A Numerical Simulation of the “1907” Kaiyuan Tornado Weather Process in Liaoning, Northeast China
Abstract
:1. Introduction
2. Case Overview and Synoptic Conditions
2.1. Disaster Analysis
2.2. Synoptic Situation Analysis
2.3. Analysis of Satellite and Doppler Radar
2.4. Design of Numerical Experiments
3. Results
3.1. Analysis of Water Vapor Condition
3.2. Dynamic Mechanism
3.3. Thermal and Instability Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Yu, X.; Zhou, X. Study of Northeast China torandoes: The environmental characteristics. Acta Meteorol. Sin. 2015, 73, 425–441. (In Chinese) [Google Scholar]
- Davies-Jones, R.; Trapp, R.; Bluestein, I.I. Tornadoes and tornadic storms. In Severe Convective Storms; Doswell, C.A., III, Ed.; American Meteorological Society: Boston, MA, USA, 2001; pp. 167–221. [Google Scholar]
- Trapp, R.; Stumpf, G.; Manross, K. A reassessment of the percentage of tornadic mesocyclones. Weather Forecast. 2005, 20, 680–687. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, X.; Wang, X. The advances in the nowcasting techniques on thunderstorms and severe convection. Acta Meteorol. Sin. 2012, 70, 311–317. (In Chinese) [Google Scholar]
- Brooks, I.I.; Lee, J.; Craven, J. The spatial distribution of severe thunderstorm and tornado enviroments from global reanalysis data. Atmos. Res. 2003, 67–68, 73–94. [Google Scholar] [CrossRef]
- Markowski, P.M.; Straka, J.M.; Rasmussen, E.N. Direct Surface Thermodynamic Observations within the Rear-Flank Downdrafts of Nontornadic and Tornadic Supercells. Mon. Weather Rev. 2002, 130, 1692–1721. [Google Scholar] [CrossRef]
- Yu, X.D.; Zheng, Y.Y.; Zhang, A.M.; Yao, Y.Q.; Fang, C. The Detection of a Severe Tornado Event in Anhui with China New Generation Weather Radar. Plat. Meteorol. 2006, 25, 914–924. (In Chinese) [Google Scholar]
- Lewellen, D.; Xia, J. The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci. 2000, 57, 527–544. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, J.; Ying, Z.; Xiao, X. Initiation and development of a squall line crossing Hangzhou Bay. J. Geophys. Res. Atmos. 2021, 126, e2020JD032504. [Google Scholar] [CrossRef]
- Sun, Z.; Xue, M.; Zhu, K.; Zhou, B. Prediction of EF4 supercell tornado in Funing, China: Resolution dependency of simulated tornadoes and their structures. Atmos. Res. 2019, 229, 175–189. [Google Scholar] [CrossRef]
- Xue, M.; Zhao, K.; Wang, M.; Li, Z.; Zheng, Y. Recent significant tornadoes in China. Adv. Atmos. Sci. 2016, 33, 1209–1217. [Google Scholar] [CrossRef]
- Xue, M.; Hu, M.; Schenkman, A. Numerical Prediction of the 8 May 2003 Oklahoma City Tornadic Supercell and Embedded Tornado Using ARPS with the Assimilation of WSR-88D Data. Weather Forecast. 2014, 29, 39–62. [Google Scholar] [CrossRef] [Green Version]
- Wurman, J. The Multiple-Vortex Structure of a Tornado. Weather Forecast. 2002, 17, 473–505. [Google Scholar] [CrossRef] [Green Version]
- Trapp, R.J.; Mitchell, E.D.; Tipton, G.A.; Effertz, D.W.; Watson, A.I.; Andra, D.L., Jr.; Magsig, M.A. Descending and Nondescending Tornadic Vortex Signatures Detected by WSR-88Ds. Weather Forecast. 1999, 14, 625–639. [Google Scholar] [CrossRef]
- Snook, N.; Xue, M.; Jung, Y. Tornado-Resolving Ensemble and Probabilistic Predictions of the 20 May 2013 Newcastle–Moore EF5 Tornado. Mon. Weather Rev. 2019, 147, 1215–1235. [Google Scholar] [CrossRef] [Green Version]
- Schenkman, A.; Xue, M.; Hu, M. Tornadogenesis in a High-Resolution Simulation of the 8 May 2003 Oklahoma City Supercell. J. Atmos. Sci. 2014, 71, 130–154. [Google Scholar] [CrossRef]
- Schenkman, A.; Xue, M.; Shapiro, A. Tornadogenesis in a Simulated Mesovortex within a Mesoscale Convective System. J. Atmos. Sci. 2012, 69, 3372–3390. [Google Scholar] [CrossRef] [Green Version]
- Rotunno, R.; Bryan, G.H.; Nolan, D.S.; Dahl, N.A. Axisymmetric Tornado Simulations at High Reynolds Number. J. Atmos. Sci. 2016, 73, 3843–3854. [Google Scholar] [CrossRef]
- Roberts, B.; Xue, M.; Schenkman, A.D.; Dawson, D.T. The Role of Surface Drag in Tornadogenesis within an Idealized Supercell Simulation. J. Atmos. Sci. 2016, 73, 3371–3395. [Google Scholar] [CrossRef]
- Mashiko, W.; Niino, H.; Kato, T. Numerical Simulation of Tornadogenesis in an Outer-Rainband Minisupercell of Typhoon Shanshan on 17 September 2006. Mon. Weather Rev. 2009, 13, 4238–4260. [Google Scholar] [CrossRef]
- Mashiko, W. A Numerical Study of the 6 May 2012 Tsukuba City Supercell Tornado. Part II: Mechanisms of Tornadogenesis. Mon. Weather Rev. 2016, 144, 3077–3097. [Google Scholar] [CrossRef]
- Tao, T.; Tamura, T. Numerical Study of the 6 May 2012 Tsukuba Supercell Tornado: Vorticity Sources Responsible for Tornadogenesis. Mon. Weathet Rev. 2020, 148, 1205–1228. [Google Scholar] [CrossRef]
- Zhang, T.; Guan, L.; Zheng, Y.G. Damage survey of the 3 July 2019 Kaiyuan tornado in Liaoning Province and its evolution revealed by disaster. Meterol. Mon. 2020, 46, 603–617. (In Chinese) [Google Scholar]
- Yan, Q.; Zhang, A.; Shen, L.; Cui, J.; Zhao, Z. Observational Analysis of tornado in Kaiyuan of 2019. J. Catas. 2021, 36, 112–116. (In Chinese) [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; Ncar Tchnical Note, NCAR/TN-475+STR; Natioanal Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Wang, Y.; Wang, T. Numerical Simulation of a Heavy Rainstorm in Northeast China Caused by the Residual Vortex of Typhoon 1909 (Lekima). Atmosphere 2021, 12, 120. [Google Scholar] [CrossRef]
- Heo, K.Y.; Kim, K.E.; Ha, K.J.; Park, K.S.; Jun, K.C.; Shim, J.S.; Suh, Y.S. Simulation of snowstorm over the Yellow Sea using a mesoscale coupled model. Asia-Pac. J. Atmos. Sci. 2010, 46, 437–452. [Google Scholar] [CrossRef]
Time (LST) | 03:08 | 03:11 | 03:14 | 03:17 | 03:18 |
---|---|---|---|---|---|
CAPE (J/kg) | 29.9 | 1137.5 | 2305.7 | 2394.1 | 0.0 |
CIN (J/kg) | 178.2 | 27.0 | 105.1 | 15.5 | 0.0 |
SHR 0–3 (m/s) | 11.5 | 9.3 | 14.6 | 17.2 | 37.1 |
LCL (m) | 1337 | 1387.4 | 1341.4 | 1047.0 | 292.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, T.; Yang, P.; Xue, W. A Numerical Simulation of the “1907” Kaiyuan Tornado Weather Process in Liaoning, Northeast China. Atmosphere 2022, 13, 219. https://doi.org/10.3390/atmos13020219
Wang Y, Wang T, Yang P, Xue W. A Numerical Simulation of the “1907” Kaiyuan Tornado Weather Process in Liaoning, Northeast China. Atmosphere. 2022; 13(2):219. https://doi.org/10.3390/atmos13020219
Chicago/Turabian StyleWang, Yiping, Tong Wang, Pu Yang, and Wei Xue. 2022. "A Numerical Simulation of the “1907” Kaiyuan Tornado Weather Process in Liaoning, Northeast China" Atmosphere 13, no. 2: 219. https://doi.org/10.3390/atmos13020219
APA StyleWang, Y., Wang, T., Yang, P., & Xue, W. (2022). A Numerical Simulation of the “1907” Kaiyuan Tornado Weather Process in Liaoning, Northeast China. Atmosphere, 13(2), 219. https://doi.org/10.3390/atmos13020219