Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = northwest vortex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4895 KiB  
Article
Multi-Stand Grouped Operations Method in Airport Bay Area Based on Deep Reinforcement Learning
by Jie Ouyang, Changqing Zhu, Xiaowei Tang and Jian Zhang
Aerospace 2025, 12(5), 398; https://doi.org/10.3390/aerospace12050398 - 30 Apr 2025
Viewed by 405
Abstract
To address the trade-off between safety levels and operational efficiency in the Bay Area, this study proposes a Multi-Stand Grouped Operations method based on deep reinforcement learning under the consideration of the safety domain. The full-process operation of aircraft within the Bay Area [...] Read more.
To address the trade-off between safety levels and operational efficiency in the Bay Area, this study proposes a Multi-Stand Grouped Operations method based on deep reinforcement learning under the consideration of the safety domain. The full-process operation of aircraft within the Bay Area is analyzed to identify key operational spots. Safety domains are then established based on path conflicts arising from aircraft movements and safety conflicts caused by minimum separation distances and wake vortex effects. These domains are used to define corresponding safe operating spaces and construct an optimized operational model for the Bay Area. A multi-agent reinforcement learning algorithm is employed to solve the model, deriving an optimized stand allocation plan and Multi-Stand Grouped Operations strategy. To evaluate the effectiveness of the optimization, real flight data from the northwest Bay Area of Terminal 2 at Guangzhou Baiyun Airport are used for validation. Compared to the original stand allocation scheme, the optimized stand allocation and Multi-Stand Grouped Operations strategy reduce aircraft delay times by 62.45%, demonstrating that the proposed model effectively enhances operational efficiency in the Bay Area. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

17 pages, 11839 KiB  
Article
Developing an Objective Scheme to Construct Hurricane Bogus Vortices Based on Scatterometer Sea Surface Wind Data
by Weixin Pan, Xiaolei Zou and Yihong Duan
Remote Sens. 2025, 17(9), 1528; https://doi.org/10.3390/rs17091528 - 25 Apr 2025
Viewed by 352
Abstract
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum [...] Read more.
This study presents an objective scheme to construct hurricane bogus vortices based on satellite microwave scatterometer observations of sea surface wind vectors. When specifying a bogus vortex using Fujita’s formula, the required parameters include the center position and the radius of the maximum gradient of sea level pressure (R0). We first propose determining the tropical cyclone (TC) center position as the cyclonic circulation center obtained from sea surface wind observations and then establishing a regression model between R0 and the radius of 34-kt sea surface wind of scatterometer observations. The radius of 34-kt sea surface wind (R34) is commonly used as a measure of TC size. The center positions determined from HaiYang-2B/2C/2D Scatterometers, MetOp-B/C Advanced Scatterometers, and FengYun-3E Wind Radar compared favorably with the axisymmetric centers of hurricane rain/cloud bands revealed by Advanced Himawari Imager observations of brightness temperature for the western Pacific landfalling typhoons Doksuri, Khanun, and Haikui in 2023. Furthermore, regression equations between R0 and the scatterometer-determined radius of 34-kt wind are developed for tropical storms and category-1, -2, -3, and higher hurricanes over the Northwest Pacific (2022–2023). The bogus vortices thus constructed are more realistic than those built without satellite sea surface wind observations. Full article
Show Figures

Graphical abstract

19 pages, 12447 KiB  
Article
Characteristics of Strong Cooling Events in Winter of Northeast China and Their Association with 10–20 d Atmosphere Low-Frequency Oscillation
by Qianhao Wang and Liping Li
Atmosphere 2024, 15(12), 1486; https://doi.org/10.3390/atmos15121486 (registering DOI) - 12 Dec 2024
Cited by 1 | Viewed by 1132
Abstract
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) [...] Read more.
In the past 42 years from 1980 to 2021, 103 regional strong cooling events (RSCEs) occurred in winter in Northeast China, and the frequency has increased significantly in the past 10 years, averaging 2.45 per year. The longest (shortest) duration is 10 (2) days. The minimum temperature series in 60 events exists in 10–20 d of significant low-frequency (LF) periods. The key LF circulation systems affecting RSCEs include the Lake Balkhash–Baikal ridge, the East Asian trough (EAT), the robust Siberian high (SH) and the weaker (stronger) East Asian temperate (subtropical) jet, with the related anomaly centers moving from northwest to southeast and developing into a nearly north–south orientation. The LF wave energy of the northern branch from the Atlantic Ocean disperses to Northeast China, which excites the downstream disturbance wave train. The corresponding LF positive vorticity enhances and moves eastward, leading to the formation of deep EAT. The enhanced subsidence motion behind the EAT leads to SH strengthening. The cold advection related to the northeast cold vortex is the main thermal factor causing the local temperature to decrease. The Scandinavian Peninsula is the primary cold air source, and the Laptev Sea is the secondary one, with cold air from the former along northwest path via the West Siberian Plain and Lake Baikal, and from the latter along the northern path via the Central Siberian Plateau, both converging towards Northeast China. Full article
Show Figures

Figure 1

19 pages, 3922 KiB  
Article
The Impact of Climate Change on the Spatiotemporal Distribution of Early Frost in Maize Due to the Northeast Cold Vortex
by Zheng Chu, Lixia Jiang, Juqi Duan, Jingjin Gong, Qiujing Wang, Yanghui Ji and Jiajia Lv
Atmosphere 2024, 15(6), 694; https://doi.org/10.3390/atmos15060694 - 7 Jun 2024
Viewed by 1247
Abstract
Agro-meteorological disasters are a significant cause of crop yield reduction. Northeast China is a major base for commodity grain production and is also highly sensitive to climate change. Early frost is one of the most significant meteorological disasters in Northeast China. The typical [...] Read more.
Agro-meteorological disasters are a significant cause of crop yield reduction. Northeast China is a major base for commodity grain production and is also highly sensitive to climate change. Early frost is one of the most significant meteorological disasters in Northeast China. The typical weather system serves as the primary meteorological cause of the occurrence of early frost. The Northeast Cold Vortex is a cyclonic system of certain intensity located in Northeast China, which has the potential to induce severe weather conditions such as extreme low temperatures and intense convection. Despite extensive research on the first occurrence of frost in Northeast China, the evolutionary characteristics under the combined influence of climate change and the Northeast Cold Vortex remain unclear. This limitation hinders the development of effective monitoring and early warning systems for early frost, as well as the formulation of disaster prevention and mitigation plans for crop production. Therefore, this study aims to objectively document the occurrence of early frost in maize crops in Northeast China from 1961 to 2021 under the influence of the Northeast Cold Vortex. It seeks to unveil the climatic characteristics and evolutionary patterns of early frost events in maize crops within this region, considering the impact of the Northeast Cold Vortex. Additionally, it endeavors to analyze the factors contributing to varying degrees of early frost caused by the Northeast Cold Vortex. The results showed that the occurrence of both early frost and frost influenced by the Northeast Cold Vortex exhibited a declining trend. Furthermore, there was also a decreasing proportion of initial frost attributed to the Northeast Cold Vortex, with a decline rate of 2% per decade, indicating a diminishing dominance of initial frost caused by this weather system. The onset date for the early frost under the influence of the Northeast Cold Vortex progressively advanced from southeast to northwest, occurring 4 days earlier than during the period from 1961 to 1990 between 1991 and 2021. While early frost displayed an increasing spatial distribution from southeast to northwest, it is noteworthy that the majority concentration of the Northeast Cold Vortex was observed in central regions, highlighting its predominant role in causing early frost in Northeast China. Full article
(This article belongs to the Special Issue Impacts of Climate Change and Agro-meteorological Disasters on Crops)
Show Figures

Figure 1

12 pages, 4522 KiB  
Article
The Lower Atmospheric Characteristics of Dust Storms Using Ground-Based Sensor Data: A Comparative Analysis of Two Cases in Jinan, China
by Tian Li, Chenghao Tan, Zilong Zhao and Wenjiao Yao
Atmosphere 2024, 15(3), 282; https://doi.org/10.3390/atmos15030282 - 26 Feb 2024
Cited by 1 | Viewed by 1460
Abstract
Two severe dust storm (DS) events (15–17 March and 28–29 March) hit northern China in 2021 consecutively. The lower atmospheric vertical dynamic and thermal structures during the two cases were compared using the ground-based sensor data from the microwave radiometer and radar wind [...] Read more.
Two severe dust storm (DS) events (15–17 March and 28–29 March) hit northern China in 2021 consecutively. The lower atmospheric vertical dynamic and thermal structures during the two cases were compared using the ground-based sensor data from the microwave radiometer and radar wind profiler, combined with the environmental and meteorological observations data in Jinan, China. It was found that both cases occurred under the background of cold vortexes over northeastern China. The dust was transported through the cold air on the northwest route. During the dust period, 2–3 km was the west or northwest airflow, and below 2 km was the northeast wind. The variation in the dynamic structure determined the duration of the DS. During the DS maintenance phase, the vertical wind shear (VWS) below 3 km measured approximately 10 m∙(s∙km)−1. The increased VWS during the dust intrusion period facilitated the transportation of dust. In contrast, the more significant VWS was not conducive to the maintenance of DS, and the shift to south wind control in the upper middle layer indicated the weakening of DS. In both cases, we observed a cliff-like decrease in relative humidity as a prominent indicator of dust outbreaks, occurring approximately 2–5 h beforehand. The diurnal difference between the vertical temperature and relative humidity during the dust maintenance period was found to be insignificant. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing)
Show Figures

Figure 1

17 pages, 18352 KiB  
Article
Comparative Analysis of Different Heavy Rainstorm Periods Lasting for Two Consecutive Days in the Qinba Region under the Influence of the Southwest Vortex
by Yiqing Xiao, Ruifang Liu, Yongyong Ma, Xidi Zhang, Panxing Lou and Meng Gao
Atmosphere 2024, 15(3), 260; https://doi.org/10.3390/atmos15030260 - 22 Feb 2024
Cited by 1 | Viewed by 1323
Abstract
In recent years, heavy rainfall events have occurred frequently in the Qinba region. Forecasting and predicting heavy rainfall in the Qinba region is difficult due to the unique underlying terrain and complicated mechanisms involved. One significant weather system that might bring significant rainfall [...] Read more.
In recent years, heavy rainfall events have occurred frequently in the Qinba region. Forecasting and predicting heavy rainfall in the Qinba region is difficult due to the unique underlying terrain and complicated mechanisms involved. One significant weather system that might bring significant rainfall to the region is the southwest vortex (SWV); however, its different positions, intensities, and interaction with other weather systems might result in precipitation with different intensities and distributions. In this study, ERA-5 reanalysis data, FY-4A satellite data, and conventional observation data were used to examine heavy rainstorms that occurred in the Qinba region in the periods of 3–4 September 2021 (referred to as Stage I) and 4–5 September 2021 (referred to as Stage II), while the SWV was in effect. During Stage I, the northwest vortex (NWV) and SWV generated a mesoscale shear line and mesoscale convective complex (MCC) in the Qinba region. This led to a considerable area of heavy rainfall, with a maximum hourly precipitation of 129 mm and heavy precipitation at 15 stations. During Stage II, a mesoscale convective system (MCS) influenced by the SWV was initiated by a low-level jet, resulting in a localized heavy downpour with a maximum hourly precipitation of 72 mm. Significant topography-forced uplift was found in both Stages I and II in the high-altitude Qinba region. Furthermore, the rainfall was stronger during Stage I due to the secondary circulation that developed in the middle and lower levels. These findings will improve our capability to predict rainstorms and prevent disasters in the Qinba region. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 14370 KiB  
Review
Radar Characteristics and Causal Analysis of Two Consecutive Tornado Events Associated with Heavy Precipitation during the Mei-Yu Season
by Shuya Cao, Yi Wang, Guangxin He, Peifeng Shen, Yan He and Yue Wu
Remote Sens. 2023, 15(23), 5470; https://doi.org/10.3390/rs15235470 - 23 Nov 2023
Cited by 2 | Viewed by 1594
Abstract
This paper comprehensively analyzed two consecutive tornado events associated with heavy precipitation during the Mei-yu season (a period of continuous rainy weather that occurs in the middle and lower reaches of the Yangtze River in China from mid-June to mid-July each year) and [...] Read more.
This paper comprehensively analyzed two consecutive tornado events associated with heavy precipitation during the Mei-yu season (a period of continuous rainy weather that occurs in the middle and lower reaches of the Yangtze River in China from mid-June to mid-July each year) and detailed the formation and development process of the tornadoes using Doppler weather radar, wind profiler radar, ERA5 reanalysis data, ground automatic station data and other multi-source data. The results showed that: (1) Small-scale vortices were triggered and developed during the eastward movement of the low vortex, forming two tornadoes successively on the eastern section of the Mei-yu front. (2) The presence of a gap on the front side of the reflectivity factor profile indicated that strong incoming airflow entered the updraft. Mesocyclones were detected with decreasing heights and increasing shear strengths. The bottom height of the tornado vortex signature (TVS) dropped to 0.7 km, and the shear value increased to 55.4 × 10−3 s−1. Tornado debris signatures (TDSs) could be seen with a low cross-correlation coefficient (CC) value area of 0.85–0.9 in the mesocyclone. The difference between the lowest-level difference velocity (LLDV) and the maximum difference velocity (MXDV) reached the largest value when a tornado occurred. (3) The continuously enhanced low-level jet propagated downward to form a super-low-level jet, and the strong wind direction and wind speed convergence in the boundary layer created a warm, moist and unstable atmosphere in Suzhou. With the entrainment of dry air, the northwest dry jet and the southeast moist jet stimulated the formation of a miniature supercell. (4) The low-level vertical wind shear of 0–1 km increased significantly upon tornado occurrence, which was more conducive to the formation and intensification of horizontal vorticity tubes. Encountering updrafts and downdrafts, the vorticity tubes might have been stretched and intensified. The first lightning jumps appeared 15 min and 66 min earlier than the Kunshan Bacheng tornado and the Taicang Liuhe tornado. The Liuhe tornado occurred during the stage when the lightning frequency reached its peak and then fell back. Full article
Show Figures

Figure 1

16 pages, 4636 KiB  
Article
Evaluation on the Forecast Skills of Precipitation and Its Influencing Factors in the Flood Season in Liaoning Province of China
by Yihe Fang, Dakai Jiang, Chenghan Liu, Chunyu Zhao, Zongjian Ke, Yitong Lin, Fei Li and Yiqiu Yu
Atmosphere 2023, 14(4), 668; https://doi.org/10.3390/atmos14040668 - 31 Mar 2023
Cited by 1 | Viewed by 1796
Abstract
To clarify the precipitation forecast skills of climate forecast operations in the flood season in Liaoning Province of China, this study examines the forecast accuracies of China’s national and provincial operational climate prediction products and the self-developed objective prediction methods and climate model [...] Read more.
To clarify the precipitation forecast skills of climate forecast operations in the flood season in Liaoning Province of China, this study examines the forecast accuracies of China’s national and provincial operational climate prediction products and the self-developed objective prediction methods and climate model products by Shenyang Regional Climate Center (SRCC) in the flood season in Liaoning. Furthermore, the forecast accuracies of the main influencing factors on the precipitation in the flood season of Liaoning are assessed. The results show that the SRCC objective methods have a relatively high accuracy. The European Centre for Medium-Range Weather Forecasts (ECMWF) sub-seasonal forecast initialized at the sub-nearest time has the best performance in June. The National Climate Center (NCC) Climate System Model sub-seasonal forecast initialized at the sub-nearest time, and the ECMWF seasonal and sub-seasonal forecasts initialized at the nearest time, perform the best in July. The NCC sub-seasonal forecast initialized at the sub-nearest time has the best performance in August. For the accuracy of the SRCC objective method, the more significant the equatorial Middle East Pacific sea surface temperature (SST) anomaly is, the higher the evaluation score of the dynamic–analogue correction method is. The more significant the North Atlantic SST tripole is, the higher the score of the hybrid downscaling method is. For the forecast accuracy of the main influencing factors of precipitation, the tropical Atlantic SST and the north–south anti-phase SST in the northwest Pacific can well predict the locations of the southern vortex and the northern vortex in early summer, respectively. The warm (clod) SST in China offshore has a good forecast performance on the weak (strong) southerly wind in midsummer in Northeast China. The accuracy of using the SST in the Nino 1+2 areas to predict the north–south location of the western Pacific subtropical high is better than that of using Kuroshio SST. The accuracy of predicting northward-moving typhoons from July to September by using the SST in the west-wind-drift area is better than using the SST in the Nino 3 area. The above conclusions are of great significance for improving the short-term climate prediction in Liaoning. Full article
(This article belongs to the Special Issue Climate Change on Ocean Dynamics)
Show Figures

Figure 1

15 pages, 11341 KiB  
Article
Experimental Research on the Effect of Particle Parameters on Dynamic Stall Characteristics of the Wind Turbine Airfoil
by Deshun Li, Ting He and Qing Wang
Energies 2023, 16(4), 1849; https://doi.org/10.3390/en16041849 - 13 Feb 2023
Viewed by 1737
Abstract
The frequent appearance of sandy and dusty weather in Northwest China impacts the wind turbine. Meanwhile, the non-constant phenomena, dynamic stall speed during the wind turbine operation, will lead to large load fluctuations and unsafe operation. However, few studies have been conducted at [...] Read more.
The frequent appearance of sandy and dusty weather in Northwest China impacts the wind turbine. Meanwhile, the non-constant phenomena, dynamic stall speed during the wind turbine operation, will lead to large load fluctuations and unsafe operation. However, few studies have been conducted at home and abroad on the effect of particle parameters on the dynamic stall of airfoils. This paper investigates the impact of particle parameters on the airfoil dynamic stall through numerical simulation of the coupling between the continuous phase and discrete phase by using the SST k-ω turbulence model for a two-dimensional NACA 0012 airfoil. The effect of particle parameters on the airfoil dynamic stall aerodynamic performance, the impact of the flow field around the airfoil, and the particles motion were studied, respectively. The investigation shows a reduction in the aerodynamic performance of the airfoil, due to the addition of particles. The effect is more prominent under a large angle of attack and less under a small angle of attack. When the angle of attack increases, the loss rate of lift coefficient in the windy and sandy environment gradually decreases, while irregular fluctuations emerge when the angle of attack decreases, and the overall rate of change increases more significantly, compared to the stage of the increasing angle of attack. For the particle diameter under 50 μm, the larger the particle diameter, the more significant the change of lift coefficient becomes, as well as the larger the vortex volume near the airfoil’s leading edge, and a large number of particles gather at the suction surface of the airfoil. For the particle diameter of 50 μm, the lift coefficient decreases at any angle of attack of the airfoil movement to the oscillation cycle, the vortex volume decreases, and a large number of particles gather at the pressure surface of the airfoil. However, for particle diameters above 50 μm, the lift coefficient gets reduced, followed by a decrease in the vortex volume near the airfoil leading edge with the increase of particle diameter, so that plenty of particles gather on the pressure surface of that airfoil. At the stage of increasing the airfoil angle of attack, with the increase of particle concentration, there is a gradual decrease of the peak lift coefficient and stall angle of attack of the airfoil, as well as a corresponding decrease of the drag coefficient divergence angle of attack and peak value. In contrast, when the airfoil angle of attack is decreased, the airflow reattachment process obviously lags behind that of the clean air. As the particle concentration increases, the airfoil separation point occurs earlier, and the higher the concentration, the earlier the separation point. The erosion maximum airfoil erosion rate increases with the particle concentration. Full article
Show Figures

Figure 1

16 pages, 5658 KiB  
Article
Analysis of Large-Scale Environmental Features during Maximum Intensity of Tropical Cyclones Using Reanalysis Data
by Mohan Murali Krishna Gorja, Venkata Sai Gulakaram, Naresh Krishna Vissa, Yesubabu Viswanadhapalli and Bhishma Tyagi
Atmosphere 2023, 14(2), 333; https://doi.org/10.3390/atmos14020333 - 7 Feb 2023
Cited by 4 | Viewed by 2814
Abstract
The present study investigates the variation in large-scale environments during the maximum intensity of tropical cyclones (TCs) formed in the Bay of Bengal. TC tracks are classified into four groups based on their direction of movement using the k-means clustering technique. Results [...] Read more.
The present study investigates the variation in large-scale environments during the maximum intensity of tropical cyclones (TCs) formed in the Bay of Bengal. TC tracks are classified into four groups based on their direction of movement using the k-means clustering technique. Results from the pressure level and azimuthal-averaged radial-height wind fields near the vortex centre show weak deep layer wind shear (WS) and abundant moisture in all clusters. However, large-scale environmental differences in the northwest quadrant are identified with a contrasting combination of WS and humid environment between clusters. The composites of OLR are also analyzed during maximum intensities of TCs. Results show that anomalous high OLR in the west–northwest direction from the vortex centre, along with the low OLR around the vortex centre, signify the formation of a strong OLR dipole during TC peak intensity. Furthermore, OLR dipole metrics, such as magnitude, orientation, and distance, are observed by having mean of 235 Wm−2, 147, and 1782 km along with standard deviation of 14 Wm−2, 34°, and 492 km, respectively. The identified large-scale environmental fields from this study could provide valuable insights for predicting the intensity and movement of TCs. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

28 pages, 13751 KiB  
Article
The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021)
by Ning Wang, Jian Chen, Yuanyuan Zhang, Yongming Xu and Wenzheng Yu
Remote Sens. 2023, 15(2), 410; https://doi.org/10.3390/rs15020410 - 9 Jan 2023
Cited by 12 | Viewed by 2670
Abstract
The climate effect and environmental pollution caused by dust discharged into the atmosphere have attracted much attention. However, the driving factors of dust emissions have not been studied thoroughly. Here, spatiotemporal variations in dust emissions and the relationship between dust emissions and large-scale [...] Read more.
The climate effect and environmental pollution caused by dust discharged into the atmosphere have attracted much attention. However, the driving factors of dust emissions have not been studied thoroughly. Here, spatiotemporal variations in dust emissions and the relationship between dust emissions and large-scale atmospheric circulation in East Asia from 2000 to 2021 were investigated using Modern-Era Retrospective Analysis for Research and Applications version 2, Cloud-Aerosol Lidar Pathfinder Satellite Observations, ERA5 reanalysis data, and climate indices. Results showed that the Taklimakan Desert in the Tarim Basin, the Gurbantonggut Desert in the Junggar Basin, the Turpan Basin, and the Gobi Desert in western Inner Mongolia and southern Mongolia are the main sources of dust emissions in East Asia. The period of strong dust emissions is from March to May, and emissions to the atmosphere were mainly distributed at 0–4 km in the troposphere. In the eastern and southwestern Tarim Basin, northern Junggar Basin, and parts of the Gobi Desert in southern Mongolia, dust emissions have significantly increased over the past 22 years, whereas in the southwestern Tibetan Plateau, southwestern Inner Mongolia, and a small part of the northern Mongolian Gobi Desert there was a significant decreasing trend. The winter North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) were significantly negatively correlated with East Asian dust emissions the following spring. The various phases of the AO/NAO coupling have clear different effects on East Asian dust emissions in the spring. When the AO/NAO coupling was negative (positive), the East Asian trough and Siberian High were strengthened (weakened), the frequency of cold air activity increased (weakened), 800 hPa wind speed strengthened (weakened), and East Asian emissions increased (decreased). In AO−/NAO+ years, the Asian polar vortex was stronger to the south and the East Asian trough was stronger to the west. The Lake Baikal trough was in the deepening phase, which caused more polar cold air to move into East Asia, aggravating the intensity of dust activity. In the AO+/NAO− years, the Siberian High and East Asian trough weakened, which was unfavorable to the southward movement of cold air from Siberia. Therefore, the frequency of windy weather in East Asia decreased, partly weakening dust emissions. However, a positive geopotential anomaly in northeast China and a negative geopotential anomaly in South Asia triggered an anomalous enhancement in easterly wind in the tropospheric area over northwest China. Strengthening of the Balkhash trough provides favorable conditions for gale weather in northwest China. The frequency of gale weather increased, and dust emissions were enhanced in northwest China. Full article
Show Figures

Graphical abstract

14 pages, 7117 KiB  
Article
Spatiotemporal Characteristics and Influencing Factors of Summer Heatwaves in Hexi Oasis during 1962–2020
by Juan Lu, Puxing Liu and Huiyu Wang
Atmosphere 2023, 14(1), 119; https://doi.org/10.3390/atmos14010119 - 5 Jan 2023
Cited by 1 | Viewed by 1671
Abstract
Based on the daily gridded (0.5° × 0.5°) maximum temperature data during 1962–2020, the spatiotemporal characteristics of heatwaves in Hexi Oasis, Gansu Province, China and their influencing factors are investigated. The results showed that for the last 59 years, the overall trends of [...] Read more.
Based on the daily gridded (0.5° × 0.5°) maximum temperature data during 1962–2020, the spatiotemporal characteristics of heatwaves in Hexi Oasis, Gansu Province, China and their influencing factors are investigated. The results showed that for the last 59 years, the overall trends of high-temperature heatwaves in Hexi Oasis were prolonged duration (0.276 d/10a), increased frequency (0.007 times/10a), and decreased intensity (−0.072 °C/10a). In terms of spatial variation, there was a gradually decreasing trend from northwest to southeast for both the duration and frequency of heatwaves. In the contrary, heatwaves with higher intensity were mainly distributed over the southeastern and central parts of Hexi Oasis. The Mann–Kendall (M-K) analysis demonstrated that the mutation years of the duration and intensity of heatwaves are 2009 and 1992, respectively, while the frequency remained nearly constant for the last 59a. In addition, the cycles for the duration (2.6a and 7.2a), frequency (2.8a and 7.6a), and intensity (2.6a) of heatwaves agree well with those of atmospheric circulation and El Niño events, indicating that the above events have a great impact on the heatwaves. The influencing factors analyzation implies that the heatwaves are mainly influenced by Asian zone polar vortex area index (APVAI), East Asia major trough (EAT), Qinghai-Tibetan Plateau index (TPI), and carbon dioxide emissions (CDE). Additionally, it is concluded that the intensity of heatwaves was negatively correlated with the size of the subtropical high-pressure area in the western Pacific Ocean. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

16 pages, 8939 KiB  
Article
Analysis of Intraseasonal Oscillation Features of Winter Cold Precipitation Events in Southern China
by Qingjiu Gao, Ziqi Zhang, Yesheng Zhu and Shuyi Chen
Atmosphere 2022, 13(10), 1603; https://doi.org/10.3390/atmos13101603 - 30 Sep 2022
Cited by 3 | Viewed by 1969
Abstract
Based on the daily minimum air temperature (Tmin) data and the daily precipitation data from the NCC/CMA combined with the NCEP/DOE reanalysis data, the intraseasonal features and circulations of the winter cold precipitation events (CPEs) in southern China under the influence [...] Read more.
Based on the daily minimum air temperature (Tmin) data and the daily precipitation data from the NCC/CMA combined with the NCEP/DOE reanalysis data, the intraseasonal features and circulations of the winter cold precipitation events (CPEs) in southern China under the influence of strong Madden–Julian oscillation (MJO) were explored. The results show that: (1) Winter temperatures in southern China are characterized by intraseasonal oscillations (ISOs) of 10–30-d and 30–60-d, with six CPEs under strong MJO all occurring during these two intraseasonal scales in cooling phases. The invasion of cold air coupled with the availability of appropriate moisture conditions in southern China is more conducive to the CPEs. (2) A cyclone and anticyclone lying to the east of the Ural Mountains and the northwest of Lake Baikal at 925-hPa gradually move southeastward. The merging of the low-frequency (LF) blocking highs over the Ural Mountains and the North Pacific Ocean at 500-hPa leads to the contraction and southward movement of the LF cold vortex. The following anomalous northerly winds steer the cold air towards southern China. The cold advection is the dominant term in the cooling process, while the adiabatic cooling accompanied with ascending motion is also beneficial to the cooling process. (3) MJO has some effect on the LF blocking highs and the cold vortex in the mid-high latitudes and induces the CPEs over southern China. The joint effect of mid-high and low latitudes on the 30–60-d intraseasonal oscillation scale can have a significant impact on the cooling and precipitation processes of CPEs. Full article
(This article belongs to the Special Issue Characteristics and Attribution of Air Temperature Variability)
Show Figures

Figure 1

16 pages, 7898 KiB  
Article
Possible Relationships between the Interdecadal Anomalies of Heavy Rainfall under Northeastern China Cold Vortexes and the Sea Surface Temperature (SST)
by Dan Zhu, Xiefei Zhi, Zin Mie Mie Sein, Yan Ji, Xiao Tian and Mengting Pan
Atmosphere 2022, 13(2), 354; https://doi.org/10.3390/atmos13020354 - 19 Feb 2022
Cited by 7 | Viewed by 3018
Abstract
As an important component of the East Asian monsoon system, the northeast cold vortex (NECV) exerts a significant impact on weather and climate, especially in Northeast China. This study investigated the interdecadal spatiotemporal variability of heavy rainfall under the cold vortex of Northeast [...] Read more.
As an important component of the East Asian monsoon system, the northeast cold vortex (NECV) exerts a significant impact on weather and climate, especially in Northeast China. This study investigated the interdecadal spatiotemporal variability of heavy rainfall under the cold vortex of Northeast China (NECVHR) and its relationship with sea surface temperature (SST) during 1961–2019 over Northeast China. To investigate the dominant factors affecting variability in the heavy rainfall between May and September, an empirical orthogonal function (EOF) analysis was performed. To detect the trends and changes, a Mann-Kendall (MK) test was used. The sliding t-test was used to identify the change points and the significance. Pearson correlation analysis was used to analyze the relationship between SST and NECVHR, and the t-test was used to verify the significance. The results showed that the total amount of cold vortex heavy rainfall during May–September ranged from 153 to 12,509 mm for 1961–2019. An abrupt interdecadal change was seen after 2014 in Northeast China. The EOF analyses revealed that the first, second, and third EOFs explain 76%, 12.1%, and 5.5% of the total variance, respectively. The EOF followed the heavy rainfall pattern, with increases in the south (southeast) and decreases in the north (northwest) over Northeast China. Heavy rainfall over Northeast China positively correlated with the Atlantic multidecadal oscillation (AMO) index. The heavier rainfall under cold vortex (MCVHR) years revealed that the equipotential height was obviously located over the Sea of Japan, west of Northeast China and the Qinghai Tibet plateau. The cyclonic circulation over the East China Sea and north (northeasterly) wind prevails over Northeast China during less heavy rainfall under cold vortex (LCVHR) years. A high anticyclonic circulation over the Qinghai Tibet plateau resulted in stronger cold advection over Northeast China. The anticyclonic circulations over the East China Sea and the Sea of Japan (east), and the western (southwesterly) winds prevail over Northeast China, with a relatively shallow cold trough over the Qinghai Tibet plateau. The findings in this paper provided a better understanding of the interdecadal variability of NECVHR over Northeast China. The findings can be helpful for several stakeholders regarding agricultural production, water resource management, and natural habitat conversation in Northeast China. Full article
Show Figures

Figure 1

16 pages, 6635 KiB  
Article
A Numerical Simulation of the “1907” Kaiyuan Tornado Weather Process in Liaoning, Northeast China
by Yiping Wang, Tong Wang, Pu Yang and Wei Xue
Atmosphere 2022, 13(2), 219; https://doi.org/10.3390/atmos13020219 - 28 Jan 2022
Cited by 17 | Viewed by 3326
Abstract
From 17:00 to 18:00 local standard time (LST) on 3 July 2019, a rare strong tornado occurred in Kaiyuan, Liaoning Province, northeast China. NCEP/NCAR 0.25° × 0.25° reanalysis data and WRF4.0 numerical prediction models were used to carry out the numerical simulation. Double [...] Read more.
From 17:00 to 18:00 local standard time (LST) on 3 July 2019, a rare strong tornado occurred in Kaiyuan, Liaoning Province, northeast China. NCEP/NCAR 0.25° × 0.25° reanalysis data and WRF4.0 numerical prediction models were used to carry out the numerical simulation. Double nesting was adopted, and the horizontal grid distance was 9 km by 3 km. Based on the observation data of China meteorological observation stations, surface and upper charts, Doppler radar data, Himawari(HMW)-8 satellite images and numerical simulation results, the mesoscale structure and mechanism of the tornado were studied. The results show that: (1) At the northwest edge of the subtropical high, and the northeast cold vortex located in Northeast China, when the transverse trough moves southward, cold air is supplied continuously. Under the joint influence of the surface northeast cyclone, these are the main synoptic features of the tornado; (2) The northeast cold vortex cloud system was located at the junction of Heilongjiang and Jilin Provinces, and a squall line cloud system is formed. The tornado occurred at the tail of the squall line, and the strongest echo reached 65 dBZ. A mesocyclone, a 20 km northwest–southeast convergence belt, V-shaped gap, echo overhang structure and tornado vortex feature (TVS) were detected by the Doppler radar; (3) Before the tornado occurred, dry and cold air intruded from the northwest of the cold vortex, and a water vapor convergence zone appeared south of the squall line. The water vapor saturation zone with 80% relative humidity in northeast China was concentrated at 700 hPa, and the 20% dry column dropped down to 500 hPa between 115 and 124° E from the west. On the 850 hPa physical fields, there was a −20 × 10−5 s−1 convergence zone, and a 16 × 10−5 s−1 divergence belt appeared south and north of the squall line. A negative vorticity belt and a positive vorticity belt appeared south and north of the squall line, respectively. Kaiyuan is located at the smallest vertical shear, which is the junction place of three large vertical shear belts; (4) After 10:00 LST, the westerly wind 20 (10) m·s−1 dropped to 400 (800) hPa between 126 and 127° E. The northerly gale at 300 hPa north of 45° N moved southward. The rising center of the low level at 17:00 LST at approximately 45° N moved southward, and a sinking center appeared above it; (5) Several pairs of positive and negative vorticity columns formed between the lower troposphere and the place where the tornado occurred. There was convective instability at the lower level. CAPE increased, 0–3 km vertical wind shear increased, and LCL decreased remarkably during the afternoon. Full article
Show Figures

Figure 1

Back to TopTop