Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,922)

Search Parameters:
Keywords = novel peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

52 pages, 3790 KiB  
Article
The Identification and Analysis of Novel Umami Peptides in Lager Beer and Their Multidimensional Effects on the Sensory Attributes of the Beer Body
by Yashuai Wu, Ruiyang Yin, Liyun Guo, Yumei Song, Xiuli He, Mingtao Huang, Yi Ren, Xian Zhong, Dongrui Zhao, Jinchen Li, Mengyao Liu, Jinyuan Sun, Mingquan Huang and Baoguo Sun
Foods 2025, 14(15), 2743; https://doi.org/10.3390/foods14152743 - 6 Aug 2025
Abstract
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 [...] Read more.
This study was designed to systematically identify novel umami peptides in lager beer, clarify their molecular interactions with the T1R1/T1R3 receptor, and determine their specific effects on multidimensional sensory attributes. The peptides were characterized by LC-MS/MS combined with de novo sequencing, and 906 valid sequences were obtained. Machine-learning models (UMPred-FRL, Tastepeptides-Meta, and Umami-MRNN) predicted 76 potential umami peptides. These candidates were docked to T1R1/T1R3 with the CDOCKER protocol, producing 57 successful complexes. Six representative peptides—KSTEL, DELIK, DIGISSK, IEKYSGA, DEVR, and PVPL—were selected for 100 ns molecular-dynamics simulations and MM/GBSA binding-energy calculations. All six peptides stably occupied the narrow cleft at the T1R1/T1R3 interface. Their binding free energies ranked as DEVR (−44.09 ± 5.47 kcal mol−1) < KSTEL (−43.21 ± 3.45) < IEKYSGA (−39.60 ± 4.37) ≈ PVPL (−39.53 ± 2.52) < DELIK (−36.14 ± 3.11) < DIGISSK (−26.45 ± 4.52). Corresponding taste thresholds were 0.121, 0.217, 0.326, 0.406, 0.589, and 0.696 mmol L−1 (DEVR < KSTEL < IEKYSGA < DELIK < PVPL < DIGISSK). TDA-based sensory validation with single-factor additions showed that KSTEL, DELIK, DEVR, and PVPL increased umami scores by ≈21%, ≈22%, ≈17%, and ≈11%, respectively, while DIGISSK and IEKYSGA produced marginal changes (≤2%). The short-chain peptides thus bound with high affinity to T1R1/T1R3 and improved core taste and mouthfeel but tended to amplify certain off-flavors, and the long-chain peptides caused detrimental impacts. Future formulation optimization should balance flavor enhancement and off-flavor suppression, providing a theoretical basis for targeted brewing of umami-oriented lager beer. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages, 2nd Edition)
Show Figures

Graphical abstract

12 pages, 2254 KiB  
Article
Evolution of the Jawed Vertebrate (Gnathostomata) Stomach Through Gene Repertoire Loss: Findings from Agastric Species
by Jackson Dann and Frank Grützner
J. Dev. Biol. 2025, 13(3), 27; https://doi.org/10.3390/jdb13030027 - 5 Aug 2025
Abstract
The stomach has been a highly conserved organ throughout vertebrate evolution; however, there are now over 20 lineages composed of monotremes, lungfish and teleost fish displaying a secondary loss of stomach function and morphology. This “agastric phenotype” has evolved convergently and is typified [...] Read more.
The stomach has been a highly conserved organ throughout vertebrate evolution; however, there are now over 20 lineages composed of monotremes, lungfish and teleost fish displaying a secondary loss of stomach function and morphology. This “agastric phenotype” has evolved convergently and is typified by a loss of gastric glands and gastric acid secretion and a near-to-complete loss of storage capacity of the stomach. All agastric species have lost the genes for gastric enzymes (Pga and Pgc) and proton pump subunits (Atp4a and Atp4b), and gastrin (Gast) has been lost in monotremes. As a key gastric hormone, the conservation of gastrin has not yet been investigated in the lungfish or agastric teleosts, and it is unclear how the loss of gastrin affects the evolution and selection of the native receptor (Cckbr), gastrin-releasing peptide (Grp) and gastrin-releasing peptide receptor (Grpr) in vertebrates. Furthermore, there are still many genes implicated in gastric development and function which have yet to be associated with the agastric phenotype. We analysed the evolution, selection and conservation of the gastrin pathway and a novel gastric gene repertoire (Gkn1, Gkn2, Tff1, Tff2, Vsig1 and Anxa10) to determine the correlation with the agastric phenotype. We found that the loss of gastrin or its associated genes does not correlate with the agastric phenotype, and their conservation is due to multiple pleiotropic roles throughout vertebrate evolution. We found a loss of the gastric gene repertoire in the agastric phenotype, except in the echidna, which retained several genes (Gkn1, Tff2 and Vsig1). Our findings suggest that the gastrin physiological pathway evolved differently in pleiotropic roles throughout vertebrate evolution and support the convergent evolution of the agastric phenotype through shared independent gene-loss events. Full article
Show Figures

Figure 1

26 pages, 1978 KiB  
Article
Fluorescent Peptides Internalize HeLa Cells and Kill Multidrug-Resistant Clinical Bacterial Isolates
by Daniel Castellar-Almonacid, Kelin Johana Cuero-Amu, Jose David Mendoza-Mendoza, Natalia Ardila-Chantré, Fernando José Chavez-Salazar, Andrea Carolina Barragán-Cárdenas, Jhon Erick Rivera-Monroy, Claudia Parra-Giraldo, Zuly Jenny Rivera-Monroy, Javier García-Castañeda and Ricardo Fierro-Medina
Antibiotics 2025, 14(8), 793; https://doi.org/10.3390/antibiotics14080793 - 4 Aug 2025
Abstract
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine [...] Read more.
Palindromic antimicrobial peptides (PAMs) constitute versatile scaffolds for the design and optimization of anticancer agents with applications in therapy, diagnosis, and/or monitoring. In the present study, fluorolabeled peptides derived from the palindromic sequence RWQWRWQWR containing fluorescent probes, such as 2-Aminobenzoyl, 5(6)-Carboxyfluorescein, and Rhodamine B, were obtained. RP-HPLC analysis revealed that the palindromic peptide conjugated to Rhodamine B (RhB-RWQWRWQWR) exhibited the presence of isomers, likely corresponding to the open-ring and spiro-lactam forms of the fluorescent probe. This equilibrium is dependent on the peptide sequence, as the RP-HPLC analysis of dimeric peptide (RhB-RRWQWR-hF-KKLG)2K-Ahx did not reveal the presence of isomers. The antibacterial activity of the fluorescent peptides depends on the probe attached to the sequence and the bacterial strain tested. Notably, some fluorescent peptides showed activity against reference strains as well as sensitive, resistant, and multidrug-resistant clinical isolates of E. coli, S. aureus, and E. faecalis. Fluorolabeled peptides 1-Abz (MIC = 62 µM), RhB-1 (MIC = 62 µM), and Abz-1 (MIC = 31 µM) exhibited significant activity against clinical isolates of E. coli, S. aureus, and E. faecalis, respectively. The RhB-1 (IC50 = 61 µM), Abz-1 (IC50 = 87 µM), and RhB-2 (IC50 = 35 µM) peptides exhibited a rapid, significant, and concentration-dependent cytotoxic effect on HeLa cells, accompanied by morphological changes characteristic of apoptosis. RhB-1 (IC50 = 18 µM) peptide also exhibited significant cytotoxic activity against breast cancer cells MCF-7. These conjugates remain valuable for elucidating the possible mechanisms of action of these novel anticancer peptides. Rhodamine-labeled peptides displayed cytotoxicity comparable to that of their unlabeled analogues, suggesting that cellular internalization constitutes a critical early step in their mechanism of action. These findings suggest that cell death induced by both unlabeled and fluorolabeled peptides proceeds predominantly via apoptosis and is likely contingent upon peptide internalization. Functionalization at the N-terminal end of the palindromic sequence can be evaluated to develop systems for transporting non-protein molecules into cancer cells. Full article
Show Figures

Figure 1

13 pages, 1191 KiB  
Article
Linking Heart Function to Prognosis: The Role of a Novel Echocardiographic Index and NT-proBNP in Acute Heart Failure
by Dan-Cristian Popescu, Mara Ciobanu, Diana Țînț and Alexandru-Cristian Nechita
Medicina 2025, 61(8), 1412; https://doi.org/10.3390/medicina61081412 - 4 Aug 2025
Abstract
Background and Objectives: Risk stratification in acute heart failure (AHF) remains challenging, particularly in settings where biomarker availability is limited. Echocardiography offers valuable hemodynamic insights, but no single parameter fully captures the complexity of biventricular dysfunction and pressure overload. This study aimed to [...] Read more.
Background and Objectives: Risk stratification in acute heart failure (AHF) remains challenging, particularly in settings where biomarker availability is limited. Echocardiography offers valuable hemodynamic insights, but no single parameter fully captures the complexity of biventricular dysfunction and pressure overload. This study aimed to evaluate a novel echocardiographic index (ViRTUE IndexVTI-RVRA-TAPSE Unified Evaluation) integrating a peak systolic gradient between the right ventricle and right atrium (RV-RA gradient), tricuspid annular plane systolic excursion (TAPSE), the velocity–time integral in the left ventricular outflow tract (VTI LVOT), NT-proBNP (N-terminal pro–B-type Natriuretic Peptide) levels, and in-hospital mortality among patients with AHF. Materials and Methods: We retrospectively analyzed 123 patients admitted with AHF. Echocardiographic evaluation at admission included TAPSE, VTI LVOT, and the RV-RA gradient. An index was calculated as RVRA gradient TAPSE x VTI LVOT. NT-proBNP levels and in-hospital outcomes were recorded. Statistical analysis included correlation, logistic regression, and ROC curve evaluation. Results: The proposed index showed a significant positive correlation with NT-proBNP values (r = 0.543, p < 0.0001) and good discriminative ability for elevated NT-proBNP (AUC = 0.79). It also correlated with in-hospital mortality (r = 0.193, p = 0.032) and showed moderate prognostic performance (AUC = 0.68). Higher index values were associated with greater mortality risk. Conclusions: This novel index, based on standard echocardiographic measurements, reflects both systolic dysfunction and pressure overload in AHF. Its correlation with NT-proBNP and in-hospital mortality highlights its potential as a practical, accessible bedside tool for early risk stratification, particularly when biomarker testing is unavailable or delayed. Full article
(This article belongs to the Special Issue Updates on Prevention of Acute Heart Failure)
Show Figures

Figure 1

27 pages, 1757 KiB  
Article
Salt Stress Mitigation and Field-Relevant Biostimulant Activity of Prosystemin Protein Fragments: Novel Tools for Cutting-Edge Solutions in Agriculture
by Martina Chiara Criscuolo, Raffaele Magliulo, Valeria Castaldi, Valerio Cirillo, Claudio Cristiani, Andrea Negroni, Anna Maria Aprile, Donata Molisso, Martina Buonanno, Davide Esposito, Emma Langella, Simona Maria Monti and Rosa Rao
Plants 2025, 14(15), 2411; https://doi.org/10.3390/plants14152411 - 4 Aug 2025
Viewed by 30
Abstract
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt [...] Read more.
In an increasingly challenging agricultural environment, the identification of novel tools for protecting crops from stress agents while securing marketable production is a key objective. Here we investigated the effects of three previously characterized Prosystemin-derived functional peptide fragments as protective agents against salt stress and as biostimulants modulating tomato yield and quality traits. The treatments of tomato plants with femtomolar amounts of the peptides alleviated salt stress symptoms, likely due to an increase in root biomass up to 18% and the upregulation of key antioxidant genes such as APX2 and HSP90. In addition, the peptides exhibited biostimulant activity, significantly improving root area (up to 10%) and shoot growth (up to 9%). We validated such activities through two-year field trials carried out on industrial tomato crops. Peptide treatments confirmed their biostimulant effects, leading to a nearly 50% increase in marketable production compared to a commonly used commercial product and consistently enhancing fruit °Brix values. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

35 pages, 9112 KiB  
Article
Enhanced Methodology for Peptide Tertiary Structure Prediction Using GRSA and Bio-Inspired Algorithm
by Diego A. Soto-Monterrubio, Hernán Peraza-Vázquez, Adrián F. Peña-Delgado and José G. González-Hernández
Int. J. Mol. Sci. 2025, 26(15), 7484; https://doi.org/10.3390/ijms26157484 - 2 Aug 2025
Viewed by 179
Abstract
Recent advancements have been made in the precise prediction of protein structures within the Protein Folding Problem (PFP), particularly in relation to minimizing the energy function to achieve stable and biologically relevant protein structures. This problem is classified as NP-hard within computational theory, [...] Read more.
Recent advancements have been made in the precise prediction of protein structures within the Protein Folding Problem (PFP), particularly in relation to minimizing the energy function to achieve stable and biologically relevant protein structures. This problem is classified as NP-hard within computational theory, necessitating the development of various techniques and algorithms. Bio-inspired algorithms have proven effective in addressing NP-hard challenges in practical applications. This study introduces a novel hybrid algorithm, termed GRSABio, which integrates the strategies of Jumping Spider Algorithm (JSOA) with the Golden Ratio Simulated Annealing (GRSA) for peptide prediction. Furthermore, the GRSABio algorithm incorporates a Convolutional Neural Network for fragment prediction (FCNN), forms an enhanced methodology called GRSABio-FCNN. This integrated framework achieves improved structure refinement based on energy for protein prediction. The proposed enhanced GRSABio-FCNN approach was applied to a dataset of 60 peptides. The Wilcoxon and Friedman statistics test were employed to compare the GRSABio-FCNN results against recent state-of-the-art-approaches. The results of these tests indicate that the GRSABio-FCNN approach is competitive with state-of-the-art methods for peptides up to 50 amino acids in length and surpasses leading PFP algorithms for peptides with up to 30 amino acids. Full article
(This article belongs to the Special Issue Advances in Biomathematics, Computational Biology, and Bioengineering)
Show Figures

Figure 1

26 pages, 3179 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 - 2 Aug 2025
Viewed by 190
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
Show Figures

Figure 1

18 pages, 2188 KiB  
Article
Rational Engineering of a Brevinin-2 Peptide: Decoupling Potency from Toxicity Through C-Terminal Truncation and N-Terminal Chiral Substitution
by Aifang Yao, Zeyu Zhang, Zhengmin Song, Yi Yuan, Xiaoling Chen, Chengbang Ma, Tianbao Chen, Chris Shaw, Mei Zhou and Lei Wang
Antibiotics 2025, 14(8), 784; https://doi.org/10.3390/antibiotics14080784 - 1 Aug 2025
Viewed by 98
Abstract
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with [...] Read more.
Background/Objectives: The clinical potential of antimicrobial peptides (AMPs) against dual threats like antimicrobial resistance (AMR) and cancer is often limited by their high host cell toxicity. Here, we focused on brevinin-2OS (B2OS), a novel peptide from the skin of Odorrana schmackeri with potent haemolytic activity. The objective was to study the structure–activity relationship and optimise the safety via targeted modifications. Methods: A dual-modification strategy involving C-terminal truncation and subsequent N-terminal D-amino acid substitution was employed. The bioactivities and safety profiles of the resulting analogues were evaluated using antimicrobial, haemolysis, and cytotoxicity assays. Result: Removal of the rana box in B2OS(1-22)-NH2 substantially reduced haemolysis while maintaining bioactivities. Remarkably, the D-leucine substitution in [D-Leu2]B2OS(1-22)-NH2 displayed a superior HC50 value of 118.1 µM, representing a more than ten-fold improvement compared to its parent peptide (HC50 of 10.44 µM). This optimised analogue also demonstrated faster bactericidal kinetics and enhanced membrane permeabilisation, leading to a greater than 22-fold improvement in its therapeutic index against Gram-positive bacteria. Conclusions: The C-terminal rana box is a primary determinant of toxicity rather than a requirement for activity in the B2OS scaffold. The engineered peptide [D-Leu2]B2OS(1-22)-NH2 emerges as a promising lead compound, and this dual-modification strategy provides a powerful design principle for developing safer, more effective peptide-based therapeutics. Full article
(This article belongs to the Section Antimicrobial Peptides)
Show Figures

Figure 1

37 pages, 1469 KiB  
Review
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives
by Omar Alomari, Habiba Eyvazova, Beyzanur Güney, Rana Al Juhmani, Hatice Odabasi, Lubna Al-Rawabdeh, Muhammed Edib Mokresh, Ufuk Erginoglu, Abdullah Keles and Mustafa K. Baskaya
Cancers 2025, 17(15), 2550; https://doi.org/10.3390/cancers17152550 - 1 Aug 2025
Viewed by 650
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under investigation, including genetically engineered herpes simplex virus (HSV), adenovirus, poliovirus, reovirus, vaccinia virus, measles virus, and Newcastle disease virus, each exploiting unique tumor-selective mechanisms. While some, such as HSV-based therapies including G207 and DelytactTM, have demonstrated clinical progress, significant challenges persist, including immune evasion, heterogeneity in patient response, and delivery barriers due to the blood–brain barrier. Moreover, combination strategies integrating OVs with immune checkpoint inhibitors, chemotherapy, and radiation are promising but require further clinical validation. Non-viral oncolytic approaches, such as tumor-targeting bacteria and synthetic peptides, remain underexplored. This review highlights current advancements while addressing critical gaps in the literature, including the need for optimized delivery methods, better biomarker-based patient stratification, and a deeper understanding of GBM’s immunosuppressive microenvironment. Future research should focus on enhancing OV specificity, engineering viruses to deliver therapeutic genes, and integrating OVs with precision medicine strategies. By identifying these gaps, this review provides a framework for advancing oncolytic therapies in GBM treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 - 1 Aug 2025
Viewed by 204
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

15 pages, 3707 KiB  
Article
Saussurea involucrata CML6 Enhances Freezing Tolerance by Activating Antioxidant Defense and the CBF-COR Pathway in Plants
by Mengjuan Hou, Hui Kong, Jin Li, Wenwen Xia and Jianbo Zhu
Plants 2025, 14(15), 2360; https://doi.org/10.3390/plants14152360 - 1 Aug 2025
Viewed by 176
Abstract
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C [...] Read more.
Low-temperature stress severely limits plant growth and reduces agricultural productivity. Calmodulin-like (CML) proteins are crucial calcium sensors in plant cold responses. Transcriptome analysis of cold-stressed Saussurea involucrata identified seven differentially expressed CML genes. qRT-PCR confirmed that SiCML6 was strongly induced at 4 °C and −2 °C. Bioinformatics analysis showed that SiCML6 encodes a transmembrane protein containing an EF-hand domain. This protein carries a signal peptide and shows the closest phylogenetic relationship to Helianthus annuus CML3. Its promoter contains ABA, methyl jasmonate (MeJA), and cold-response elements. Arabidopsis plants overexpressing SiCML6 showed significantly higher survival rates at −2 °C than wild-type plants. Under freezing stress, SiCML6-overexpressing lines exhibited reduced malondialdehyde content, relative electrolyte leakage, and ROS accumulation (H2O2 and O2), along with increased proline, soluble sugars, soluble proteins, and total antioxidant capacity (T-AOC). SiCML6 elevated the expression of cold-responsive genes CBF3 and COR15a under normal conditions and further upregulated CBF1/2/3 and COR15a at 4 °C. Thus, low temperatures induced SiCML6 expression, which was potentially regulated by ABA/MeJA. SiCML6 enhances freezing tolerance by mitigating oxidative damage through boosted T-AOC and osmoprotectant accumulation while activating the CBF-COR signaling pathway. This gene is a novel target for improving crop cold resistance. Full article
Show Figures

Figure 1

14 pages, 2882 KiB  
Article
Babesia bovis Enolase Is Expressed in Intracellular Merozoites and Contains B-Cell Epitopes That Induce Neutralizing Antibodies In Vitro
by Alma Cárdenas-Flores, Minerva Camacho-Nuez, Massaro W. Ueti, Mario Hidalgo-Ruiz, Angelina Rodríguez-Torres, Diego Josimar Hernández-Silva, José Guadalupe Gómez-Soto, Masahito Asada, Shin-ichiro Kawazu, Alma R. Tamayo-Sosa, Rocío Alejandra Ruiz-Manzano and Juan Mosqueda
Vaccines 2025, 13(8), 818; https://doi.org/10.3390/vaccines13080818 - 31 Jul 2025
Viewed by 216
Abstract
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to [...] Read more.
Background: Bovine babesiosis, caused by the tick-borne apicomplexan parasite Babesia spp., is an economically significant disease that threatens the cattle industry worldwide. Babesia bovis is the most pathogenic species, leading to high morbidity and mortality in infected animals. One promising approach to vaccination against bovine babesiosis involves the use of multiple protective antigens, offering advantages over traditional live-attenuated vaccines. Tools such as immunobioinformatics and reverse vaccinology have facilitated the identification of novel antigens. Enolase, a “moonlighting” enzyme of the glycolytic pathway with demonstrated vaccine potential in other pathogens, has not yet been studied in B. bovis. Methods: In this study, the enolase gene from two B. bovis isolates was successfully identified and sequenced. The gene, consisting of 1366 base pairs, encodes a predicted protein of 438 amino acids. Its expression in intraerythrocytic parasites was confirmed by RT-PCR. Two peptides containing predicted B-cell epitopes were synthesized and used to immunize rabbits. Hyperimmune sera were then analyzed by ELISA, confocal microscopy, Western blot, and an in vitro neutralization assay. Results: The hyperimmune sera showed high antibody titers, reaching up to 1:256,000. Specific antibodies recognized intraerythrocytic merozoites by confocal microscopy and bound to a ~47 kDa protein in erythrocytic cultures of B. bovis as detected by Western blot. In the neutralization assay, antibodies raised against peptide 1 had no observable effect, whereas those targeting peptide 2 significantly reduced parasitemia by 71.99%. Conclusions: These results suggest that B. bovis enolase contains B-cell epitopes capable of inducing neutralizing antibodies and may play a role in parasite–host interactions. Enolase is therefore a promising candidate for further exploration as a vaccine antigen. Nonetheless, additional experimental studies are needed to fully elucidate its biological function and validate its vaccine potential. Full article
(This article belongs to the Special Issue Vaccines against Arthropods and Arthropod-Borne Pathogens)
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
Computational Design of Potentially Multifunctional Antimicrobial Peptide Candidates via a Hybrid Generative Model
by Fangli Ying, Wilten Go, Zilong Li, Chaoqian Ouyang, Aniwat Phaphuangwittayakul and Riyad Dhuny
Int. J. Mol. Sci. 2025, 26(15), 7387; https://doi.org/10.3390/ijms26157387 - 30 Jul 2025
Viewed by 257
Abstract
Antimicrobial peptides (AMPs) provide a robust alternative to conventional antibiotics, combating escalating microbial resistance through their diverse functions and broad pathogen-targeting abilities. While current deep learning technologies enhance AMP generation, they face challenges in developing multifunctional AMPs due to intricate amino acid interdependencies [...] Read more.
Antimicrobial peptides (AMPs) provide a robust alternative to conventional antibiotics, combating escalating microbial resistance through their diverse functions and broad pathogen-targeting abilities. While current deep learning technologies enhance AMP generation, they face challenges in developing multifunctional AMPs due to intricate amino acid interdependencies and limited consideration of diverse functional activities. To overcome this challenge, we introduce a novel de novo multifunctional AMP design framework that enhances a Feedback Generative Adversarial Network (FBGAN) by integrating a global quantitative AMP activity regression module and a multifunctional-attribute integrated prediction module. This integrated approach not only facilitates the automated generation of potential AMP candidates, but also optimizes the network’s ability to assess their multifunctionality. Initially, by integrating an effective pre-trained regression and classification model with feedback-loop mechanisms, our model can not only identify potential valid AMP candidates, but also optimizes computational predictions of Minimum Inhibitory Concentration (MIC) values. Subsequently, we employ a combinatorial predictor to simultaneously identify and predict five multifunctional AMP bioactivities, enabling the generation of multifunctional AMPs. The experimental results demonstrate the efficiency of generating AMPs with multiple enhanced antimicrobial properties, indicating that our work can provide a valuable reference for combating multi-drug-resistant infections. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Molecular Sciences)
Show Figures

Figure 1

22 pages, 2357 KiB  
Article
Targeting GLP-1 Signaling Ameliorates Cystogenesis in a Zebrafish Model of Nephronophthisis
by Priska Eckert, Maike Nöller, Merle Müller, Rebecca Haas, Johannes Ruf, Henriette Franz, Katharina Moos, Jia-ao Yu, Dongfang Zhao, Wanqiu Xie, Melanie Boerries, Gerd Walz and Toma A. Yakulov
Int. J. Mol. Sci. 2025, 26(15), 7366; https://doi.org/10.3390/ijms26157366 - 30 Jul 2025
Viewed by 175
Abstract
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing [...] Read more.
Nephronophthisis (NPH) is the leading genetic cause of end-stage renal disease in children and young adults, but no effective disease-modifying therapies are currently available. Here, we identify glucagon-like peptide-1 (GLP-1) signaling as a novel therapeutic target for NPH through a systematic drug repurposing screen in zebrafish. By simultaneously depleting nphp1 and nphp4, we developed a robust zebrafish model that reproduces key features of human NPH, including glomerular cyst formation. Our screen revealed that dipeptidyl peptidase-4 (DPP4) inhibitors (Omarigliptin and Linagliptin) and GLP-1 receptor agonists (Semaglutide) significantly reduce cystogenesis in a dose-dependent manner. Genetic analysis demonstrated that GLP-1 receptor signaling is important for maintaining pronephros integrity, with gcgra and gcgrb (GLP-1 receptor genes) playing a particularly important role. Transcriptomic profiling identified adenosine receptor A2ab (adora2ab) as a key downstream effector of GLP-1 signaling, which regulates ciliary morphology and prevents cyst formation. Notably, nphp1/nphp4 double mutant zebrafish exhibited the upregulation of gcgra as a compensatory mechanism, which might explain their resistance to cystogenesis. This compensation was disrupted by the targeted depletion of GLP-1 receptors or the inhibition of adenylate cyclase, resulting in enhanced cyst formation, specifically in the mutant background. Our findings establish a signaling cascade from GLP-1 receptors to adora2ab in terms of regulating ciliary organization and preventing cystogenesis, offering new therapeutic opportunities for NPH through the repurposing of FDA-approved medications with established safety profiles. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
Show Figures

Figure 1

Back to TopTop