Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,278)

Search Parameters:
Keywords = novel species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1950 KB  
Review
Molecular and Cellular Mechanisms of Cardioplegic Protection in Surgical Myocardial Revascularization
by Dejan M. Lazović, Milica Karadžić Kočica, Dragan Ivanišević, Vojkan Aleksić, Mladen J. Kočica, Danko Grujić, Jovana M. Mihajlović, Dragan Cvetković and Stefan A. Juričić
Cells 2026, 15(2), 173; https://doi.org/10.3390/cells15020173 (registering DOI) - 18 Jan 2026
Abstract
Coronary artery bypass grafting (CABG) remains the gold standard for patients with advanced multivessel coronary artery disease. Optimal myocardial protection versus ischemia during reversible and controlled cardiac arrest is a cornerstone of successful outcomes. Myocardial ischemia represents a state of reduced coronary perfusion [...] Read more.
Coronary artery bypass grafting (CABG) remains the gold standard for patients with advanced multivessel coronary artery disease. Optimal myocardial protection versus ischemia during reversible and controlled cardiac arrest is a cornerstone of successful outcomes. Myocardial ischemia represents a state of reduced coronary perfusion with oxygenated blood, insufficient to meet the metabolic demands of the myocardium. Conventional cardioplegic solutions offer controlled and reversible cardiac arrest while actively modulating the molecular and cellular mechanisms that mediate ischemia–reperfusion injury. Cardioplegia dramatically elongates the reversible period of ischemic injury and restricts cardiomyocyte death by shutting down electromechanical activity, lowering metabolic demand, stabilizing ionic homeostasis, protecting mitochondrial integrity, and slowing oxidative stress and inflammatory signaling. During ischemia, cardiomyocytes shift from aerobic to anaerobic metabolism, resulting in adenosine triphosphate (ATP) depletion, loss of ionic homeostasis and calcium overload that activate proteases, phospholipases and membrane damage. Reperfusion restores oxygen supply and prevents irreversible necrosis but paradoxically initiates additional injury in marginally viable myocardium. The reoxygenation phase induces excessive production of reactive oxygen species (ROS), endothelial dysfunction and a strong inflammatory response mediated by neutrophils, platelets and cytokines. Mitochondrial dysfunction and opening of the mitochondrial permeability transition pore (mPTP) further amplify oxidative stress and inflammation, and trigger apoptosis and necroptosis. Understanding these intertwined cellular and molecular mechanisms remains essential for identifying novel therapeutic targets aimed at reducing reperfusion injury and improving myocardial recovery after ischemic events, particularly in coronary surgery. Full article
Show Figures

Figure 1

16 pages, 3612 KB  
Article
An Ultrasensitive Ethanolamine Sensor Based on MoO3/BiOI Heterostructure at Room Temperature
by Xiaomeng Zheng, Qi Liu, Qingjiang Pan and Guo Zhang
Chemosensors 2026, 14(1), 28; https://doi.org/10.3390/chemosensors14010028 (registering DOI) - 18 Jan 2026
Abstract
Ethanolamine (EA) is a widely used yet toxic volatile organic compound (VOC). However, existing gas sensors for EA detection face persistent challenges in achieving exceptional sensitivity and low detection limits at room temperature (RT). In this study, a novel and high-performance EA sensor [...] Read more.
Ethanolamine (EA) is a widely used yet toxic volatile organic compound (VOC). However, existing gas sensors for EA detection face persistent challenges in achieving exceptional sensitivity and low detection limits at room temperature (RT). In this study, a novel and high-performance EA sensor based on the MoO3/BiOI composite was prefabricated using hydrothermal and cyclic impregnation methods. The response value toward 100 ppm EA reached 861.3, which was 3.5-times higher compared to that of pure MoO3. In addition, the MoO3/BiOI composite exhibited a low detection limit (0.13 ppm), excellent selectivity, short response/recovery times, exceptional repeatability and long-term stability. The outstanding gas sensing performance of the MoO3/BiOI is attributed to the formation of a p-n heterojunction, synergistic effects between the two materials, abundant adsorbed oxygen species and superior charge transfer efficiency. The sensor developed in this work effectively addresses the long-standing challenges, demonstrating unprecedented practical application potential for EA gas detection. Simultaneously, this study provides a novel strategy, a new approach and a promising material for the subsequent development of advanced amine sensors. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
Show Figures

Figure 1

18 pages, 2670 KB  
Article
High-Efficient Photocatalytic and Fenton Synergetic Degradation of Organic Pollutants by TiO2-Based Self-Cleaning PES Membrane
by Shiying Hou, Yuting Xue, Wenbin Zhu, Min Zhang and Jianjun Yang
Coatings 2026, 16(1), 125; https://doi.org/10.3390/coatings16010125 (registering DOI) - 18 Jan 2026
Abstract
In this study, we aimed to develop a high-performance, anti-fouling ultrafiltration membrane by integrating photocatalytic and Fenton-like functions into a polymer matrix, in order to address the critical challenge of membrane fouling and achieve simultaneous separation and degradation of organic pollutants. To this [...] Read more.
In this study, we aimed to develop a high-performance, anti-fouling ultrafiltration membrane by integrating photocatalytic and Fenton-like functions into a polymer matrix, in order to address the critical challenge of membrane fouling and achieve simultaneous separation and degradation of organic pollutants. To this end, a novel Fe-VO-TiO2-embedded polyethersulfone (PES) composite membrane was designed and fabricated using a facile phase inversion method. The key innovation lies in the incorporation of Fe-VO-TiO2 nanoparticles containing abundant bulk-phase single-electron-trapped oxygen vacancies, which not only modulate membrane morphology and hydrophilicity but also enable sustained generation of reactive oxygen species for the pollutant degradation under light irradiation and H2O2. The optimized Fe-VO-TiO2-PES-0.04 membrane exhibited a significantly enhanced pure water flux of 222.6 L·m−2·h−1 (2.2 times higher than the pure PES membrane) while maintaining a high bovine serum albumin (BSA) retention of 93% and an improved hydrophilic surface. More importantly, the membrane demonstrated efficient and stable synergistic Photocatalytic-Fenton activity, achieving 82% degradation of norfloxacin (NOR) and retaining 75% efficiency after eight consecutive cycles. A key finding is the membrane’s Photocatalytic-Fenton-assisted self-cleaning capability, with an 80% flux recovery after methylene blue (MB) fouling, which was attributed to in situ reactive oxygen species (·OH) generation (verified by ESR). This work provides a feasible strategy for designing multifunctional membranes with enhanced antifouling performance and extended service life through built-in catalytic self-cleaning. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

16 pages, 4168 KB  
Article
Therapeutic Potential of a Novel Stenotrophomonas maltophilia Phage XAN_XB1: Isolation, Characterization, Genome Analysis and Evaluation in Mice Model
by Qingqing Yang, Baoyu Gan, Zhonglin Wang, Shan Jiang, Cao Qiu, Yawen Wang, Bing Liu and Xiaoyan Zeng
Int. J. Mol. Sci. 2026, 27(2), 944; https://doi.org/10.3390/ijms27020944 (registering DOI) - 18 Jan 2026
Abstract
A novel lytic bacteriophage, XAN_XB1, was isolated from hospital wastewater through host bacterial enrichment and evaluated for its potential in controlling multidrug-resistant Stenotrophomonas maltophilia infections. Transmission electron microscopy revealed that XAN_XB1 has a long tail, possessing an icosahedral head of ~80 nm in [...] Read more.
A novel lytic bacteriophage, XAN_XB1, was isolated from hospital wastewater through host bacterial enrichment and evaluated for its potential in controlling multidrug-resistant Stenotrophomonas maltophilia infections. Transmission electron microscopy revealed that XAN_XB1 has a long tail, possessing an icosahedral head of ~80 nm in diameter and a tail measuring ~150 nm in length. It produced clear plaques of 0.5–1 mm on host bacterial lawns. Host range analysis demonstrated its ability to infect multiple multidrug-resistant S. maltophilia isolates. Biological characterization showed that the phage is chloroform-insensitive, retains strong lytic activity across a wide temperature (4–60 °C) and pH (3.0–10.0) range, and achieves more rapid host suppression under higher multiplicity of infection (MOI). Whole-genome sequencing determined a ~47 kb double-stranded DNA genome encoding 64 predicted open reading frames, with no known virulence or antibiotic resistance genes. Phylogenetic analysis of MCP and terminase large subunit sequences placed XAN_XB1 in a unique Caudoviricetes, with ANI values below the 95% ICTV threshold verifying its status as a novel phage species. The XAN_XB1 therapy significantly alleviates S. maltophilia infection-induced severe pulmonary inflammatory lesions, high mortality, elevated serum inflammatory factors and massive pulmonary bacterial colonization in male BALB/c mice, confirming its favorable therapeutic effect on such infections. Collectively, these results reveal that is an efficacious candidate for therapeutic development against S. maltophilia infections. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 2026 KB  
Article
Evolutionary Relationships and Genetic Diversity in the Southern Siberian Populations of the Saker Falcon (Falco cherrug), a Young and Endangered Species
by Daria Nikolaevna Rozhkova, Elena Pavlovna Shnayder, Valentina Georgievna Tambovtseva, Igor Vyacheslavovich Karyakin, Alla Veniaminovna Blekhman, Oleg Evgenievich Lazebny, Svetlana Yuryevna Sorokina, Ludmila Sergeevna Zinevich and Alexey Mikhailovich Kulikov
Diversity 2026, 18(1), 50; https://doi.org/10.3390/d18010050 (registering DOI) - 18 Jan 2026
Abstract
Studying intraspecific differentiation in closely related species is essential to clarify the phylogenetic relationships and mechanisms of early stage speciation, particularly in evolutionarily young lineages affected by human-driven population declines. The endangered saker falcon (Falco cherrug), with its ambiguous phylogenetic links [...] Read more.
Studying intraspecific differentiation in closely related species is essential to clarify the phylogenetic relationships and mechanisms of early stage speciation, particularly in evolutionarily young lineages affected by human-driven population declines. The endangered saker falcon (Falco cherrug), with its ambiguous phylogenetic links to the gyrfalcon (F. rusticolus), exemplifies this scenario. This study presents a comprehensive genetic analysis of F. cherrug and F. rusticolus using mtDNA markers and microsatellite loci, focusing on the diversity of southern Siberian saker falcon populations. The genotyping results for these populations were correlated with phenotypic data obtained from long-term monitoring (1999–2021). Our findings provide novel insights into the current subspecific differentiation and the remnants of a nascent subspecies structure that existed before the recent demographic collapse. Furthermore, our results support the hypothesis of the gyrfalcon’s origin as a descendant species of the Asian saker falcon, i.e., an evolutionarily young lineage undergoing divergence. Our data contribute to the understanding of the Hierofalco evolutionary history, particularly through the analysis of heterogeneous mutation rates among mitochondrial haplogroups. This study underscores the critical importance of conservation efforts for wild endangered populations through long-term monitoring integrated with combined genetic approaches. Full article
(This article belongs to the Special Issue Avian Genetic Diversity)
Show Figures

Figure 1

30 pages, 751 KB  
Hypothesis
Bonded Green Exercise: A One Health Framework for Shared Nature-Based Physical Activity in the Human–Dog Dyad
by Krista B. Halling, Mark Bowden, Jules Pretty and Jennifer Ogeer
Animals 2026, 16(2), 291; https://doi.org/10.3390/ani16020291 (registering DOI) - 16 Jan 2026
Viewed by 37
Abstract
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal [...] Read more.
Modern lifestyles are increasingly plagued by physical inactivity, social disconnection, digital addiction, and excessive time indoors—factors that negatively impact the health and well-being of both humans and their companion dogs (Canis familiaris). Evidence shows that nature exposure, physical activity, and human–animal bond (HAB) each enhance physical, mental, and social well-being, yet these domains have rarely been examined together as an integrated therapeutic triad. We introduce a new conceptual framework of bonded green exercise, defined as shared physical activity between a bonded human and dog in natural environments. Synthesizing existing evidence across human and canine sciences into a testable conceptual integration, we posit that bonded green exercise may plausibly activate evolutionarily conserved, synergistic mechanisms of physiological, behavioural, and affective co-regulation. Four testable hypotheses are proposed: (H1) triadic synergy: combined domains produce greater benefits than additive effects; (H2) heterospecific benefit: parallel health gains occur in both species; (H3) behavioural amplification: dogs acts as catalysts to drive human participation in nature-based activity; and (H4) scalable health promotion: bonded green exercise represents a low-cost, accessible, One Health approach with population-level potential. This framework highlights how intentional, shared physical activity in nature may potentially offer a novel low-cost and accessible model for enhancing health, lifespan, welfare, and ecological stewardship across species. Full article
(This article belongs to the Special Issue Second Edition: Research on the Human–Companion Animal Relationship)
13 pages, 1003 KB  
Article
Exploring and Documenting Wadi Phycodiversity: Cosmarium yassinii sp. nov. (Desmidiaceae, Charophyta)—A New Desmid Species from Egypt
by Abdullah A. Saber, Mostafa M. El-Sheekh, Forough Salehipour-Bavarsad, Hoda H. Senousy, Nicola Angeli, Frans A. C. Kouwets and Marco Cantonati
Water 2026, 18(2), 246; https://doi.org/10.3390/w18020246 - 16 Jan 2026
Viewed by 41
Abstract
A new desmid microalga species, Cosmarium yassinii A.A. Saber, El-Sheekh, Kouwets et Cantonati sp. nov., was isolated from two hyper-arid mountain valleys, so-called “wadis”, in the Eastern Desert of Egypt. The distinctive morphological features of this new species were established using light and [...] Read more.
A new desmid microalga species, Cosmarium yassinii A.A. Saber, El-Sheekh, Kouwets et Cantonati sp. nov., was isolated from two hyper-arid mountain valleys, so-called “wadis”, in the Eastern Desert of Egypt. The distinctive morphological features of this new species were established using light and scanning electron microscopy observations, and also by documenting its life-cycle stages. Taxonomically, C. yassinii is characterized by a cell wall sculpture consisting of isolated granules or small warts arranged circularly in the swollen mid-region of each semicell, never forming parallel vertical ridges or costae as in morphologically similar species, and the interesting shape of the marginal granules appears as small emarginate “combs” or crenae, including its knobby zygospores. Similarities and differences with the morphologically most closely related species are discussed in detail. Ecologically, C. yassinii seems to prefer alkaline freshwater environments with lower nutrient concentrations and a NaCl/HCO3 water type. The detailed assessment and documentation of the biodiversity of these peculiar freshwater ecosystems are a fundamental prerequisite to adequately inform their protection strategies. Full article
(This article belongs to the Special Issue Protection and Restoration of Freshwater Ecosystems)
21 pages, 6960 KB  
Article
First-Stage Algorithm for Photo-Identification and Location of Marine Species
by Rosa Isela Ramos-Arredondo, Francisco Javier Gallegos-Funes, Blanca Esther Carvajal-Gámez, Guillermo Urriolagoitia-Sosa, Beatriz Romero-Ángeles, Alberto Jorge Rosales-Silva and Erick Velázquez-Lozada
Animals 2026, 16(2), 281; https://doi.org/10.3390/ani16020281 - 16 Jan 2026
Viewed by 41
Abstract
Marine species photo-identification and location for tracking are crucial for understanding the characteristics and patterns that distinguish each marine species. However, challenges in camera data acquisition and the unpredictability of animal movements have restricted progress in this field. To address these challenges, we [...] Read more.
Marine species photo-identification and location for tracking are crucial for understanding the characteristics and patterns that distinguish each marine species. However, challenges in camera data acquisition and the unpredictability of animal movements have restricted progress in this field. To address these challenges, we present a novel algorithm for the first stage of marine species photo-identification and location methods. For marine species photo-identification applications, a color index-based thresholding segmentation method is proposed. This method is based on the characteristics of the GMR (Green Minus Red) color index and the proposed empirical BMG (Blue Minus Green) color index. These color indexes are modified to provide better information about the color of regions, such as marine animals, the sky, and land found in the scientific sightings images, allowing an optimal thresholding segmentation method. In the case of marine species location, a SURFs (Speeded-Up Robust Features)-based supervised classifier is used to obtain the location of the marine animal in the sighting image; with this, its tracking could be obtained. The tests were performed with the Kaggle happywhale public database; the results obtained in precision shown range from 0.77 up to 0.98 using the proposed indexes. Finally, the proposed method could be used in real-time marine species tracking with a processing time of 0.33 s for images of 645 × 376 pixels using a standard PC. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

11 pages, 2738 KB  
Article
Histopathologic and Genomic Characterization of a Novel Caprine Astrovirus Identified in a Boer Goat Kid in Illinois, United States
by Jingyi Li, Wes Baumgartner and Leyi Wang
Viruses 2026, 18(1), 120; https://doi.org/10.3390/v18010120 - 16 Jan 2026
Viewed by 146
Abstract
Astroviruses are non-enveloped, positive-sense single-stranded RNA viruses known to infect various mammals and birds, including humans, often causing gastrointestinal disorders. In recent years, astroviruses have also been linked to neurological and respiratory diseases across several species, including ruminants, mink, deer, and other mammals. [...] Read more.
Astroviruses are non-enveloped, positive-sense single-stranded RNA viruses known to infect various mammals and birds, including humans, often causing gastrointestinal disorders. In recent years, astroviruses have also been linked to neurological and respiratory diseases across several species, including ruminants, mink, deer, and other mammals. Notably, astrovirus infections in goats have been documented in countries such as Switzerland and China, where novel genotypes have been identified in fecal samples. However, their role in the context of disease remains unclear, and reports focusing solely on goat astrovirus in the United States have not been published. A necropsy case of a Boer goat kid with a history of diarrhea was submitted for investigation following death in January 2025. Fresh tissues were received and used for histopathology and enteric pathogen testing, including parasitic, bacterial, and viral workups. Metagenomic-based next-generation sequencing (mNGS) was also applied for this case. Histological examination revealed severe necrotizing enterocolitis. The small intestine exhibited epithelial ulcerations, villus atrophy, hyperplastic and dilated crypts with necrotic debris, few intraenterocytic coccidian parasites, and increased inflammatory cells in the lamina propria. The large intestine showed similar findings with pleomorphic crypt enterocytes. Standard enteric pathogen tests were negative except for aerobic culture that identified Escherichia.coli and Enterococcus hirae. mNGS and bioinformatic analysis identified a novel astrovirus in the intestinal content that showed the highest nucleotide identity (86%) to the sheep strain Mamastrovirus 13 sheep/HA3 from China based on BLAST analysis. Phylogenetic analysis indicated that the newly identified caprine astrovirus IL90175 clustered with astrovirus strains from small ruminants in Asia and Europe. This research reports the discovery, histopathologic features, and genetic characteristics of a gastrointestinal disease-causing astrovirus in a goat kid, which had not been previously described in the United States. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

26 pages, 4036 KB  
Article
Investigating the Role of Diet-Manipulated Gut Bacteria in Pathogenesis of Type 2 Diabetes Mellitus—An In Vitro Approach
by Asha Guraka, Marie Lush, Georgios Zouganelis, Joe Waldron, Subbareddy Mekapothula, Jinit Masania, Gareth Wynn Vaughan Cave, Myra Elizabeth Conway, Gyanendra Tripathi and Ali Kermanizadeh
Nutrients 2026, 18(2), 279; https://doi.org/10.3390/nu18020279 - 15 Jan 2026
Viewed by 102
Abstract
Background: The human gut microbiome is highly complex, and its composition is strongly influenced by dietary patterns. Alterations in microbiome structure have been associated with a range of diseases, including type 2 diabetes mellitus. However, the underlying mechanisms for this remain poorly understood. [...] Read more.
Background: The human gut microbiome is highly complex, and its composition is strongly influenced by dietary patterns. Alterations in microbiome structure have been associated with a range of diseases, including type 2 diabetes mellitus. However, the underlying mechanisms for this remain poorly understood. In this study, a novel in vitro approach was utilized to investigate the interplay between gut bacteria, dietary metabolites, and metabolic dysfunction. Methods: Two representative gut bacterial species—Bacteroides thetaiotaomicron and Lactobacillus fermentum—were isolated from human faecal samples and subjected to controlled dietary manipulation to mimic eubiotic and dysbiotic conditions. Metabolites produced under these conditions were extracted, characterized, and quantified. To assess the functional impact of these metabolites, we utilized the INS-1 832/3 insulinoma cell line, evaluating insulin sensitivity through glucose-stimulated insulin secretion and ERK1/2 activation. Results: Our findings demonstrate that metabolites derived from high-carbohydrate/high-fat diets exacerbate metabolic dysfunction, whereas those generated under high-fibre conditions significantly enhance insulin secretion and glucose-dependent ERK1/2 activation in co-culture compared to monocultures. Conclusions: This work systematically disentangles the complex interactions between gut microbiota, diet, and disease, providing mechanistic insights into how microbial metabolites contribute to the onset of metabolic disorders. Full article
Show Figures

Graphical abstract

18 pages, 3450 KB  
Article
Acacetin Attenuates Lysophosphatidylcholine-Induced Vascular Smooth Muscle Cell Injury via Sirt1-Nrf2/p62 Signaling Axis
by Yun-Da Li, Yao Wu, Tian-Li Zhou, Qian Yuan, Gui-Rong Li, Wei-Yin Wu, Yan Wang and Gang Li
Biomedicines 2026, 14(1), 194; https://doi.org/10.3390/biomedicines14010194 - 15 Jan 2026
Viewed by 75
Abstract
Background: Acacetin, a naturally occurring flavone present in various plants, is known as a promising drug candidate for cardiovascular disorders. Our previous study demonstrated that acacetin ameliorates atherosclerosis through endothelial cell protection; however, its pharmacological effects on vascular smooth muscle cells (VSMCs) remain [...] Read more.
Background: Acacetin, a naturally occurring flavone present in various plants, is known as a promising drug candidate for cardiovascular disorders. Our previous study demonstrated that acacetin ameliorates atherosclerosis through endothelial cell protection; however, its pharmacological effects on vascular smooth muscle cells (VSMCs) remain unexplored. This study investigates the therapeutic potential of acacetin against lysophosphatidylcholine (LysoPC)-induced VSMC injury and elucidates the underlying molecular mechanisms. Methods and Results: Multiple biochemical techniques were employed in the present study. The results showed that acacetin significantly attenuated LysoPC-induced apoptosis and reactive oxygen species (ROS) generation in cultured VSMCs. Western blot analysis revealed that the cytoprotection of acacetin was associated with upregulated expression of antioxidant defense proteins, including nuclear factor erythroid 2-related factor 2 (Nrf2), catalase (CAT), NADPH quinone oxidoreductase 1 (NQO-1), and superoxide dismutase 1 (SOD1). Nrf2 silencing completely abolished these protective effects. Mechanistically, siRNA-silencing of Sirtuin 1 (Sirt1) abrogated acacetin-induced modulation of the Nrf2/Keap1/p62 signaling. In vivo validation using aortic tissues from high-fat-diet-fed ApoE−/− mice confirmed that acacetin effectively suppressed VSMC apoptosis and ROS overproduction associated with restoring the downregulated Sirt1 expression levels. Conclusions: These findings establish a novel mechanistic paradigm wherein acacetin confers protection against LysoPC-induced VSMC apoptosis and oxidative stress through Sirt1-dependent activation of the Nrf2/p62 signaling pathway, suggesting that acacetin is a promising therapeutic drug candidate for atherosclerotic plaque stabilization. Full article
(This article belongs to the Special Issue Recent Advances in Endocrine Disease and Atherosclerosis)
Show Figures

Figure 1

15 pages, 842 KB  
Article
Cell-Based Screening Identifies Neoblechnum brasiliense Extract as a Potent Antagonist of the Ecdysteroid Receptor in Dipteran Cells
by Jissela Gaibor Garofalo, Juliana Wegner, Mauricio Gaibor Garofalo, Guy Smagghe, Jorge Briceño and Moises João Zotti
Processes 2026, 14(2), 312; https://doi.org/10.3390/pr14020312 - 15 Jan 2026
Viewed by 90
Abstract
The ecdysteroid receptor (EcR) plays a crucial role in insect development and metamorphosis, making it a promising target for the design of novel biorational compounds. This study investigated the cytotoxicity, as well as the EcR agonist and antagonist activities, of three synthetic molecules [...] Read more.
The ecdysteroid receptor (EcR) plays a crucial role in insect development and metamorphosis, making it a promising target for the design of novel biorational compounds. This study investigated the cytotoxicity, as well as the EcR agonist and antagonist activities, of three synthetic molecules analogous to tebufenozide and extracts from nine plant species using the dipteran S2 cell line which originates from the insect model of the fruit fly Drosophila melanogaster. Cytotoxicity assays were performed to determine appropriate concentrations of the synthetic molecules and plant extracts for cell transfection. EcR agonist and antagonist activities were evaluated using 20-hydroxyecdysone (20E) as the control hormone. The synthetic molecules analogous to tebufenozide did not activate EcR in S2 cells. In contrast, the plant extract of Neoblechnum brasiliense, commonly known as Brazilian dwarf tree fern, exhibited significant antagonistic activity at 100 µM, reducing receptor activity by 92%, likely due to its phytosteroid content, and without inducing cytotoxic effects. These findings demonstrate that certain plant extracts, particularly N. brasiliense, act as effective EcR antagonists and may represent promising natural leads for the development of environmentally compatible biorational compounds to control economically important dipteran pests, such as fruit flies and mosquitoes. Full article
Show Figures

Figure 1

14 pages, 10292 KB  
Article
Avoidance Behavior in Chinhai Spiny Newt Larvae: Responses to Visual and Chemical Cues from a Novel Predator
by Shiyan Feng, Wei Li, Di An, Zhiya Ma, Zhenhua Luo and Aichun Xu
Animals 2026, 16(2), 261; https://doi.org/10.3390/ani16020261 - 15 Jan 2026
Viewed by 100
Abstract
Effective recognition of potential threats is crucial for survival in aquatic habitats, especially for amphibian larvae. As a critically endangered species, understanding how the Chinhai spiny newt (Echinotriton chinhaiensis) larvae recognize novel predators provides key scientific support for developing targeted conservation [...] Read more.
Effective recognition of potential threats is crucial for survival in aquatic habitats, especially for amphibian larvae. As a critically endangered species, understanding how the Chinhai spiny newt (Echinotriton chinhaiensis) larvae recognize novel predators provides key scientific support for developing targeted conservation strategies. Using the American bullfrog (Lithobates catesbeiana) as a representative predator, we examined larval responses by presenting isolated visual or chemical cues, as well as visual cues from predators of differing body sizes. We measured larval avoidance and activity. Results showed that with only visual cues, larvae quickly avoided the bullfrog and significantly reduced their activity compared to controls. With only chemical cues, activity decreased significantly, but avoidance behavior did not. When both large and small bullfrogs were present, larvae avoided the larger individual significantly more. These findings demonstrate that E. chinhaiensis larvae can use visual or chemical cues to detect novel potential predators and assess risk based on size to guide their avoidance behavior. This study provides key empirical data for understanding anti-predator responses in endangered caudate amphibians and informs conservation strategies against potential threats. Full article
(This article belongs to the Special Issue Protecting Endangered Species: Second Edition)
Show Figures

Figure 1

24 pages, 524 KB  
Review
Algae and Algal Protein in Human Nutrition: A Narrative Review of Health Outcomes from Clinical Studies
by Zixuan Wang, Marie Scherbinek and Thomas Skurk
Nutrients 2026, 18(2), 277; https://doi.org/10.3390/nu18020277 - 15 Jan 2026
Viewed by 102
Abstract
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have [...] Read more.
As global interest in sustainable nutrition grows, algae have emerged as a promising functional food resource. This review analyzes the nutritional value of edible algae, with a particular focus on protein-rich microalgae, and synthesizes current clinical evidence regarding their health benefits. Algae have been demonstrated to provide a broad spectrum of physiologically active nutrients, encompassing a range of vitamins and minerals as well as polyunsaturated fatty acids, antioxidant molecules and various bioactive compounds including dietary fiber. These nutrients have been linked to improved cardiovascular and metabolic health, enhanced immune function, and anti-inflammatory effects. A particular emphasis is placed on algal proteins as a novel alternative to traditional dietary proteins. Genera such as Spirulina and Chlorella offer high-quality, complete proteins with amino acid profiles and digestibility scores comparable to those of animal and soy proteins, thereby supporting muscle maintenance and overall nutritional status. Recent clinical studies have demonstrated that the ingestion of microalgae can stimulate muscle protein synthesis and improve lipid profiles, blood pressure, and inflammation markers, indicating functional benefits beyond basic nutrition. Algal proteins also contain bioactive peptides with antioxidative properties that may contribute to positive outcomes. This review synthesizes current studies, which demonstrate that algae represent a potent, sustainable protein source capable of enhancing dietary quality and promoting health. The integration of algae-based products into plant-forward diets has the potential to contribute to global nutritional security and long-term public health. However, the available clinical evidence remains heterogeneous and is largely based on small, short-term intervention studies, with substantial variability in algae species, processing methods and dosages. Consequently, while the evidence suggests the possibility of functional effects, the strength of the evidence and its generalizability across populations remains limited. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

16 pages, 7264 KB  
Article
Study on the Efficiency and Mechanism of a Novel Copper-Based Composite Material Activated by Supramolecular Self-Assembly for Degrading Reactive Red 3BS
by Jiangming Dai, Xinrong Wang, Bo Chen and Liang Chen
Nanomaterials 2026, 16(2), 111; https://doi.org/10.3390/nano16020111 - 15 Jan 2026
Viewed by 159
Abstract
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade [...] Read more.
To address the challenge of treating refractory organic dyes in textile wastewater, this study synthesized a novel copper-based composite material (designated MEL-Cu-6HNA) via a supramolecular self-assembly–pyrolysis pathway. Its core component consists of CuO/Cu2O(SO4), which was applied to efficiently degrade the Reactive Red 3BS dye within a sodium bicarbonate-activated hydrogen peroxide (BAP) system. This material was applied to degrade the Reactive Red 3BS dye using a sodium bicarbonate-activated hydrogen peroxide system. The morphology, crystal structure, and surface chemistry of the material were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). Electron paramagnetic resonance (EPR) was employed to identify reactive species generated during the reaction. The effects of dye concentration, H2O2 concentration, MEL-Cu-6HNA dosage, and coexisting substances in water on degradation efficiency were systematically investigated, with active species identified via EPR. This study marks the first application of the supramolecular self-assembled CuO/Cu2O(SO4)2 composite material MEL-Cu-6HNA, prepared via pyrolysis, in a sodium bicarbonate-activated hydrogen peroxide system. It achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS dye. The three-dimensional sulfate framework and dual Cu2+ sites of the material significantly enhanced the degradation efficiency. MEL-Cu-6HNA achieved rapid and efficient decolorization of the recalcitrant Reactive Red 3BS in a sodium bicarbonate-activated hydrogen peroxide system. The material’s three-dimensional sulfate framework and dual Cu2+ sites significantly enhanced interfacial electron transfer and Cu2+/Cu+ cycling activation capacity. ·OH served as the primary reactive oxygen species (ROS), with SO42−, 1O2, and ·O2 contributing to sustained radical generation. This system achieved 95% decolorization within 30 min, demonstrating outstanding green treatment potential and providing a reliable theoretical basis and practical pathway for efficient, low-energy treatment of dyeing wastewater. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

Back to TopTop