency. The Fukushima Daiichi Accident: Report by the Director General; International Atomic Energy Agency: Vienna, Austria, 2015; ISBN 978-92-0-107015-9. [Google Scholar]
- National Research Council. Fukushima Daiichi Nuclear Accident. In Lessons Learned from the Fukushima Nuclear Accident for Improving Safety of U.S. Nuclear Plants; National Academies Press: Washington, DC, USA, 2014; pp. 101–143. [Google Scholar]
- Ayoub, A.; Wainwright, H.; Sansavini, G.; Gauntt, R.; Saito, K. Resilient Design in Nuclear Energy: Critical Lessons from a Cross-Disciplinary Review of the Fukushima Dai-ichi Nuclear Accident. iScience 2024, 27, 109485. [Google Scholar]
- Lebel, L.S.; Dickson, R.S.; Glowa, G.A. Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. J. Environ. Radioact. 2016, 151, 82–93. [Google Scholar] [CrossRef]
- Marzo, G.A. Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose. Atmos. Environ. 2014, 94, 709–722. [Google Scholar] [CrossRef]
- Xu, S.; Zhang, L.; Freeman, S.P.H.T.; Hou, X.; Shibata, Y.; Sanderson, D.; Cresswell, A.; Doi, T.; Tanaka, A. Speciation of Radiocesium and Radioiodine in Aerosols from Tsukuba after the Fukushima Nuclear Accident. Environ. Sci. Technol. 2015, 49, 1017–1024. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Levels and Effects of Radiation Exposure Due to the Nuclear Accident After the 2011 Great East Japan Earthquake and Tsunami; United Nations: New York, NY, USA, 2014; ISBN 978-92-1-056501-1. [Google Scholar]
- World Health Organization. Health Risk Assessment from the Nuclear Accident After the 2011 Great East Japan Earthquake and Tsunami, Based on a Preliminary Dose Estimation; World Health Organization: Geneva, Switzerland, 2013; ISBN 978-92-4-150513-0. [Google Scholar]
- Tokonami, S.; Hosoda, M.; Akiba, S.; Sorimachi, A.; Kashiwakura, I.; Balonov, M. Thyroid doses for evacuees from the Fukushima nuclear accident. Sci. Rep. 2012, 2, 507. [Google Scholar] [CrossRef]
- Ojino, M.; Yoshida, S.; Nagata, T.; Ishii, M.; Akashi, M. First Successful Pre-Distribution of Stable Iodine Tablets Under Japan’s New Policy After the Fukushima Daiichi Nuclear Accident. Disaster Med. Public. Health Prep. 2017, 11, 365–369. [Google Scholar] [CrossRef]
- Yamashita, S.; Suzuki, S.; Suzuki, S.; Shimura, H.; Saenko, V. Lessons from Fukushima: Latest Findings of Thyroid Cancer After the Fukushima Nuclear Power Plant Accident. Thyroid 2018, 28, 11–22. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Evaluation of Data on Thyroid Cancer in Regions Affected by the CHERNOBYL and Fukushima Nuclear Accidents; United Nations: Vienna, Austria, 2017. [Google Scholar]
- Kaplan, D.I.; Denham, M.E.; Zhang, S.; Yeager, C.; Xu, C.; Schwehr, K.A.; Li, H.P.; Ho, Y.F.; Wellman, D.; Santschi, P.H. Radioiodine Biogeochemistry and Prevalence in Groundwater. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2287–2335. [Google Scholar] [CrossRef]
- Suhariyono, G.; Makhsun, M. Dispersion of Iodine-131 Radioactive Airborne in the Chemical Form of CH3I, HOI and I2 from Radioisotope Production Facility Stack to The Environment. In Proceedings of the 1st International Conference on Environmental Science and Sustainable Development, ICESSD 2019, Jakarta, Indonesia, 22–23 October 2019. [Google Scholar]
- Hou, X.; Hansen, V.; Aldahan, A.; Possnert, G.; Lind, O.C.; Lujaniene, G. A review on speciation of iodine-129 in the environmental and biological samples. Anal. Chim. Acta 2009, 632, 181–196. [Google Scholar] [CrossRef]
| Scenario/Reaction | Reaction | Explanation (Compact) |
|---|---|---|
| (A) | ||
| A1: Enzymatic peroxidase oxidation | H2O2 + 2 I− + 2 H+ → I2 + 2 H2O; I2 + H2O ⇌ HOI + I− + H+ | Produces I2, which in aqueous systems is partly converted to HOI. HOI is short-lived but is the inorganic iodine species that most readily partitions into the gas phase, enabling transfer of iodine from liquid to air. |
| A2: Organification (MIT, DIT formation) | HOI + Tyr → MIT + H2O; MIT + HOI → DIT + H2O | Fixes iodine in organic form; radiolysis and metabolism may release volatile organoiodine species. |
| A3: Radiolytic oxidation | H2O → •OH + •H; •OH + I− → •I + OH− | β−-radiation from 131I induces radiolysis of water, forming •OH and •I radicals that drive non-enzymatic oxidation and initiate methylation pathways leading to CH3I. |
| A4: Radiolytic methylation | •I + •CH3 → CH3I | 131I β−-radiation induces radiolysis of water and organic molecules, generating •I and •CH3 radicals; their recombination forms CH3I, explaining the predominantly organic fraction of exhaled iodine. |
| (B) | ||
| B1: Radiolytic oxidation in coolant | Radiolytic oxidation of iodide in coolant water (γ-induced) | Ionizing radiation in the coolant—dominated by γ-radiation from the fuel—induces radiolysis of water, generating •OH radicals that oxidize I− to I2/HOI. |
| B2: Hydrolysis/disproportionation | I2 + H2O ⇌ HOI + I− + H+ | For the gas-phase relevance of HOI, see explanation in Medical Context (A1). |
| B3: Metal iodide formation | I2 + reactor metal surfaces → non-volatile metal–iodine species | Metal surfaces (steel, alloys) form non-volatile iodine species that act as sinks and reduce airborne inorganic iodine during operation and especially during shutdown/inspection. |
| B4: Radiolytic/thermal methylation → CH3I | •I + •CH3 → CH3I | CH3I can form by radiolytic or thermal methylation of iodine in the reactor environment. Under normal operating conditions, formation is very limited, but CH3I becomes relevant in high-radiation or off-normal situations because it is poorly retained by standard charcoal filters. |
| (C). Reprocessing/Mo-99 Production | ||
| C1: Nitrate-driven oxidation | 2 I− + 2 NO3− + 4 H+ → I2 + 2 NO2 + 2 H2O I2 + H2O ⇌ HOI + I− + H+ | Concentrated HNO3 used in Mo-99 processing oxidizes iodide to I2. In the acidic aqueous phase, a fraction of I2 undergoes hydrolysis to HOI, and both species can transfer into the off-gas during acid handling. |
| C2: HNO2/NO2 redox cycling (sustained I2 release) | 2 I− + 2 HNO2 + 2 H+ → I2 + 2 NO + 2 H2O | Radiolytic formation of nitrous acid (HNO2) regenerates oxidizing equivalents, producing sustained I2 release during dissolution. |
| C3: Radiolytic/thermal methylation | •CH3 + •I → CH3I | Residual organic compounds in Mo-99 processing (e.g., solvents, extractants, degradation products) can undergo radiolytic or thermal decomposition, forming methyl radicals that react with iodine to produce CH3I. Although usually minor, CH3I is relevant because it is the most volatile iodine species and is poorly captured by standard charcoal filters |
| (D) | ||
| D1: Thermal decomposition/oxidation of CsI → I2 (gas) | I− → I2 (thermal) | In reactor fuel, iodine fission products are predominantly incorporated as cesium iodide (CsI, largely with stable 133Cs). During high-temperature fuel degradation, CsI is released and decomposes or oxidizes on metal and oxide surfaces to form gaseous I2. |
| D2: Radiolytic formation of H2O2 and oxidation of iodide | 2 I− + 2 H+ + H2O2 → I2(g) + 2 H2O I− + H2O2 → HOI(g) + OH− | Under severe accident conditions, intense γ-radiation splits water (H2O → H2O2, H2, e−aq), forming hydrogen peroxide as a stable radiolysis product. H2O2 then oxidizes iodide to volatile I2 and HOI, which enter the steam phase. |
| D3: Gas-phase photolysis of I2 | I2 →(hν) 2 I• | Once released, I2 undergoes rapid photolysis to reactive I-atoms, initiating atmospheric oxidation to iodine oxides. Relevant for atmospheric transformation, not for source-term generation. |
| D4: Gas-phase oxidation to higher iodine oxides → aerosol nuclei | I• + O3 → IO• → … → I2O5(s) (s) | Schematic pathway: iodine radicals (I•) formed from I2 react with ozone and oxygen in the gas phase to yield higher iodine oxides (e.g., I2O5), which nucleate or condense as particulate aerosols. |
| D5: M (metal vapor) + I2 → MIx (M = Cs, Zr, Ag; x = 1–4 depending on oxidation state and temperature) | M + (x/2) I2 → MIx (x = 1–4) e.g., Cs + ½ I2 → CsI Zr + 2 I2 → ZrI4 Ag + ½ I2 → AgI | During severe core degradation, temperatures exceed the volatilization thresholds of cesium, zirconium, and structural silver. In this high-temperature gas phase, vaporized metals react rapidly with molecular iodine to form metal iodides (e.g., CsI, ZrI4, AgI), which subsequently condense as fine aerosols during cooling. |
| D6: Formation of particulate iodine aerosols (condensation and droplets) | MIx(g) → MIx(s) (0.1–1 µm) I−/CsI (in aqueous film) → aerosol droplets | Cooling of iodine-bearing gases leads to condensation of volatile metal iodides (CsI, ZrI4, AgI) into submicron solid aerosols. Additionally, boiling or disturbance of contaminated liquid films can generate iodide-containing droplets. Both pathways produce inhalable particulate iodine during late accident phases. |
| D7: Coating interactions: adsorption, reduction, and γ-radiolysis-driven CH3I formation | I2 + coating surface ⇌ I2 (surface) → I−/R–I CH3• (from γ-radiolysis of organic coatings) + I2/HOI → CH3I | Containment coatings (epoxy/alkyd/amine) initially adsorb I2 and reduce it to iodide or bound organoiodine. Under γ-irradiation, the organic matrix undergoes radiolysis, producing methyl radicals (CH3•) that react with I2 or HOI to form volatile CH3I. |
| D8: Fire and soot environment: radical-driven CH3I formation and carbonaceous iodine uptake | (organic material → combustion/γ → CH3•, R•) CH3• + I2/HOI → CH3I I2/HOI + soot → I–C(surface) | Combustion and γ-irradiation of organic materials generate abundant methyl and organic radicals that react with I2 or HOI to form volatile CH3I. Simultaneously, soot and other carbonaceous surfaces adsorb I2 and HOI, producing particle-bound iodine that can be transported as fine aerosols. |
| Reaction/Mechanism | Nuclear Medicine (RIT, Exhalation) | Routine Reactor Operation | Reprocessing/Mo-99 Production (Incl. Shutdown/Inspection) | Severe Reactor Accidents (LOCA, Fire, Loss of Containment) |
|---|---|---|---|---|
| Peroxidase-driven oxidation (H2O2/I2/HOI) | ✓ (TPO/LPO) | – | – | – |
| Radiolytic oxidation (•OH, •I; H2O2 formation) | ✓ (β− from I-131) | ✓ (γ-fields in coolant) | ✓ | ✓ |
| Radiolytic methylation/CH3• transfer | ✓ (oxidative stress) | – | ✓ (organic solvents, diluents) | ✓ (fire/soot radicals) |
| Hydrolysis/disproportionation (I2 ⇌ HOI + I− + H+) | ✓ | ✓ | ✓ | ✓ |
| Organification/iodination of organic matter | ✓ (thyroglobulin/tissue) | – | ✓ (organic phase, solvents) | ✓ (coatings, soot organics) |
| Formation of metal iodides (CsI, ZrI4, AgI) | – | ✓ (surface corrosion) | ✓ (hot dissolver metals) | ✓ (high-T vapor phase) |
| Aerosol formation (condensed MIx or liquid droplets) | – | – | ✓ (acid systems, boiling/flashing) | ✓ (MIx condensation; droplet aerosolization) |
| Coating interactions (adsorption, CH3I formation) | – | – | – | ✓ (epoxy/alkyd/amine under γ) |
| Fire/soot chemistry and carbonaceous iodine uptake | – | – | – | ✓ (CH3• formation + soot adsorption) |
| Route of Intake | Physicochemical Form/Absorption Type | Members of the Public (ICRP 119, Annex G & F) [Sv Bq−1] | Workers (ICRP 119, Annex B) [Sv Bq−1] | Comment |
|---|---|---|---|---|
| Inhalation | Gas, [131I]CH3I (methyl iodide) | ≈7.6 × 10−9 (Type F equivalent) | 1.5 × 10−8 | Volatile organic iodine; rapid pulmonary absorption; explicitly listed in Annex B. |
| Inhalation | Gas, [131I]I2 (molecular iodine) | ≈7.6 × 10−9 (Type F equivalent) | 2.0 × 10−8 | Reactive molecular iodine vapor; complete absorption assumed; Annex B. |
| Inhalation | Aerosol, Type F (fast soluble) | 7.6 × 10−9 | – | Fully soluble iodide or iodate particles; immediate systemic availability. |
| Inhalation | Aerosol, Type M (moderately soluble) | 1.2 × 10−8 | – | Partially soluble particles; delayed absorption via macrophage clearance. |
| Inhalation | Aerosol, Type S (slow soluble) | 9.4 × 10−9 | – | Poorly soluble metal iodides (e.g., [131I]AgI); long alveolar retention; slow systemic uptake. |
| Ingestion | [131I]I−/[131I]I2 (soluble oral forms) | 1.1 × 10−8–1.2 × 10−8 | – | Gastrointestinal absorption of inorganic or molecular iodine; nearly complete bioavailability. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Schomäcker, K.; Sudbrock, F.; Fischer, T.; Dietlein, F.; Dietlein, M.; Krapf, P.; Drzezga, A. Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios. Int. J. Mol. Sci. 2026, 27, 590. https://doi.org/10.3390/ijms27020590
Schomäcker K, Sudbrock F, Fischer T, Dietlein F, Dietlein M, Krapf P, Drzezga A. Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios. International Journal of Molecular Sciences. 2026; 27(2):590. https://doi.org/10.3390/ijms27020590
Chicago/Turabian StyleSchomäcker, Klaus, Ferdinand Sudbrock, Thomas Fischer, Felix Dietlein, Markus Dietlein, Philipp Krapf, and Alexander Drzezga. 2026. "Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios" International Journal of Molecular Sciences 27, no. 2: 590. https://doi.org/10.3390/ijms27020590
APA StyleSchomäcker, K., Sudbrock, F., Fischer, T., Dietlein, F., Dietlein, M., Krapf, P., & Drzezga, A. (2026). Airborne Radioiodine: A Comparative View of Chemical Forms in Medicine, Nuclear Industry, and Fallout Scenarios. International Journal of Molecular Sciences, 27(2), 590. https://doi.org/10.3390/ijms27020590

