Spatiotemporal Characteristics and Influencing Factors of Summer Heatwaves in Hexi Oasis during 1962–2020
Abstract
:1. Introduction
2. Data and Method
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
3. Results and Discussion
3.1. Temporal and Spatial Characteristics of the Recent 59a High-Temperature Heatwave in Hexi Oasis
3.2. Mutation Analysis and Cycle Analysis of the Recent 59a High-Temperature Heatwave in Hexi Oasis
3.3. Correlation Analysis of Atmospheric Circulation and WPSHP of the Heatwaves in Hexi Oasis for Nearly 59 Years
4. Summary and Conclusions
- (1)
- In this study, the spatial and temporal variations of high-temperature heatwave in Hexi Oasis are investigated using daily gridded maximum temperature data. The results show that the heatwaves in Hexi Oasis exhibit a trend of prolonged duration, increased frequency, and reduced intensity, and the northwestern part of the oasis is the region where heatwaves are more frequent and long-lasting. In addition, the duration of heatwaves increased significantly in the 1990s. For the spatial distribution, the duration and frequency of heatwaves decreased gradually from northwest to southeast. The northwestern parts of Hexi oasis, such as Subei Mongol Autonomous County, Guazhou County, and Yumen City, are the regions with the longest duration and most frequent heatwaves. In contrast, the southeastern part is the region with the highest intensity of heatwaves.
- (2)
- Mutation analysis shows that the mutation of duration and intensity of heatwaves occurred in 2009 and 1992, respectively, while the frequency did not change notably. The earliest mutation of the duration of heatwaves indicates it is most sensitive to climate change. Moreover, the variation in heatwave is characterized by short cycles, in which there are cycles of 2.6a and 7.2a for duration, 2.8a and 7.6a for frequency, and 2.6a for intensity. This agrees well with the cycles of atmospheric circulation and El Niño, indicating which have obvious influences on the heatwaves.
- (3)
- Analyzation of the influencing factors shows that APVAI, EAT, TPI, and CDE are the main driving factors affecting the variation of heatwaves in Hexi Oasis. Additionally, the index of WPSHA increases significantly in years with strong heatwave activity. On the contrary, the WPSHA shrinks significantly in years with weak heatwave activity, while the westward extension and eastward shift of the WPSHP have no obvious influence on the heatwave in Hexi Oasis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Professional Terms |
M-K | Mann-Kendall |
EAT | East Asia Major Trough |
TPI | Qinghai-Tibetan Plateau Index |
CDE | Carbon Dioxide Emissions |
APVAI | Asian Zone Polar Vortex Area Index |
APVII | Asian Polar Vortex Intensity Index |
AO | Arctic Oscillation Index |
WPSHA | Western Pacific Sub-High Area Index |
WPSHI | Western Pacific Sub-High Intensity Index |
WPSHRPI | Western Pacific Sub-High Ridge Position Index |
WPSHNBP | and Western Pacific Sub-High Northern Boundary Position Index |
WPSHP | West Pacific Subtropical High Pressure |
SST | sea surface temperature |
References
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Chen, H.J.; Zhao, L.; Dong, W.; Cheng, L.L.; Cai, W.J.; Yang, J.; Bao, J.Z.; Liang, X.Z.; Shakoor, H.; Gong, P.; et al. Spatiotemporal variation of mortality burden attributable to heatwaves in China, 1979–2020. Sci. Bull. 2022, 67, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Yuan, X.; Wu, R.G. Attribution of the persistent spring-summer hot and dry extremes over northeast china in 2017. Bull. Am. Meteorol. Soc. 2019, 100, S85–S89. [Google Scholar] [CrossRef]
- Kong, Q.Q.; Guerreiro, S.B.; Blenkinsop, S.; Li, X.F.; Fowler, H.J. Increases in summertime concurrent drought and heatwave in Eastern China. Weather Clim. Extrem. 2020, 28, 100242. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.F.; Liu, L.X.; Zeng, Y.; Liu, M.M.; Bi, J.; Ji, J.S. Effect of heatwaves and greenness on mortality among Chinese older adults. Environ. Pollut. 2021, 290, 118009. [Google Scholar] [CrossRef]
- Scherrer, S.C.; Fischer, E.M.; Posselt, R.; Liniger, M.A.; Croci-Maspoli, M.; Knutti, R. Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J. Geophys. Res.-Atmos. 2016, 121, 2626–2637. [Google Scholar] [CrossRef] [Green Version]
- Garca-Herrera, R.; Diaz, J.; Trigo, R.M.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Laurent, F.; Pavillon, G.; Bellec, S.; Guihenneuc-Jouyaux, C.; Clavel, J.; Jougla, E.; Hémon, D. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health 2006, 80, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Habeeb, D.; Vargo, J.; Stone, B., Jr. Rising heat wave trends in large US cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.W.; Xu, T.Y.; Murray, D. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 2011, 38, L06702. [Google Scholar] [CrossRef]
- Jia, J.; Hu, Z.Y. Spatial and temporal features and trend of different level heat waves over China. Prog. Geogr. 2017, 32, 546–559. (In Chinese) [Google Scholar] [CrossRef]
- Shen, H.J.; You, Q.L.; Wang, P.L.; Kong, L. Analysis on heat waves vartation features in China during 1961–2014. Sci. Meteorol. Sin. 2018, 38, 28–36. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Wang, S.P.; Feng, J.Y. Drought Events and Its Influence in Summer of 2017 in China. Arid. Meteorol. 2017, 35, 899–905. (In Chinese) [Google Scholar] [CrossRef]
- Yang, J.; Yin, P.; Sun, J.M.; Wang, B.G.; Zhou, M.G.; Li, M.M.; Tong, S.L.; Meng, B.H.; Guo, Y.M.; Liu, Q.Y. Heatwave and mortality in 31 major Chinese cities: Definition, vulnerability and implications. Sci. Total. Environ. 2019, 649, 695–702. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Feng, R.J.; Wu, R.; Zhong, P.R.; Tan, X.D.; Wu, K.; Ma, L. Global climate change: Impact of heat waves under different definitions on daily mortality in Wuhan, China. Glob. Health Res. Policy 2017, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.R.; Tian, Q.M.; Liu, X.Y.; Wang, X.F.; Yang, Q.H. Analysis of temperature changes and abrupt changes in the Hexi Corridor in the past 58 years. Arid. Zone Res. 2010, 27, 194–203. [Google Scholar] [CrossRef]
- Cao, L.G.; Pan, S.M.; Jia, P.H.; Zhuoma, L.C.; Zhao, Y.F.; Zhang, K.X.; Zhang, W. Evolution characteristics of extreme dry and wet events in the Hexi region from 1960 to 2009. J. Nat. Resour. 2014, 29, 480–489. (In Chinese) [Google Scholar]
- Tao, J.H.; Kong, X.W.; Liu, X.W. Analysis of water vapor characteristics of two extreme rainstorm events in the western Hexi Corridor. Plateau Meteorol. 2016, 35, 107–117. (In Chinese) [Google Scholar] [CrossRef]
- Shen, Y.C.; Wang, J.W.; Wu, G.H.; Han, D.L. Oasis of China; Henan University Press: Zhengzhou, China, 2001; pp. 332–338. (In Chinese) [Google Scholar]
- Wang, Y.W.; Luo, L.; Zhang, F.; Chen, T.L. Soil Conservation Effect of Haloxylon Ammodendron Bushes in Hexi Oasis-Desert Ecotone. Acta Polym. Sin. 2019, 56, 749–762. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, X.F.; Zhai, J.Q.; Wang, Y.Y.; Jiang, T. Variation characteristics of extreme precipitation in the Yangtze River Basin under the global warming1.5 °C and 2.0 °C. J. Meteorol. Sci. 2019, 39, 540–547. [Google Scholar]
- Yao, Y.B.; Liu, J.N.; Zhang, M.; Zhao, J.F.; Li, Q.; Li, D.L.; Li, Y.; Zhang, X.Y. Impact of Climatic Change on the Agriculture in Hexi Oasis and Countermeasures. Ecol. Environ. 2020, 29, 1499–1506. (In Chinese) [Google Scholar] [CrossRef]
- Liu, S.X.; Zhang, J.; Zhao, J.H. Analysis of abrupt climate change in the last fifty years in Hexi area. Adv. Earth Sci. 2007, 22, 0066-07. [Google Scholar]
- Ye, D.X.; Yin, J.F.; Chen, Z.H.H.; Zheng, Y.F.; Wu, R.J. Spatial and temporal characteristics of summer heat waves in China from 1961 to 2010. Adv. Clim. Change Res. 2013, 9, 15–20. [Google Scholar]
- Wu, J.C.; Zhu, Y.; Liu, Y.; Yin, H.; Yuan, F.; Wang, J. Analysis of spatial and temporal variability of heat waves in China. Hydrology 2022, 42, 72–77. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, W.X.; Liu, P.X.; Feng, Q.R.; Wang, T.G.; Wang, T.Q. The spatiotemporal responses of Populus euphratica to global warming in Chinese oases between 1960 and 2015. J. Geogr. Sci. 2018, 28, 16. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ma, B.S.; Yang, X.; Zhang, J.Y. Characteristics of summer heat waves in China Mainland and the relationship between Eastern-/Central-Pacific El Niño and heat wave events. J. Lanzhou Univ. (Nat. Sci.) 2018, 54, 711–720. [Google Scholar] [CrossRef]
- Zhou, Y.F.; Wu, Z.W. Possible impacts of mega-El Nino/Southern Oscillation and Atlantic Multidecadal Oscillation on Eurasian heatwave frequency variability. Q. J. R. Meteorol. Soc. 2016, 142, 1647–1661. [Google Scholar] [CrossRef]
- Wang, Y. Temporal and Spatial Characteristics of Temperature of the Phenological Solar Term and Its Impact Factors in Northwest Oasis during 1960~2013; Northwest Normal University: Lanzhou, China, 2016. (In Chinese) [Google Scholar]
- Zhang, G.W.; Zeng, G.; Li, C.; Yang, X.Y. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Clim. Dyn. 2020, 54, 3003–3020. [Google Scholar] [CrossRef]
- Zhou, M.Z.; Wang, H.J.; Hou, Z.G. The Influence of Heat Stress on Maize Yield and Its Association with Atmospheric General Circulation and Sea Surface Temperature. Clim. Environ. Res. 2017, 22, 134–148. (In Chinese) [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.G.; Shang, K.Z.; Yang, D.B. Atmospheric circulation anomalies of large-scal extreme high temperature events in northwest China. J. Desert Res. 2011, 31, 1052–1058. (In Chinese) [Google Scholar]
- Qi, L.; Zhou, T.; Mao, H.; Fu, C. Decadal variations in the relationship between the western pacific subtropical high and summer heat waves in east China. J. Clim. 2019, 32, 1627–1640. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, T. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley. Clim. Dyn. 2018, 51, 4403–4419. [Google Scholar] [CrossRef]
- Deng, K.Q.; Yang, S.; Ting, M.F.; Zhao, P.; Wang, Z.Y. Dominant Modes of China Summer Heat Waves Driven by Global Sea Surface Temperature and Atmospheric Internal Variability. J. Clim. 2019, 32, 3761–3775. [Google Scholar] [CrossRef]
- Freychet, N.; Tett, S.; Wang, J.; Hegerl, G. Summer heat waves over Eastern China: Dynamical processes and trend attribution. Environ. Res. Lett. 2017, 12, 024015. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Zhao, X.F.; Liu, L.L. Spatial pattern analysis on human health risk of heatwave in xiamen city. J. Geo-Inf. Sci. 2016, 18, 1094–1102. [Google Scholar] [CrossRef]
- Koster, R.D.; Chang, Y.H.; Wang, H.L.; Schubert, S.D. Impacts of Local Soil Moisture Anomalies on the Atmospheric Circulation and on Remote Surface Meteorological Fields during Boreal Summer: A Comprehensive Analysis over North America. J. Clim. 2016, 29, 7345–7364. [Google Scholar] [CrossRef]
- Vogel, M.M.; Orth, R.; Cheruy, F.; Hagemann, S.; Lorenz, R.; Hurk, B.J.J.M.; Seneviratne, S.I. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture temperature feedbacks. Geophys. Res. Lett. 2017, 44, 1511–1519. [Google Scholar] [CrossRef]
- Liu, L.; Liu, P.X.; Zhang, W.X.; Si, W.Y.; Qiao, X.M. Characteristics of extreme warm events changes in Xinjiang from 1961–2017 and their future scenario prediction. Arid. Zone Res. 2021, 38, 1590–1600. [Google Scholar] [CrossRef]
- Xu, H.R.; Zhang, G.W. Comparison of Relative and Absolute Heatwaves in Eastern China: Observations, Simulations and Future Projections. Atmosphere 2022, 13, 649. [Google Scholar] [CrossRef]
Interdecades | Duration (d/10a) | Frequency (n/10a) | Intensity (°C/10a) |
---|---|---|---|
1962–1970 | −1.61 | — | 2.02 |
1971–1980 | 1.76 | −0.49 | 0.56 |
1981–1990 | −6.83 | −0.79 | −3.21 |
1991–2000 | 4.47 | 0.15 | 1.26 |
2001–2010 | 1.46 | 0.1 | 0.2 |
2011–2020 | 1.74 | 0.2 | 0.1 |
Atmospheric Circulation Factors | APVAI | APVII | EAT | TPI | AO | CDE |
---|---|---|---|---|---|---|
Duration | −0.288 * | −0.111 | 0.300 * | 0.310 * | −0.013 | 0.280 * |
Frequency | −0.211 | −0.076 | 0.252 * | 0.245 | −0.074 | 0.229 |
Intensity | −0.246 | −0.046 | 0.338 ** | 0.235 | −0.020 | 0.277 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Liu, P.; Wang, H. Spatiotemporal Characteristics and Influencing Factors of Summer Heatwaves in Hexi Oasis during 1962–2020. Atmosphere 2023, 14, 119. https://doi.org/10.3390/atmos14010119
Lu J, Liu P, Wang H. Spatiotemporal Characteristics and Influencing Factors of Summer Heatwaves in Hexi Oasis during 1962–2020. Atmosphere. 2023; 14(1):119. https://doi.org/10.3390/atmos14010119
Chicago/Turabian StyleLu, Juan, Puxing Liu, and Huiyu Wang. 2023. "Spatiotemporal Characteristics and Influencing Factors of Summer Heatwaves in Hexi Oasis during 1962–2020" Atmosphere 14, no. 1: 119. https://doi.org/10.3390/atmos14010119
APA StyleLu, J., Liu, P., & Wang, H. (2023). Spatiotemporal Characteristics and Influencing Factors of Summer Heatwaves in Hexi Oasis during 1962–2020. Atmosphere, 14(1), 119. https://doi.org/10.3390/atmos14010119