The Impact of Climate Change on the Spatiotemporal Distribution of Early Frost in Maize Due to the Northeast Cold Vortex
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Sources
2.2. Research Methods
2.2.1. Determine the Northeast Cold Vortex
2.2.2. Determine the Early Frost Grade of Maize
2.2.3. Identification of the Early Frost Influenced by the Northeast Cold Vortex
2.2.4. Determine the Growth Period
2.2.5. Proportion of Early Frost Sites Occurred
2.2.6. Data Visualization
3. Results
3.1. Spatial Distribution Characteristics of Maize Early Frost in Northeast China
3.1.1. Early Frost Distribution from 1961 to 2021
3.1.2. Distribution of Early Frost Daily Sequence from 1961 to 2021
3.2. Spatial Distribution Characteristics of Early Frost under the Influence of the Northeast Cold Vortex
3.2.1. Distribution of Early Frost under the Influence of the Northeast Cold Vortex from 1961 to 2021
3.2.2. Distribution of Early Frost Daily Sequence under the Influence of the Northeast Cold Vortex from 1961 to 2021
3.3. Temporal and Spatial Variation Characteristics of Early Frost in Northeast China
3.3.1. Distribution of Early Frost Change from 1961 to 2021 (Decades Difference)
3.3.2. Variation Distribution of Early Frost Daily Sequence from 1961 to 2021 (Decades Difference)
3.4. Temporal and Spatial Variation Characteristics of Early Frost under the Influence of the Northeast Cold Vortex
3.4.1. Change Distribution of Early Frost Proportion under the Influence of the Northeast Cold Vortex from 1961 to 2021
3.4.2. Variation Distribution of Early Frost Daily Sequence under the Influence of the Northeast Cold Vortex from 1961 to 2021
3.5. Evolutionary Characteristics of Early Frost Occurrence in Northeast China
3.6. Evolutionary Characteristics of Early Frost Occurrence under the Influence of the Northeast Cold Vortex
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, D.L.; Maisa, R.; Bjorn, H.S. The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- IPCC; Stocker, T.F.; Qin, D.H. The physical science basis. Contribution of working group to the fifth assessment report of the intergovernmental panel on climate change. Comput. Geom. 2013, 18, 616–617. [Google Scholar]
- Wen, Z.H. Effects of Climate and Frost Change on Vegetation Greening Rate in the Greater Khingan Mountains. Master’s Thesis, Northeast Normal University, Changchun, China, 2023. [Google Scholar]
- Centre for Research on the Epidemiology of Disasters CRED. The Human Cost of Weather Related Disasters 1995–2015; The United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2015. [Google Scholar]
- Liu, Y.; Wang, F.; Zhang, Z.T.; Huang, C.F.; Chen, X.; Li, N. Comprehensive assessment of climate change-crop yield-economic impact in seven sub-regions of China. Clim. Chang. 2021, 17, 455–465. [Google Scholar]
- Zhang, W.J.; Zhao, J.; Cui, W.Q.; Li, M.Y.; Li, E.; Gong, X.Y.; Yang, X.G. Effects of changing normal and extreme climate states on maize meteorological yield in Northeast China. Sci. Agric. Sin. 2023, 56, 1859–1870. [Google Scholar]
- Mao, X.L.; Yin, S.Y.; Liu, H.H. Analysis of agrometeorological disasters facing extreme climate events in Hebei, Shandong, and Henan provinces. Res. Soil Water Conserv. 2023, 30, 327–337. [Google Scholar]
- Zhang, Z.H.; Wang, P.; Chen, Y.; Zhang, S.; Tao, F.; Liu, X. Spatial pattern and decadal change of agro-meteorological disasters in the main wheat production area of China during 1991–2009. J. Geogr. Sci. 2014, 24, 387–396. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.L.; Li, X.; Cui, Y.; Ma, Y.; Zhang, W. Climate change characteristics and circulation anomaly causes of the first frost date in Ningxia based on ground temperature. Arid Land Geogr. 2022, 45, 359–369. [Google Scholar]
- Zheng, H.X.; Liu, J. Long-term trends of aridity index and its sensitivity to climate factors in Northeast China: 1971–2008. Geogr. Res. 2011, 30, 1765–1774. [Google Scholar]
- Jin, A.Q.; Zhang, A.; Zhao, Y.X. Estimation of Climate Comfort in Eastern China in the Context of Climate Change. Acta Sci. Nat. Univ. Pekin. 2019, 55, 887–898. [Google Scholar]
- Yang, J.Y.; Chen, Y.J.; Wang, Q.Q. Cultivated Land Resources and Grain Production Potential in the Three Northeast Provinces. Chin. J. Soil Sci. 2017, 48, 1055–1060. [Google Scholar]
- Su, Z.E.; Liu, Z.J.; Yang, W.R.; Zhu, G.X.; Shi, D.Y.; Yang, X.G. Climate Suitable Zones for Mechanical Kernel Harvesting of Middle-late Maturing Spring Maize in Northeast China under Future Climate Scenarios. Chin. J. Agrometeorol. 2023, 44, 649–663. [Google Scholar]
- Xu, Q.C.; Liang, H.B.; Wei, Z.W.; Zhang, Y.G.; Lu, X.J.; Li, F.; Wei, N.; Zhang, S.P.; Yuan, H.; Liu, S.F.; et al. Assessing Climate Change Impacts on Crop Yields and Exploring Adaptation Strategies in Northeast China. Earth’s Future 2024, 12, e2023EF004063. [Google Scholar] [CrossRef]
- Yang, W.C.; Parsons, D.; Mao, X.M. Exploring limiting factors for maize growth in Northeast China and potential coping strategies. Irrig. Sci. 2022, 41, 321–335. [Google Scholar] [CrossRef]
- Zhu, H.R.; Yu, H.M.; Yao, J.Y.; Liu, H.N.; Sun, S. Frost hazard risk assessment of rice in Heilongjiang Province. J. Catastrophol. 2012, 27, 96–99. [Google Scholar]
- Pan, H.S.; Liu, Y.S. Weather, Climate and Agriculture in Sanjiang Plain; China Meteorological Press: Beijing, China, 1991. [Google Scholar]
- Kukal, M.S.; Irmak, S.U.S. Agro-Climate in 20th Century: Growing Degree Days, First and Last Frost, Growing Season Length, and Impacts on Crop Yields. Sci. Rep. 2018, 8, 6977. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Hubbard, K.; Redmond, K. Temporal variations in frost-free season in the United States: 1895–2000. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Feng, S.; Hu, Q. Changes in agro-meteorological indicators in the contiguous United States: 1951–2000. Theor. Appl. Climatol. 2004, 78, 247–264. [Google Scholar] [CrossRef]
- Easterling, D.R. Recent changes in frost days and the frost-free season in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1327–1332. [Google Scholar] [CrossRef]
- Guyader, J.; Baron, V.S.; Beauchemin, K.A. Effect of Harvesting Maize after Frost in Alberta (Canada) on Whole-Plant Yield, Nutritive Value, and Kernel Properties. Agronomy 2021, 11, 459. [Google Scholar] [CrossRef]
- Major, D.J.; McGinn, S.M.; Beauchemin, K.A. Climate change impacts on maize heat units for the Canadian Prairie provinces. Agron. J. 2021, 113, 1852–1864. [Google Scholar] [CrossRef]
- Cutforth, H.; O’Brien, E.G.; Tuchelt, J.; Rickwood, R. Long-term changes in the frost-free season on the Canadian prairies. Can. J. Plant Sci. 2004, 84, 1085–1091. [Google Scholar] [CrossRef]
- Daynard, T.B.; Tanner, J.W.; Duncan, W.G. Duration of the grain filling period and its relation to grain yield in maize, Zea mays L. Crop Sci. 1971, 11, 45–48. [Google Scholar] [CrossRef]
- Guyader, J.; Baron, V.S.; Beauchemin, K.A. Maize forage yield and quality for silage in short growing season areas of the Canadian prairies. Agronomy 2018, 8, 164. [Google Scholar] [CrossRef]
- Tank, A.M.G.K.; Konnen, G.P. Trends in indices of daily temperature and precipitation extremes in Europe, 1946–1999. J. Clim. 2003, 16, 3665–3680. [Google Scholar] [CrossRef]
- Tomczyk, A.M.; Szyga-Pluta, K.; Bednorz, E. Occurrence and synoptic background of strong and very strong frost in spring and autumn in Central Europe. Int. J. Biometeorol. 2020, 64, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Wypych, A.; Ustrnul, Z.; Sulikowska, A.; Chmielewski, F.M.; Bochenek, B. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int. J. Climatol. 2017, 37, 3340–3352. [Google Scholar] [CrossRef]
- Garcia-Martin, A.; Paniagua, L.L.; Moral, F.J.; Rebollo, F.J.; Rozas, M.A. Spatiotemporal Analysis of the Frost Regime in the Iberian Peninsula in the Context of Climate Change (1975–2018). Sustainability 2021, 13, 8491. [Google Scholar] [CrossRef]
- Chervenkov, H.; Slavov, K. Inter-annual variability and trends of the frost-free season characteristics over Central and Southeast Europe in 1950–2019. J. Cent. Eur. Agric. 2022, 23, 154–164. [Google Scholar] [CrossRef]
- Nidzgorska-Lencewicz, J.; Makosza, A.; Kozminski, C.; Michalska, B. Potential Risk of Frost in the Growing Season in Poland. Agriculture 2024, 14, 501. [Google Scholar] [CrossRef]
- Liu, B.H.; Henderson, M.; Xu, M. Spatiotemporal change in China’s frost days and frost-free season, 1955–2000. J. Geophys. Res. Atmos. 2008, 113, D12104. [Google Scholar] [CrossRef]
- Shang, M.F.; Shi, X.Y.; Zhao, J.C.; Li, S.; Chu, Q.Q. Spatiotemporal variation of high-temperature stress in different regions of China under climate change. Acta Agron. Sin. 2023, 49, 167–176. [Google Scholar]
- Chen, D.; Liu, B.C.; Lei, T.J.; Yang, X.J.; Liu, Y.; Bai, W.; Han, R.; Bai, H.Q.; Chang, N.J. Monitoring and Mapping Winter Wheat Spring Frost Damage with MODIS Data and Statistical Data. Plants 2023, 12, 3954. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.L.; Yang, X.G.; Sun, S.; Gao, J.Q.; Liu, Z.J.; Zhang, Z.T.; Liu, T. A spatiotemporal analysis of extreme agrometeorological events during selected growth stages of maize (Zea mays L.) from 1960 to 2017 in Northeast China. Theor. Appl. Climatol. 2021, 143, 943–955. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.Q.; Li, Y.; Guo, E.L.; Feng, Y.; Wang, R. Temporal and Spatial Evolution of Meteorological Factors and Delayed Chilling Damage in Eastern Jilin Province. Res. Soil Water Conserv. 2019, 26, 266–272. [Google Scholar]
- Sun, X.Y.; Hu, J.; Zhao, T.L.; Wang, S.; Zhang, Z.X. Fine Resolution Simulation of a Cold Vortex in Northeast China by Using a Meso-Scale Meteorological Model. Int. Conf. Math. Model. Simul. Technol. Appl. 2017, 215, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.J.; Cui, X.P. Statistical Characteristics of the Northeast China Cold Vortex and Its Impact on Precipitation Distribution from 2000 to 2019. Chin. J. Atmos. Sci. 2023, 47, 1925–1938. [Google Scholar]
- Ma, S.Q.; Liu, Z.; Liu, S.; Wang, Q.; Wang, J.D.; Yang, X.Y.; Wang, X.Q. QX/T 88-2008 Grade of Crop Frost Damage; Meteorological Industry Standard of People’s Republic of China: Beijing, China, 2008. [Google Scholar]
- Ji, R.P.; Yu, W.Y.; Feng, R.; Wu, J.W.; Zhang, Y.S. Construction and application of Rice Sterile-type Cold Damage Indexincold area: A case study of Liaoning Province. Prog. Geogr. 2017, 36, 438–445. [Google Scholar]
- Ljaz, Z.; Zhao, C.; Ljaz, N.; Rehman, Z.U.; Ljaz, A. Novel application of Google earth engine interpolation algorithm for the development of geotechnical soil maps: A case study of mega-district. Geocarto Int. 2022, 37, 18196–18216. [Google Scholar]
- Ljaz, Z.; Zhao, C.; Ljaz, N.; Rehman, Z.U.; Ljaz, A. Spatial mapping of geotechnical soil properties at multiple depths in Sialkot region, Pakistan. Environ. Earth Sci. 2021, 80, 787. [Google Scholar]
- Ljaz, Z.; Zhao, C.; Ljaz, N.; Rehman, Z.U.; Ljaz, A.; Junaid, M.F. Geospatial modeling of heterogeneous geotechnical data using conventional and enhanced conception of modified Shepard method-based IDW algorithms: Application and appraisal. Bull. Eng. Geol. Environ. 2023, 82, 428. [Google Scholar]
- Ljaz, Z.; Zhao, C.; Ljaz, N.; Rehman, Z.U.; Ljaz, A. Development and optimization of geotechnical soil maps using various geostatistical and spatial interpolation techniques: A comprehensive study. Bull. Eng. Geol. Environ. 2023, 82, 215. [Google Scholar]
- Zhang, Q.Y.; Tao, S.Y.; Zhang, S.L. A study of excessively heavy rainfall in the Songhuajiang-Nenjiang River valley in 1998. Chin. J. Atmos. Sci. 2001, 25, 567–576. [Google Scholar]
- Zhao, S.X.; Sun, J.H. Study on cut-off low-pressure systems with floods over Northeast Asia. Meteorol. Atmos. Phys. 2007, 96, 159–180. [Google Scholar] [CrossRef]
- Hu, K.X.; Lu, R.Y.; Wang, D.H. Seasonal climatology of cut-off lows and associated precipitation patterns over Northeast China. Meteorol. Atmos. Phys. 2010, 106, 37–48. [Google Scholar] [CrossRef]
- Liu, H.B.; Wen, M.; He, J.H.; Zhang, R.H. Characteristics of the northeast cold vortex at intraseasonal and timescale and its impact. Chin. J. Atmos. Sci. 2012, 36, 959–973. [Google Scholar]
- Xie, Z.W.; Bueh, C. Different types of cold vortex circulations over Northeast China and their weather impacts. Mon. Weather. Rev. 2015, 143, 845–862. [Google Scholar] [CrossRef]
- Ying, S.; Yuan, D.Y.; Li, S.F. A case study on a severe convection weather process caused by northeast cold vortex. J. Meteorol. Environ. 2014, 30, 9–18. [Google Scholar]
- Su, A.F.; Liang, J.P.; Cui, L.M.; Liu, C. Warning characteristic and trigger mechanism of a local strong hailstorm in northern Henan Province. J. Meteorol. Environ. 2012, 28, 1–7. [Google Scholar]
- Lian, P.; Wang, L.L. The climate risk zones of frost damage to soybean in Northeast China. In Proceedings of the 6th Shenyang Rain and Snow Freezing (Frost) Disaster Forum; Chinese Meteorological Society: Beijing, China, 2012; pp. 180–184. [Google Scholar]
- Bai, L.; Zhang, F.; Wen, Y.Q.; Shi, C.X.; Wu, J.; Shang, M.; Zhu, Z.; Meng, J.Y. Evolution of the Frost Hazards Based on Gridded Meteorological Data across China in 1961–2018. Chin. J. Agrometeorol. 2021, 42, 761–774. [Google Scholar]
- Qi, Q.H.; Cai, R.S.; Guo, H.X. The climatic variations of temperature extremes in the Eastern of China. Sci. Geogr. Sin. 2019, 39, 1340–1350. [Google Scholar]
- Yu, D.G.; Hu, G.J.; Su, R.N.; Li, C.; Han, G.R. The climate anomaly under the background of climate warming caused the aggravation of early frost disaster in Chifeng City. Inn. Mong. Sci. Technol. Econ. 2017, 22, 68–83. [Google Scholar]
- Zhao, J.H.; Zhi, R.; Shen, Q.; Yang, J.; Feng, G.L. Prediction of the distribution of the 2012 summer rainfall in China and analysis of the cause for Anomaly. J. Atmos. Sci. 2014, 38, 237–250. [Google Scholar]
- Luo, L.; Hu, L.; He, J.H.; Lou, X.F. Comparison of two rainstorm processes in Zhejiang province caused by northeast cold vortex. J. Meteorol. Environ. 2011, 27, 35–42. [Google Scholar]
Light Frost | Medium Frost | Heavy Frost | |
---|---|---|---|
Maize | [−1.0~−2.0] | (−2.0~−3.0] | (−3.0~−4.0] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, Z.; Jiang, L.; Duan, J.; Gong, J.; Wang, Q.; Ji, Y.; Lv, J. The Impact of Climate Change on the Spatiotemporal Distribution of Early Frost in Maize Due to the Northeast Cold Vortex. Atmosphere 2024, 15, 694. https://doi.org/10.3390/atmos15060694
Chu Z, Jiang L, Duan J, Gong J, Wang Q, Ji Y, Lv J. The Impact of Climate Change on the Spatiotemporal Distribution of Early Frost in Maize Due to the Northeast Cold Vortex. Atmosphere. 2024; 15(6):694. https://doi.org/10.3390/atmos15060694
Chicago/Turabian StyleChu, Zheng, Lixia Jiang, Juqi Duan, Jingjin Gong, Qiujing Wang, Yanghui Ji, and Jiajia Lv. 2024. "The Impact of Climate Change on the Spatiotemporal Distribution of Early Frost in Maize Due to the Northeast Cold Vortex" Atmosphere 15, no. 6: 694. https://doi.org/10.3390/atmos15060694
APA StyleChu, Z., Jiang, L., Duan, J., Gong, J., Wang, Q., Ji, Y., & Lv, J. (2024). The Impact of Climate Change on the Spatiotemporal Distribution of Early Frost in Maize Due to the Northeast Cold Vortex. Atmosphere, 15(6), 694. https://doi.org/10.3390/atmos15060694