The Lower Atmospheric Characteristics of Dust Storms Using Ground-Based Sensor Data: A Comparative Analysis of Two Cases in Jinan, China
Abstract
:1. Introduction
2. Data and Methods
2.1. Ground-Based Remote Sensing Data
2.2. Environmental and Meteorological Data
2.3. Methods
3. Results and Discussion
3.1. Surface Elements Changes
3.2. Cold Air Intensity
3.3. Dynamic and Thermodynamic Structure in the Lower Atmosphere
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qian, W.; Tang, X.; Quan, L. Regional Characteristics of Dust Storms in China. Atmos. Environ. 2004, 38, 4895–4907. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, D.; Hu, W.; Shi, J.; Li, R.; Gao, H.; Pian, W.; Hu, M. Size and Elemental Composition of Dry-Deposited Particles during a Severe Dust Storm at a Coastal Site of Eastern China. J. Environ. Sci. 2016, 40, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.; Kumar, A.; Pratap, V.; Singh, A.K. Assessment of Two Intense Dust Storm Characteristics over Indo-gangetic Basin and Their Radiative Impacts: A Case Study. Atmos. Res. 2019, 228, 23–40. [Google Scholar] [CrossRef]
- Meng, L.; Yang, X.; Zhao, T.; He, Q.; Lu, H.; Mamtimin, A.; Huo, W.; Yang, F.; Liu, C. Modeling Study on Three-Dimensional Distribution of Dust Aerosols during a Dust Storm over the Tarim Basin, Northwest China. Atmos. Res. 2019, 218, 285–295. [Google Scholar] [CrossRef]
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian Dust Transported One Full Circuit around the Globe. Nat. Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Tang, W.; Dai, T.; Cheng, Y.; Wang, S.; Liu, Y. A Study of a Severe Spring Dust Event in 2021 over East Asia with WRF-Chem and Multiple Platforms of Observations. Remote Sens. 2022, 14, 3795. [Google Scholar] [CrossRef]
- Qian, W.; Quan, L.; Shi, S. Variations of the Dust Storm in China and Its Climatic Control. J. Clim. 2002, 15, 1216–1229. [Google Scholar] [CrossRef]
- Lee, J.A.; Gill, T.E.; Mulligan, K.R.; Dominguez Acosta, M.; Perez, A.E. Land Use/Land Cover and Point Sources of the 15 December 2003 Dust Storm in Southwestern North America. Geomorphology 2009, 105, 18–27. [Google Scholar] [CrossRef]
- Liang, P.; Chen, B.; Yang, X.; Liu, Q.; Li, A.; Mackenzie, L.; Zhang, D. Revealing the Dust Transport Processes of the 2021 Mega Dust Storm Event in Northern China. Sci. Bull. 2022, 67, 21–24. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, Y.; Ma, L.; Long, X. A Multidisciplinary Approach to Trace Asian Dust Storms from Source to Sink. Atmos. Environ. 2015, 105, 43–52. [Google Scholar] [CrossRef]
- Huang, J.P.; Liu, J.J.; Chen, B.; Nasiri, S.L. Detection of Anthropogenic Dust Using CALIPSO Lidar Measurements. Atmos. Chem. Phys. 2015, 15, 11653–11665. [Google Scholar] [CrossRef]
- Yang, L.; She, L.; Che, Y.; He, X.; Yang, C.; Feng, Z. Analysis of Dust Detection Algorithms Based on FY-4A Satellite Data. Appl. Sci. 2023, 13, 1365. [Google Scholar] [CrossRef]
- Kotthaus, S.; Bravo-Aranda, J.A.; Collaud Coen, M.; Guerrero-Rascado, J.L.; Costa, M.J.; Cimini, D.; O’Connor, E.J.; Hervo, M.; Alados-Arboledas, L.; Jiménez-Portaz, M.; et al. Atmospheric boundary layer height from ground-based remote sensing: A review of capabilities and limitations. Atmos. Meas. Tech. 2023, 16, 433–479. [Google Scholar] [CrossRef]
- Liu, B.; Guo, J.; Gong, W.; Shi, L.; Zhang, Y.; Ma, Y. Characteristics and performance of wind profiles as observed by the radar wind profiler network of China. Atmos. Meas. Tech. 2020, 13, 4589–4600. [Google Scholar] [CrossRef]
- Miao, Y.; Che, H.; Zhang, X.; Liu, S. Relationship between Summertime Concurring PM2.5 and O3 Pollution and Boundary Layer Height Differs between Beijing and Shanghai, China. Environ. Pollut. 2021, 268, 115775. [Google Scholar] [CrossRef]
- Li, J.; Sun, Z.; Lenschow, D.H.; Zhou, M.; Dou, Y.; Cheng, Z.; Wang, Y.; Li, Q. A foehn-induced haze front in Beijing: Observations and implications. Atmos. Chem. Phys. 2020, 20, 15793–15809. [Google Scholar] [CrossRef]
- Huang, J.; Liao, B.; Wang, C.; Tan, H.; Shen, Z.; Lan, J.; Tang, J.; Yue, H. Application of new vertical detection data in the analysis of a heavy pollution weather. China Environ. Sci. 2019, 39, 92–105. (In Chinese) [Google Scholar]
- Wang, S.; Wang, J.; Zhou, Z.; Shang, K. Regional Characteristics of Three Kinds of Dust Storm Events in China. Atmos. Environ. 2005, 39, 509–520. [Google Scholar] [CrossRef]
- Zhang, K.; Gao, H. The Characteristics of Asian-Dust Storms during 2000–2002: From the Source to the Sea. Atmos. Environ. 2007, 41, 9136–9145. [Google Scholar] [CrossRef]
- Bao, T.; Gao, T.; Nandintsetseg, B.; Yong, M.; Jin, E. Variations in Frequency and Intensity of Dust Events Crossing the Mongolia–China Border. SOLA 2021, 17, 145–150. [Google Scholar] [CrossRef]
- Sugimoto, N.; Hara, Y.; Shimizu, A.; Nishizawa, T.; Matsui, I.; Nishikawa, M. Analysis of Dust Events in 2008 and 2009 Using the Lidar Network, Surface Observations and the CFORS Model. Asia-Pac. J. Atmos. Sci. 2013, 49, 27–39. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Z.; Li, M.; Shen, X.; Wang, Y.; Dong, Q.; Bi, J.; Zhang, J.; Li, W.; Li, Z.; et al. Vertical Structure of Dust Aerosols Observed by a Ground-Based Raman Lidar with Polarization Capabilities in the Center of the Taklimakan Desert. Remote Sens. 2022, 14, 2461. [Google Scholar] [CrossRef]
- Ye, Q.; Zheng, X.; Zhao, S. Remote sensing monitoring and transport path analysis of an intense dust weather in northern China in 2021. Natl. Remote Sens. Bull. 2021, 27, 1821–1833. (In Chinese) [Google Scholar]
- Li, N.; Zhang, W.; Che, Y.; Liu, D.; Shi, J.; Zhang, B. Remote-sensing of atmospheric temperature and relative humidity profiles based on microwave radiometer. J. Lanzhou Univ. Nat. Sci. 2015, 51, 61–71. (In Chinese) [Google Scholar]
- Yin, L.; He, Q.; Li, J.; Meng, L.; Fu, X.; Wu, C.; Xiao, H.; Fan, X. Ground-based ridar-based investigation of a sand and dust pollution process in Hotan City. China Environ. Sci. 2023, 43, 6290–6300. (In Chinese) [Google Scholar]
- Zhang, L.; Zhang, H.; Li, Q.; Cai, X.; Song, Y. Vertical Dispersion Mechanism of Long-Range Transported Dust in Beijing: Effects of Atmospheric Turbulence. Atmos. Res. 2022, 269, 106033. [Google Scholar] [CrossRef]
- Wang, F.; Yang, T.; Wang, Z.; Cao, J.; Liu, B.; Liu, J.; Chen, S.; Liu, S.; Jia, B. A Comparison of the Different Stages of Dust Events over Beijing in March 2021: The Effects of the Vertical Structure on Near-Surface Particle Concentration. Remote Sens. 2021, 13, 3580. [Google Scholar] [CrossRef]
- Gui, K.; Yao, W.; Che, H.; An, L.; Zheng, Y.; Li, L.; Zhao, H.; Zhang, L.; Zhong, J.; Wang, Y.; et al. Record-breaking dust loading during two mega dust storm events over northern China in March 2021: Aerosol optical and radiative properties and meteorological drivers. Atmos. Chem. Phys. 2022, 22, 7905–7932. [Google Scholar] [CrossRef]
- Jin, J.; Pang, M.; Segers, A.; Han, W.; Fang, L.; Li, B.; Feng, H.; Lin, H.X.; Liao, H. Inverse modeling of the 2021 spring super dust storms in East Asia. Atmos. Chem. Phys. 2022, 22, 6393–6410. [Google Scholar] [CrossRef]
- Song, L.; Bi, X.; Zhang, Z.; Li, L.; Dai, Q.; Zhang, W.; Li, H.; Wang, X.; Liang, D.; Feng, Y. Impact of Sand and Dust Storms on the Atmospheric Environment and Its Source in Tianjin-China. Sci. Total Environ. 2022, 825, 153980. [Google Scholar] [CrossRef]
- Sun, X.; Zhou, Y.; Zhao, T.; Bai, Y.; Huo, T.; Leng, L.; He, H.; Sun, J. Effect of Vertical Wind Shear on PM2.5 Changes over a Receptor Region in Central China. Remote Sens. 2022, 14, 3333. [Google Scholar] [CrossRef]
- Zhai, L.; Lei, L.; Liu, R.; Li, L.; Sun, Z.; Li, Z. Comparison of removal mechanism in two typical dust processes. Acta Sci. Circumstantiae 2022, 42, 111–119. (In Chinese) [Google Scholar]
- Gao, J.; Ding, T.; Gao, H. Dominant Circulation Pattern and Moving Path of the Mongolian Cyclone for the Severe Sand and Dust Storm in China. Atmos. Res. 2024, 301, 107272. [Google Scholar] [CrossRef]
- Liu, X.; Yin, Z.-Y.; Zhang, X.; Yang, X. Analyses of the Spring Dust Storm Frequency of Northern China in Relation to Antecedent and Concurrent Wind, Precipitation, Vegetation, and Soil Moisture Conditions. J. Geophys. Res. Atmos. 2004, 109, D16. [Google Scholar] [CrossRef]
- Hao, J.; Yuan, L.; Li, Z.; Qi, J.; Shi, H. The detection and analysis of dust weather by lidar and microwave radiometer in Xingtai. Plateau Meteorol. 2018, 37, 1110–1119. (In Chinese) [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Tan, C.; Zhao, Z.; Yao, W. The Lower Atmospheric Characteristics of Dust Storms Using Ground-Based Sensor Data: A Comparative Analysis of Two Cases in Jinan, China. Atmosphere 2024, 15, 282. https://doi.org/10.3390/atmos15030282
Li T, Tan C, Zhao Z, Yao W. The Lower Atmospheric Characteristics of Dust Storms Using Ground-Based Sensor Data: A Comparative Analysis of Two Cases in Jinan, China. Atmosphere. 2024; 15(3):282. https://doi.org/10.3390/atmos15030282
Chicago/Turabian StyleLi, Tian, Chenghao Tan, Zilong Zhao, and Wenjiao Yao. 2024. "The Lower Atmospheric Characteristics of Dust Storms Using Ground-Based Sensor Data: A Comparative Analysis of Two Cases in Jinan, China" Atmosphere 15, no. 3: 282. https://doi.org/10.3390/atmos15030282
APA StyleLi, T., Tan, C., Zhao, Z., & Yao, W. (2024). The Lower Atmospheric Characteristics of Dust Storms Using Ground-Based Sensor Data: A Comparative Analysis of Two Cases in Jinan, China. Atmosphere, 15(3), 282. https://doi.org/10.3390/atmos15030282