Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,316)

Search Parameters:
Keywords = novel forests

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1437 KiB  
Article
Age-Stratified Classification of Common Middle Ear Pathologies Using Pressure-Less Acoustic Immittance (PLAI™) and Machine Learning
by Aleksandar Miladinović, Francesco Bassi, Miloš Ajčević and Agostino Accardo
Healthcare 2025, 13(15), 1921; https://doi.org/10.3390/healthcare13151921 - 6 Aug 2025
Abstract
Background/Objective: This study explores a novel approach for diagnosing common middle ear pathologies using Pressure-Less Acoustic Immittance (PLAI™), a non-invasive alternative to conventional tympanometry. Methods: A total of 516 ear measurements were collected and stratified into three age groups: 0–3, 3–12, and 12+ [...] Read more.
Background/Objective: This study explores a novel approach for diagnosing common middle ear pathologies using Pressure-Less Acoustic Immittance (PLAI™), a non-invasive alternative to conventional tympanometry. Methods: A total of 516 ear measurements were collected and stratified into three age groups: 0–3, 3–12, and 12+ years, reflecting key developmental stages. PLAI™-derived acoustic parameters, including resonant frequency, peak admittance, canal volume, and resonance peak frequency boundaries, were analyzed using Random Forest classifiers, with SMOTE addressing class imbalance and SHAP values assessing feature importance. Results: Age-specific models demonstrated superior diagnostic accuracy compared to non-stratified approaches, with macro F1-scores of 0.79, 0.84, and 0.78, respectively. Resonant frequency, ear canal volume, and peak admittance consistently emerged as the most informative features. Notably, age-based stratification significantly reduced false negative rates for conditions such as Otitis Media with Effusion and tympanic membrane retractions, enhancing clinical reliability. These results underscore the relevance of age-aware modeling in pediatric audiology and validate PLAI™ as a promising tool for early, pressure-free middle ear diagnostics. Conclusions: While further validation on larger, balanced cohorts is recommended, this study supports the integration of machine learning and acoustic immittance into more accurate, developmentally informed screening frameworks. Full article
Show Figures

Figure 1

19 pages, 4563 KiB  
Article
Designing Imidazolium-Mediated Polymer Electrolytes for Lithium-Ion Batteries Using Machine-Learning Approaches: An Insight into Ionene Materials
by Ghazal Piroozi and Irshad Kammakakam
Polymers 2025, 17(15), 2148; https://doi.org/10.3390/polym17152148 - 6 Aug 2025
Abstract
Over the past few decades, lithium-ion batteries (LIBs) have gained significant attention due to their inherent potential for environmental sustainability and unparalleled energy storage efficiency. Meanwhile, polymer electrolytes have gained popularity in several fields due to their ability to adapt to various battery [...] Read more.
Over the past few decades, lithium-ion batteries (LIBs) have gained significant attention due to their inherent potential for environmental sustainability and unparalleled energy storage efficiency. Meanwhile, polymer electrolytes have gained popularity in several fields due to their ability to adapt to various battery geometries, enhanced safety features, greater thermal stability, and effectiveness in reducing dendrite growth on the anode. However, their relatively low ionic conductivity compared to liquid electrolytes has limited their application in high-performance devices. This limitation has led to recent studies revolving around the development of poly(ionic liquids) (PILs), particularly imidazolium-mediated polymer backbones as novel electrolyte materials, which can increase the conductivity with fine-tuning structural benefits, while maintaining the advantages of both solid and gel electrolytes. In this study, a curated dataset of 120 data points representing eight different polymers was used to predict ionic conductivity in imidazolium-based PILs as well as the emerging ionene substructures. For this purpose, four ML models: CatBoost, Random Forest, XGBoost, and LightGBM were employed by incorporating chemical structure and temperature as the models’ inputs. The best-performing model was further employed to estimate the conductivity of novel ionenes, offering insights into the potential of advanced polymer architectures for next-generation LIB electrolytes. This approach provides a cost-effective and intelligent pathway to accelerate the design of high-performance electrolyte materials. Full article
(This article belongs to the Special Issue Artificial Intelligence in Polymers)
Show Figures

Figure 1

26 pages, 514 KiB  
Article
Improving Voice Spoofing Detection Through Extensive Analysis of Multicepstral Feature Reduction
by Leonardo Mendes de Souza, Rodrigo Capobianco Guido, Rodrigo Colnago Contreras, Monique Simplicio Viana and Marcelo Adriano dos Santos Bongarti
Sensors 2025, 25(15), 4821; https://doi.org/10.3390/s25154821 - 5 Aug 2025
Abstract
Voice biometric systems play a critical role in numerous security applications, including electronic device authentication, banking transaction verification, and confidential communications. Despite their widespread utility, these systems are increasingly targeted by sophisticated spoofing attacks that leverage advanced artificial intelligence techniques to generate realistic [...] Read more.
Voice biometric systems play a critical role in numerous security applications, including electronic device authentication, banking transaction verification, and confidential communications. Despite their widespread utility, these systems are increasingly targeted by sophisticated spoofing attacks that leverage advanced artificial intelligence techniques to generate realistic synthetic speech. Addressing the vulnerabilities inherent to voice-based authentication systems has thus become both urgent and essential. This study proposes a novel experimental analysis that extensively explores various dimensionality reduction strategies in conjunction with supervised machine learning models to effectively identify spoofed voice signals. Our framework involves extracting multicepstral features followed by the application of diverse dimensionality reduction methods, such as Principal Component Analysis (PCA), Truncated Singular Value Decomposition (SVD), statistical feature selection (ANOVA F-value, Mutual Information), Recursive Feature Elimination (RFE), regularization-based LASSO selection, Random Forest feature importance, and Permutation Importance techniques. Empirical evaluation using the ASVSpoof 2017 v2.0 dataset measures the classification performance with the Equal Error Rate (EER) metric, achieving values of approximately 10%. Our comparative analysis demonstrates significant performance gains when dimensionality reduction methods are applied, underscoring their value in enhancing the security and effectiveness of voice biometric verification systems against emerging spoofing threats. Full article
(This article belongs to the Special Issue Sensors and Machine-Learning Based Signal Processing)
Show Figures

Figure 1

19 pages, 2795 KiB  
Article
State Analysis of Grouped Smart Meters Driven by Interpretable Random Forest
by Zhongdong Wang, Zhengbo Zhang, Weijiang Wu, Zhen Zhang, Xiaolin Xu and Hongbin Li
Electronics 2025, 14(15), 3105; https://doi.org/10.3390/electronics14153105 - 4 Aug 2025
Abstract
Accurate evaluation of the operational status of smart meters, as the critical interface between the power grid and its users, is essential for ensuring fairness in power transactions. This highlights the importance of implementing rotation management practices based on meter status. However, the [...] Read more.
Accurate evaluation of the operational status of smart meters, as the critical interface between the power grid and its users, is essential for ensuring fairness in power transactions. This highlights the importance of implementing rotation management practices based on meter status. However, the traditional expiration-based rotation method has become inadequate due to the extended service life of modern smart meters, necessitating a shift toward status-driven targeted management. Existing multifactor comprehensive assessment methods often face challenges in balancing accuracy and interpretability. To address these limitations, this study proposes a novel method for analyzing the status of smart meter groups using an interpretable random forest model. The approach incorporates an expert-knowledge-guided grouping assessment strategy, develops a multi-source heterogeneous feature set with strong correlations to meter status, and enhances the random forest model with the SHAP (SHapley Additive exPlanations) interpretability framework. Compared to conventional methods, the proposed approach demonstrates superior efficiency and reliability in predicting the failure rates of smart meter groups within distribution network areas, offering robust support for the maintenance and management of smart meters. Full article
Show Figures

Figure 1

17 pages, 1707 KiB  
Article
A Structural Causal Model Ontology Approach for Knowledge Discovery in Educational Admission Databases
by Bern Igoche Igoche, Olumuyiwa Matthew and Daniel Olabanji
Knowledge 2025, 5(3), 15; https://doi.org/10.3390/knowledge5030015 - 4 Aug 2025
Viewed by 77
Abstract
Educational admission systems, particularly in developing countries, often suffer from opaque decision processes, unstructured data, and limited analytic insight. This study proposes a novel methodology that integrates structural causal models (SCMs), ontological modeling, and machine learning to uncover and apply interpretable knowledge from [...] Read more.
Educational admission systems, particularly in developing countries, often suffer from opaque decision processes, unstructured data, and limited analytic insight. This study proposes a novel methodology that integrates structural causal models (SCMs), ontological modeling, and machine learning to uncover and apply interpretable knowledge from an admission database. Using a dataset of 12,043 records from Benue State Polytechnic, Nigeria, we demonstrate this approach as a proof of concept by constructing a domain-specific SCM ontology, validate it using conditional independence testing (CIT), and extract features for predictive modeling. Five classifiers, Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors (KNN), and Support Vector Machine (SVM) were evaluated using stratified 10-fold cross-validation. SVM and KNN achieved the highest classification accuracy (92%), with precision and recall scores exceeding 95% and 100%, respectively. Feature importance analysis revealed ‘mode of entry’ and ‘current qualification’ as key causal factors influencing admission decisions. This framework provides a reproducible pipeline that combines semantic representation and empirical validation, offering actionable insights for institutional decision-makers. Comparative benchmarking, ethical considerations, and model calibration are integrated to enhance methodological transparency. Limitations, including reliance on single-institution data, are acknowledged, and directions for generalizability and explainable AI are proposed. Full article
(This article belongs to the Special Issue Knowledge Management in Learning and Education)
Show Figures

Figure 1

15 pages, 6769 KiB  
Article
Pine Cones in Plantations as Refuge and Substrate of Lichens and Bryophytes in the Tropical Andes
by Ángel Benítez
Diversity 2025, 17(8), 548; https://doi.org/10.3390/d17080548 - 1 Aug 2025
Viewed by 176
Abstract
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small [...] Read more.
Deforestation driven by plantations, such as Pinus patula Schiede ex Schltdl. et Cham., is a major cause of biodiversity and functional loss in tropical ecosystems. We assessed the diversity and composition of lichens and bryophytes in four size categories of pine cones, small (3–5 cm), medium (5.1–8 cm), large (8.1–10 cm), and very large (10.1–13 cm), with a total of 150 pine cones examined, where the occurrence and cover of lichen and bryophyte species were recorded. Identification keys based on morpho-anatomical features were used to identify lichens and bryophytes. In addition, for lichens, secondary metabolites were tested using spot reactions with potassium hydroxide, commercial bleach, and Lugol’s solution, and by examining the specimens under ultraviolet light. To evaluate the effect of pine cone size on species richness, the Kruskal–Wallis test was conducted, and species composition among cones sizes was compared using multivariate analysis. A total of 48 taxa were recorded on cones, including 41 lichens and 7 bryophytes. A total of 39 species were found on very large cones, 37 species on large cones, 35 species on medium cones, and 24 species on small cones. This is comparable to the diversity found in epiphytic communities of pine plantations. Species composition was influenced by pine cone size, differing from small in comparison with very large ones. The PERMANOVA analyses revealed that lichen and bryophyte composition varied significantly among the pine cone categories, explaining 21% of the variance. Very large cones with specific characteristics harbored different communities than those on small pine cones. The presence of lichen and bryophyte species on the pine cones from managed Ecuadorian P. patula plantations may serve as refugia for the conservation of biodiversity. Pine cones and their scales (which range from 102 to 210 per cone) may facilitate colonization of new areas by dispersal agents such as birds and rodents. The scales often harbor lichen and bryophyte propagules as well as intact thalli, which can be effectively dispersed, when the cones are moved. The prolonged presence of pine cones in the environment further enhances their role as possible dispersal substrates over extended periods. To our knowledge, this is the first study worldwide to examine pine cones as substrates for lichens and bryophytes, providing novel insights into their potential role as microhabitats within P. patula plantations and forest landscapes across both temperate and tropical zones. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

22 pages, 10557 KiB  
Article
The RF–Absolute Gradient Method for Localizing Wheat Moisture Content’s Abnormal Regions with 2D Microwave Scanning Detection
by Dong Dai, Zhenyu Wang, Hao Huang, Xu Mao, Yehong Liu, Hao Li and Du Chen
Agriculture 2025, 15(15), 1649; https://doi.org/10.3390/agriculture15151649 - 31 Jul 2025
Viewed by 194
Abstract
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization [...] Read more.
High moisture content (MC) harms wheat storage quality and readily leads to mold growth. Accurate localization of abnormal/high-moisture regions enables early warning, ensuring proper storage and reducing economic losses. The present study introduces the 2D microwave scanning method and investigates a novel localization method for addressing such a challenge. Both static and scanning experiments were performed on a developed mobile and non-destructive microwave detection system to quantify the MC of wheat and then locate abnormal moisture regions. For quantifying the wheat’s MC, a dual-parameter wheat MC prediction model with the random forest (RF) algorithm was constructed, achieving a high accuracy (R2 = 0.9846, MSE = 0.2768, MAE = 0.3986). MC scanning experiments were conducted by synchronized moving waveguides; the maximum absolute error of MC prediction was 0.565%, with a maximum relative error of 3.166%. Furthermore, both one- and two-dimensional localizing methods were proposed for localizing abnormal moisture regions. The one-dimensional method evaluated two approaches—attenuation value and absolute attenuation gradient—using computer simulation technology (CST) modeling and scanning experiments. The experimental results confirmed the superior performance of the absolute gradient method, with a center detection error of less than 12 mm in the anomalous wheat moisture region and a minimum width detection error of 1.4 mm. The study performed two-dimensional antenna scanning and effectively imaged the high-MC regions using phase delay analysis. The imaging results coincide with the actual locations of moisture anomaly regions. This study demonstrated a promising solution for accurately localizing the wheat’s abnormal/high-moisture regions with the use of an emerging microwave transmission method. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

17 pages, 1134 KiB  
Article
Functional Asymmetries and Force Efficiency in Elite Junior Badminton: A Controlled Trial Using Hop Test Metrics and Neuromuscular Adaption Indices
by Mariola Gepfert, Artur Gołaś, Adam Maszczyk, Kajetan Ornowski and Przemysław Pietraszewski
Appl. Sci. 2025, 15(15), 8450; https://doi.org/10.3390/app15158450 - 30 Jul 2025
Viewed by 279
Abstract
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) [...] Read more.
Given the high neuromechanical demands and frequent asymmetries in badminton, this study investigated the impact of a four-week asymmetry-targeted intervention on single-leg hop performance in elite junior badminton players and examined whether asymmetry-based indices could predict training responsiveness. Twenty-two national-level athletes (aged 15–18) were randomized into an experimental group (EG) undergoing neuromechanical training with EMG biofeedback or a control group (CG) following general plyometric exercises. Key performance metrics—Jump Height, Reactive Strength Index (RSI), Peak Power, and Active Stiffness—were evaluated pre- and post-intervention. Two novel composite indices, Force Efficiency Ratio (FER) and Asymmetry Impact Index (AII), were computed to assess force production efficiency and asymmetry burden. The EG showed significant improvements in Jump Height (p = 0.030), RSI (p = 0.012), and Peak Power (p = 0.028), while the CG showed no significant changes. Contrary to initial hypotheses, traditional asymmetry metrics showed no significant correlations with performance variables (r < 0.1). Machine learning models (Random Forest) using FER and AII failed to classify responders reliably (AUC = 0.50). The results suggest that targeted interventions can improve lower-limb explosiveness in youth athletes; however, both traditional and composite asymmetry indices may not reliably predict training outcomes in small elite groups. The results highlight the need for multidimensional and individualized approaches in athlete diagnostics and training optimization, especially in asymmetry-prone sports like badminton. Full article
(This article belongs to the Special Issue Exercise Physiology and Biomechanics in Human Health: 2nd Edition)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 347
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

25 pages, 9676 KiB  
Article
A Comparative Analysis of SAR and Optical Remote Sensing for Sparse Forest Structure Parameters: A Simulation Study
by Zhihui Mao, Lei Deng, Xinyi Liu and Yueyang Wang
Forests 2025, 16(8), 1244; https://doi.org/10.3390/f16081244 - 29 Jul 2025
Viewed by 268
Abstract
Forest structure parameters are critical for understanding and managing forest ecosystems, yet sparse forests have received limited attention in previous studies. To address this research gap, this study systematically evaluates and compares the sensitivity of active Synthetic Aperture Radar (SAR) and passive optical [...] Read more.
Forest structure parameters are critical for understanding and managing forest ecosystems, yet sparse forests have received limited attention in previous studies. To address this research gap, this study systematically evaluates and compares the sensitivity of active Synthetic Aperture Radar (SAR) and passive optical remote sensing to key forest structure parameters in sparse forests, including Diameter at Breast Height (DBH), Tree Height (H), Crown Width (CW), and Leaf Area Index (LAI). Using the novel computer-graphics-based radiosity model applicable to porous individual thin objects, named Radiosity Applicable to Porous Individual Objects (RAPID), we simulated 38 distinct sparse forest scenarios to generate both SAR backscatter coefficients and optical reflectance across various wavelengths, polarization modes, and incidence/observation angles. Sensitivity was assessed using the coefficient of variation (CV). The results reveal that C-band SAR in HH polarization mode demonstrates the highest sensitivity to DBH (CV = −6.73%), H (CV = −52.68%), and LAI (CV = −63.39%), while optical data in the red band show the strongest response to CW (CV = 18.83%) variations. The study further identifies optimal acquisition configurations, with SAR data achieving maximum sensitivity at smaller incidence angles and optical reflectance performing best at forward observation angles. This study addresses a critical gap by presenting the first systematic comparison of the sensitivity of multi-band SAR and VIS/NIR data to key forest structural parameters across sparsity gradients, thereby clarifying their applicability for monitoring young and middle-aged sparse forests with high carbon sequestration potential. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

24 pages, 5785 KiB  
Article
Phylogenetic Reassessment of Murinae Inferred from the Mitogenome of the Monotypic Genus Dacnomys Endemic to Southeast Asia: New Insights into Genetic Diversity Erosion
by Zhongsong Wang, Di Zhao, Wenyu Song and Wenge Dong
Biology 2025, 14(8), 948; https://doi.org/10.3390/biology14080948 - 28 Jul 2025
Viewed by 325
Abstract
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits [...] Read more.
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits diagnostic morphological adaptations—hypertrophied upper molars and cryptic pelage—that underpin niche differentiation in undisturbed tropical/subtropical forests. Despite its evolutionary distinctiveness, the conservation prioritization given to Dacnomys is hindered due to a deficiency of data and unresolved phylogenetic relationships. Here, we integrated morphological analyses with the first complete mitogenome (16,289 bp in size; no structural rearrangements) of D. millardi to validate its phylogenetic placement within the subfamily Murinae and provide novel insights into genetic diversity erosion. Bayesian and maximum likelihood phylogenies robustly supported Dacnomys as sister to Leopoldamys (PP = 1.0; BS = 100%), with an early Pliocene divergence (~4.8 Mya, 95% HPD: 3.65–5.47 Mya). Additionally, based on its basal phylogenetic position within Murinae, we propose reclassifying Micromys from Rattini to the tribe Micromyini. Codon usage bias analyses revealed pervasive purifying selection (Ka/Ks < 1), constraining mitogenome evolution. Genetic diversity analyses showed low genetic variation (CYTB: π = 0.0135 ± 0.0023; COX1: π = 0.0101 ± 0.0025) in fragmented populations. We propose three new insights into this genetic diversity erosion. (1) Evolutionary constraints: genome-wide evolutionary conservation and shallow evolutionary history (~4.8 Mya) limited mutation accumulation. (2) Anthropogenic pressures: deforestation-driven fragmentation of habitats (>20,000 km2/year loss since 2000) has reduced effective population size, exacerbating genetic drift. (3) Ecological specialization: long-term adaptation to stable niches favored genomic optimization over adaptive flexibility. These findings necessitate suitable conservation action by enforcing protection of core habitats to prevent deforestation-driven population collapses and advocating IUCN reclassification of D. millardi from Data Deficient to Near Threatened. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

23 pages, 20415 KiB  
Article
FireNet-KD: Swin Transformer-Based Wildfire Detection with Multi-Source Knowledge Distillation
by Naveed Ahmad, Mariam Akbar, Eman H. Alkhammash and Mona M. Jamjoom
Fire 2025, 8(8), 295; https://doi.org/10.3390/fire8080295 - 26 Jul 2025
Viewed by 470
Abstract
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional [...] Read more.
Forest fire detection is an essential application in environmental surveillance since wildfires cause devastating damage to ecosystems, human life, and property every year. The effective and accurate detection of fire is necessary to allow for timely response and efficient management of disasters. Traditional techniques for fire detection often experience false alarms and delayed responses in various environmental situations. Therefore, developing robust, intelligent, and real-time detection systems has emerged as a central challenge in remote sensing and computer vision research communities. Despite recent achievements in deep learning, current forest fire detection models still face issues with generalizability, lightweight deployment, and accuracy trade-offs. In order to overcome these limitations, we introduce a novel technique (FireNet-KD) that makes use of knowledge distillation, a method that maps the learning of hard models (teachers) to a light and efficient model (student). We specifically utilize two opposing teacher networks: a Vision Transformer (ViT), which is popular for its global attention and contextual learning ability, and a Convolutional Neural Network (CNN), which is esteemed for its spatial locality and inductive biases. These teacher models instruct the learning of a Swin Transformer-based student model that provides hierarchical feature extraction and computational efficiency through shifted window self-attention, and is thus particularly well suited for scalable forest fire detection. By combining the strengths of ViT and CNN with distillation into the Swin Transformer, the FireNet-KD model outperforms state-of-the-art methods with significant improvements. Experimental results show that the FireNet-KD model obtains a precision of 95.16%, recall of 99.61%, F1-score of 97.34%, and mAP@50 of 97.31%, outperforming the existing models. These results prove the effectiveness of FireNet-KD in improving both detection accuracy and model efficiency for forest fire detection. Full article
Show Figures

Figure 1

19 pages, 5166 KiB  
Article
Estimating Wheat Chlorophyll Content Using a Multi-Source Deep Feature Neural Network
by Jun Li, Yali Sheng, Weiqiang Wang, Jikai Liu and Xinwei Li
Agriculture 2025, 15(15), 1624; https://doi.org/10.3390/agriculture15151624 - 26 Jul 2025
Viewed by 213
Abstract
Chlorophyll plays a vital role in wheat growth and fertilization management. Accurate and efficient estimation of chlorophyll content is crucial for providing a scientific foundation for precision agricultural management. Unmanned aerial vehicles (UAVs), characterized by high flexibility, spatial resolution, and operational efficiency, have [...] Read more.
Chlorophyll plays a vital role in wheat growth and fertilization management. Accurate and efficient estimation of chlorophyll content is crucial for providing a scientific foundation for precision agricultural management. Unmanned aerial vehicles (UAVs), characterized by high flexibility, spatial resolution, and operational efficiency, have emerged as effective tools for estimating chlorophyll content in wheat. Although multi-source data derived from UAV-based multispectral imagery have shown potential for wheat chlorophyll estimation, the importance of multi-source deep feature fusion has not been adequately addressed. Therefore, this study aims to estimate wheat chlorophyll content by integrating spectral and textural features extracted from UAV multispectral imagery, in conjunction with partial least squares regression (PLSR), random forest regression (RFR), deep neural network (DNN), and a novel multi-source deep feature neural network (MDFNN) proposed in this research. The results demonstrate the following: (1) Except for the RFR model, models based on texture features exhibit superior accuracy compared to those based on spectral features. Furthermore, the estimation accuracy achieved by fusing spectral and texture features is significantly greater than that obtained using a single type of data. (2) The MDFNN proposed in this study outperformed other models in chlorophyll content estimation, with an R2 of 0.850, an RMSE of 5.602, and an RRMSE of 15.76%. Compared to the second-best model, the DNN (R2 = 0.799, RMSE = 6.479, RRMSE = 18.23%), the MDFNN achieved a 6.4% increase in R2, and 13.5% reductions in both RMSE and RRMSE. (3) The MDFNN exhibited strong robustness and adaptability across varying years, wheat varieties, and nitrogen application levels. The findings of this study offer important insights into UAV-based remote sensing applications for estimating wheat chlorophyll under field conditions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

27 pages, 10737 KiB  
Article
XT-SECA: An Efficient and Accurate XGBoost–Transformer Model for Urban Functional Zone Classification
by Xin Gao, Xianmin Wang, Li Cao, Haixiang Guo, Wenxue Chen and Xing Zhai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 290; https://doi.org/10.3390/ijgi14080290 - 25 Jul 2025
Viewed by 236
Abstract
The remote sensing classification of urban functional zones provides scientific support for urban planning, land resource optimization, and ecological environment protection. However, urban functional zone classification encounters significant challenges in accuracy and efficiency due to complicated image structures, ambiguous critical features, and high [...] Read more.
The remote sensing classification of urban functional zones provides scientific support for urban planning, land resource optimization, and ecological environment protection. However, urban functional zone classification encounters significant challenges in accuracy and efficiency due to complicated image structures, ambiguous critical features, and high computational complexity. To tackle these challenges, this work proposes a novel XT-SECA algorithm employing a strengthened efficient channel attention mechanism (SECA) to integrate the feature-extraction XGBoost branch and the feature-enhancement Transformer feedforward branch. The SECA optimizes the feature-fusion process through dynamic pooling and adaptive convolution kernel strategies, reducing feature confusion between various functional zones. XT-SECA is characterized by sufficient learning of complex image structures, effective representation of significant features, and efficient computational performance. The Futian, Luohu, and Nanshan districts in Shenzhen City are selected to conduct urban functional zone classification by XT-SECA, and they feature administrative management, technological innovation, and commercial finance functions, respectively. XT-SECA can effectively distinguish diverse functional zones such as residential zones and public management and service zones, which are easily confused by current mainstream algorithms. Compared with the commonly adopted algorithms for urban functional zone classification, including Random Forest (RF), Long Short-Term Memory (LSTM) network, and Multi-Layer Perceptron (MLP), XT-SECA demonstrates significant advantages in terms of overall accuracy, precision, recall, F1-score, and Kappa coefficient, with an accuracy enhancement of 3.78%, 42.86%, and 44.17%, respectively. The Kappa coefficient is increased by 4.53%, 51.28%, and 52.73%, respectively. Full article
(This article belongs to the Topic Artificial Intelligence Models, Tools and Applications)
Show Figures

Figure 1

18 pages, 3717 KiB  
Article
A Hybrid LMD–ARIMA–Machine Learning Framework for Enhanced Forecasting of Financial Time Series: Evidence from the NASDAQ Composite Index
by Jawaria Nasir, Hasnain Iftikhar, Muhammad Aamir, Hasnain Iftikhar, Paulo Canas Rodrigues and Mohd Ziaur Rehman
Mathematics 2025, 13(15), 2389; https://doi.org/10.3390/math13152389 - 25 Jul 2025
Viewed by 350
Abstract
This study proposes a novel hybrid forecasting approach designed explicitly for long-horizon financial time series. It incorporates LMD (Local Mean Decomposition), SD (Signal Decomposition), and sophisticated machine learning methods. The framework for the NASDAQ Composite Index begins by decomposing the original time series [...] Read more.
This study proposes a novel hybrid forecasting approach designed explicitly for long-horizon financial time series. It incorporates LMD (Local Mean Decomposition), SD (Signal Decomposition), and sophisticated machine learning methods. The framework for the NASDAQ Composite Index begins by decomposing the original time series into stochastic and deterministic components using the LMD approach. This method effectively separates linear and nonlinear signal structures. The stochastic components are modeled using ARIMA to represent linear temporal dynamics, while the deterministic components are projected using cutting-edge machine learning methods, including XGBoost, Random Forest (RF), Artificial Neural Networks (ANNs), and Support Vector Machines (SVMs). This study employs various statistical metrics to evaluate the predictive ability across both short-term noise and long-term trends, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Directional Statistic (DS). Furthermore, the Diebold–Mariano test is used to determine the statistical significance of any forecast improvements. Empirical results demonstrate that the hybrid LMD–ARIMA–SD–XGBoost model consistently outperforms alternative configurations in terms of prediction accuracy and directional consistency. These findings demonstrate the advantages of integrating decomposition-based signal filtering with ensemble machine learning to improve the robustness and generalizability of long-term forecasting. This study presents a scalable and adaptive approach for modeling complex, nonlinear, and high-dimensional time series, thereby contributing to the enhancement of intelligent forecasting systems in the economic and financial sectors. As far as the authors are aware, this is the first study to combine XGBoost and LMD in a hybrid decomposition framework for forecasting long-horizon stock indexes. Full article
Show Figures

Figure 1

Back to TopTop