Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (147)

Search Parameters:
Keywords = normal and heavy water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4477 KB  
Article
Research on Water Hammer Protection in Coastal Drainage Pumping Stations Based on the Combined Application of Flap Valve and Sluice Gate
by Runlong Zhang, Jianyong Hu, Linghua Wang, Taowei Du, Mingming Song, Haijing Gao, Jiahua Mao, Zhen Zhang and Yunrui Fang
Water 2026, 18(1), 25; https://doi.org/10.3390/w18010025 - 21 Dec 2025
Viewed by 196
Abstract
The safe operation of drainage pumping stations, which are core flood-control facilities in eastern coastal areas of China, is paramount due to frequent typhoons and short-duration heavy rainfall. To enhance the operational safety against water hammer during pump trips caused by power failure, [...] Read more.
The safe operation of drainage pumping stations, which are core flood-control facilities in eastern coastal areas of China, is paramount due to frequent typhoons and short-duration heavy rainfall. To enhance the operational safety against water hammer during pump trips caused by power failure, a water hammer protection method based on the combined application of flap valves and sluice gates is proposed. Only the scenario of all pumps tripping simultaneously was considered. A one-dimensional simulation model of the pumping station’s hydraulic transient process, which included pumps, pipelines, flap valves, and sluice gates, was established to analyze the system response under three scenarios: (i) only the flap valve closes normally, with the sluice gates remaining open, (ii) the flap valve fails, only the sluice gates operate, and (iii) the combined application of flap valve and sluice gates. In scenario (i), the maximum and minimum channel pressure heads were 13.53 m and −2.22 m, respectively, with no pump reversal occurred. However, continuous pressure fluctuations were observed downstream of the flap valve, posing a threat to the flow channel’s safety. In scenario (ii), the channel pressure heads all met the control requirements. Employing a 60 s single-stage linear closure rule for Gate #1 maintained the pump’s reverse speed within the safe range, peaking at −147.25% of the rated speed, with a reversal duration of 60 s. In scenario (iii), all channel pressure heads met basic control requirements, and no pump reversal occurred. The optimal strategy was found to be the adoption of a 60 s single-stage linear closure rule for both sluice gates. Compared to the scenario (i), the combined application reduced the amplitude of pressure fluctuations and damped these fluctuations rapidly, thus shortening the oscillation duration. The combined approach innovatively utilizes existing infrastructure for water hammer control, providing an economical and reliable solution for water hammer protection in urban drainage pumping stations. Full article
Show Figures

Figure 1

19 pages, 2547 KB  
Article
Integrating Infiltration Holes into Ridge–Furrow Systems Enhances Drought Resilience and Yield of Maize in Semi-Arid China
by Jiwei Gao, Ke Wang, Xiaoyuan Zhang, Gaoliang Li, Guogang Wang, Zitong Zhang and Jiyong Zheng
Agronomy 2025, 15(12), 2871; https://doi.org/10.3390/agronomy15122871 - 14 Dec 2025
Viewed by 328
Abstract
This study aimed to address the limited infiltration capacity of the double ridge–furrow mulching system (DRFM) under heavy rainfall on the Loess Plateau, which exacerbates surface runoff and mid-summer soil water deficits in semi-arid rainfed areas. By incorporating infiltration holes to optimize the [...] Read more.
This study aimed to address the limited infiltration capacity of the double ridge–furrow mulching system (DRFM) under heavy rainfall on the Loess Plateau, which exacerbates surface runoff and mid-summer soil water deficits in semi-arid rainfed areas. By incorporating infiltration holes to optimize the system, we evaluated their effects on soil water storage, maize growth, and water use efficiency (WUE). A two-year field experiment (2021–2022) comprised four treatments: conventional flat planting (CK), the traditional ridge-furrow system (CWC), the double ridge-furrow system (DWC), and the double ridge-furrow system with infiltration holes (DWCR). The experimental periods represented a normal precipitation year (2021, 410 mm) and a dry year (2022, 270 mm). Results indicated that the DWCR treatment established preferential flow pathways, significantly enhancing deep soil water storage and its utilization efficiency during critical phenological stages, particularly under drought. This improved deep water accelerated crop growth and boosted yield. Compared to the CK, CWC, and DWC treatments, the DWCR treatment significantly increased plant height, aboveground dry matter (ADM), yield, and WUE. Specifically, the DWCR treatment improved yield and WUE by 0.24–20.04% and 2.75–26.27%, respectively. In the dry year, the yield of the DWC treatment increased by 12.72% compared to its yield in the normal year, whereas the DWCR treatment achieved a greater increase of 19.18%. Root analysis confirmed that the DWCR treatment significantly increased root weight density in the 20–60 cm soil layer under drought, optimizing root spatial distribution and thereby enhancing deep water uptake and drought resistance. In conclusion, incorporating infiltration holes into the DRFM is an effective strategy for optimizing soil water distribution, improving crop drought tolerance and WUE, and promoting sustainable semi-arid rainfed agriculture. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

15 pages, 1774 KB  
Article
Soil and Environmental Consequences of Spring Flooding in the Zhabay River Floodplain (Akmola Region)
by Madina Aitzhanova, Sayagul Zhaparova, Manira Zhamanbayeva and Assem Satimbekova
Sustainability 2025, 17(22), 10378; https://doi.org/10.3390/su172210378 - 20 Nov 2025
Viewed by 459
Abstract
Floods increasingly threaten semiarid regions, yet their long-term soil ecological impacts remain underdocumented. This study quantifies the hydrologic change and flood-induced soil transformation on the Zhabay River floodplain (Akmola, Kazakhstan) using integrated field, laboratory, and remote sensing data. Gauge records (2012–2024) were analyzed; [...] Read more.
Floods increasingly threaten semiarid regions, yet their long-term soil ecological impacts remain underdocumented. This study quantifies the hydrologic change and flood-induced soil transformation on the Zhabay River floodplain (Akmola, Kazakhstan) using integrated field, laboratory, and remote sensing data. Gauge records (2012–2024) were analyzed; inundation was mapped from a 0.30 m DEM (Digital Elevation Model) merging SRTM (Shuttle Radar Topography Mission), Landsat 8/Sentinel 2, and UAV (Unmanned Aerial Vehicle) photogrammetry (NDWI (Normalized Difference Water Index) > 0.28) and validated with 54 in situ depths (MAE (Mean Absolute Error) 0.17 m). Soil samples collected before and after floods were analyzed for texture, bulk density, pH, Eh, macronutrients, and heavy metals. Annual maxima increased by 0.08 m yr−1, while extreme floods became more frequent. Thresholds of ≥0.5 m depth and >7 days duration marked compaction onset, whereas >1 m and ≥12 days produced maximum organic carbon loss and Zn/Ni enrichment. The combination of high-resolution DEMs, ROC (Receiver Operating Characteristic) analysis, and soil microbial monitoring provides new operational indicators of soil degradation for Central Asian steppe floodplains. Findings contribute to SDG 13 (Climate Action) and SDG 15 (Life on Land) by linking flood resilience assessment with sustainable land-use planning. Full article
Show Figures

Figure 1

15 pages, 2391 KB  
Article
Research on the Impact of Typical SCR Faults on NOx Emission Deterioration of Heavy-Duty Vehicles
by Hao Zhang, Xiaofei Cao, Fengbin Wang, Hanzhengnan Yu, Jingyuan Li and Yu Liu
Atmosphere 2025, 16(11), 1299; https://doi.org/10.3390/atmos16111299 - 17 Nov 2025
Viewed by 446
Abstract
Faults of the selective catalytic reduction (SCR) significantly exacerbate nitrogen oxide (NOx) emissions from heavy-duty vehicles, thereby posing a severe hazard to atmospheric environmental quality. Currently, the paucity of systematic studies on NOx emission degradation induced by typical SCR faults has severely hindered [...] Read more.
Faults of the selective catalytic reduction (SCR) significantly exacerbate nitrogen oxide (NOx) emissions from heavy-duty vehicles, thereby posing a severe hazard to atmospheric environmental quality. Currently, the paucity of systematic studies on NOx emission degradation induced by typical SCR faults has severely hindered the advancement of precise emission regulation for heavy-duty vehicles in China. To address this critical gap, this study investigates the impact of typical SCR faults on NOx emission deterioration from heavy-duty vehicles. Initially, leveraging the China heavy-duty commercial vehicle test cycle as the benchmark, heavy-duty vehicle emission tests were designed and conducted under typical SCR faults. Emission datasets were acquired for three typical SCR faults—namely nozzle circuit disconnected fault, upstream temperature sensor inaccuracy fault, and urea-water replacement fault—as well as under normal operating conditions. Building upon these data, three representative scenarios were established by integrating vehicle operating condition, fuel consumption levels, and vehicle specific power states, enabling systematic quantification of the extent of NOx emission deterioration caused by each SCR fault. The findings reveal that the NOx emissions deterioration caused by urea-water replacement fault is the most severe, followed by nozzle circuit disconnected fault, and the impact of upstream temperature sensor inaccuracy fault is the least. This research provides crucial support for identifying key targets in emission control and enhancing the precision of heavy-duty vehicle emission regulation. Relevant authorities should prioritize cracking down on intentional non-compliant practices such as urea water substitution to safeguard a healthy and sustainable atmospheric environment. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

29 pages, 3310 KB  
Article
Impact of Mass Integration on the Technoeconomic Performance of the Gas Oil Hydrocracking Process in Latin America
by Sofía García-Maza, Segundo Rojas-Flores and Ángel Darío González-Delgado
Processes 2025, 13(11), 3681; https://doi.org/10.3390/pr13113681 - 14 Nov 2025
Cited by 1 | Viewed by 468
Abstract
The gas oil hydrocracking process is a cornerstone of modern refining, enabling the conversion of heavy fractions into high-value fuels such as diesel, kerosene, LPG, and naphtha. However, despite its economic significance, its considerable water requirements for cooling, washing, and steam generation lead [...] Read more.
The gas oil hydrocracking process is a cornerstone of modern refining, enabling the conversion of heavy fractions into high-value fuels such as diesel, kerosene, LPG, and naphtha. However, despite its economic significance, its considerable water requirements for cooling, washing, and steam generation lead to high utility costs, which may undermine profitability, representing the problem of the study. This study addresses the issue through a techno-economic assessment and resilience analysis of an industrial-scale, mass and energy-integrated gas oil hydrocracking process, utilizing the novel FP2O methodology. The process was modeled in Aspen HYSYS® V14.0 with a capacity of 1.94 Mt/year, assuming a feedstock cost of USD 350/t and a primary product (diesel) price of USD 1539/t. The total capital investment (TCI) was estimated at USD 175.68 million, while utility expenses reached USD 1312.18 million/year, representing nearly half of the total product cost (TPC) of USD 2692.20 million/year. A set of twelve techno-economic and three financial indicators was determined, yielding a gross profit (GP) of USD 97.69 million, profitability after tax (PAT) of USD 64.96 million, and a net present value (NPV) of USD 229.62 million. The payback period (PBP) was 1.41 years, with a depreciable payback period (DPBP) of 2.99 years. The return on investment (ROI) was 36.97%, and the internal rate of return (IRR) reached 44.81%, evidencing strong profitability relative to comparable petrochemical operations. Resilience analysis highlighted sensitivities to fluctuations in product prices, feedstock costs, and normalized variable operating costs (NVOC), identifying a critical NVOC of USD 1435/t against the current operation at USD 1384.74/t, which suggests a narrow buffer before profitability deteriorates. Overall, the findings confirm that mass and energy integration enhances resource efficiency but does not fully mitigate exposure to feedstock and utility price volatility. This work constitutes the first application of FP2O to a mass and energy-integrated gas oil hydrocracking facility, establishing a benchmark for holistic techno-economic and resilience assessments in complex petrochemical systems. Full article
Show Figures

Figure 1

15 pages, 2125 KB  
Article
Surface Mapping by RPAs for Ballast Optimization and Slip Reduction in Plowing Operations
by Lucas Santos Santana, Lucas Gabryel Maciel do Santos, Josiane Maria da Silva, Aldir Carpes Marques Filho, Francesco Toscano, Enio Farias de França e Silva, Alexandre Maniçoba da Rosa Ferraz Jardim, Thieres George Freire da Silva and Marco Antonio Zanella
AgriEngineering 2025, 7(10), 332; https://doi.org/10.3390/agriengineering7100332 - 3 Oct 2025
Viewed by 733
Abstract
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating [...] Read more.
Driving wheel slippage in agricultural tractors is influenced by soil moisture, density, and penetration resistance. These surface variations reflect post-tillage composition, enabling dynamic mapping via Remotely Piloted Aircraft (RPAs). This study evaluated ballast recommendations based on soil surface data and slippage percentages, correlating added wheel weights at different speeds for a tractor-reversible plow system. Six 94.5 m2 quadrants were analyzed for slippage monitored by RPA (Mavic3M-RTK) pre- and post-agricultural operation overflights and soil sampling (moisture, density, penetration resistance). A 2 × 2 factorial scheme (F-test) assessed soil-surface attribute correlations and slippage under varying ballasts (52.5–57.5 kg/hp) and speeds. Results showed slippage ranged from 4.06% (52.5 kg/hp, fourth reduced gear) to 11.32% (57.5 kg/hp, same gear), with liquid ballast and gear selection significantly impacting performance in friable clayey soil. Digital Elevation Model (DEM) and spectral indices derived from RPA imagery, including Normalized Difference Red Edge (NDRE), Normalized Difference Water Index (NDWI), Bare Soil Index (BSI), Green–Red Vegetation Index (GRVI), Visible Atmospherically Resistant Index (VARI), and Slope, proved effective. The approach reduced tractor slippage from 11.32% (heavy ballast, 4th gear) to 4.06% (moderate ballast, 4th gear), showing clear improvement in traction performance. The integration of indices and slope metrics supported ballast adjustment strategies, particularly for secondary plowing operations, contributing to improved traction performance and overall operational efficiency. Full article
(This article belongs to the Special Issue Utilization and Development of Tractors in Agriculture)
Show Figures

Figure 1

22 pages, 5267 KB  
Article
On Ballooning and Burst Behavior of Nuclear Fuel Clad Considering Heating Rate Effect: Development of a Damage Model, a Burst Correlation and Experimental Validation
by Ather Syed and Mahendra Kumar Samal
Solids 2025, 6(4), 56; https://doi.org/10.3390/solids6040056 - 28 Sep 2025
Viewed by 949
Abstract
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of [...] Read more.
Nuclear fuel cladding serves as the primary barrier to the release of radioactive fission products and is subjected to high-temperature and high-pressure environments during both normal reactor operation and accident scenarios such as loss of coolant accidents (LOCAs). Predicting the burst behavior of cladding is essential for ensuring structural integrity, especially under varying heating rates—an aspect inadequately addressed in existing empirical models. In this study, a finite element-based damage model is developed to simulate the ballooning and burst behavior of Zircaloy-4 cladding. The model incorporates creep deformation, stress triaxiality, and time-dependent damage accumulation. Material behavior is characterized using experimentally determined creep constants and the model is calibrated against burst test data from the literature. A new heating-rate-dependent burst correlation is proposed based on model outputs. The results indicate that increasing the heating rate raises the burst temperature due to reduced exposure time in the temperature regime where creep damage accumulates significantly. The model accurately reproduces burst behavior across a wide range of internal pressures (1–10 MPa) and heating rates (5–100 °C/s). The newly developed correlation improves predictive capability in accident analysis tools and can be directly implemented into safety analysis codes for Indian pressurized heavy water reactors (PHWRs), contributing to enhanced reactor safety evaluations. Full article
(This article belongs to the Topic Multi-scale Modeling and Optimisation of Materials)
Show Figures

Graphical abstract

21 pages, 2849 KB  
Systematic Review
A Decision Framework for Waste Foundry Sand Reuse: Integrating Performance Metrics and Leachate Safety via Meta-Analysis
by Ferdinand Niyonyungu, Aurobindo Ogra and Ntebo Ngcobo
Constr. Mater. 2025, 5(3), 63; https://doi.org/10.3390/constrmater5030063 - 8 Sep 2025
Viewed by 1025
Abstract
The reuse of Waste Foundry Sand (WFS) in construction remains constrained by fragmented research, unclear regulatory pathways, and inconsistent assessments of environmental safety and material performance. This study introduces a novel decision-making framework that systematically integrates mechanical performance metrics and leachate toxicity data [...] Read more.
The reuse of Waste Foundry Sand (WFS) in construction remains constrained by fragmented research, unclear regulatory pathways, and inconsistent assessments of environmental safety and material performance. This study introduces a novel decision-making framework that systematically integrates mechanical performance metrics and leachate toxicity data to classify WFS into three categories: Approved, Reusable with Treatment, or Rejected. The framework is based on a bibliometric analysis of 822 publications and a meta-analysis of 45 experimental mix designs and 30 peer-reviewed leachate studies. Normalized compressive strength (NSR), water-to-cement (w/c) ratio, and heavy metal leachate concentrations are used as screening criteria. Thresholds are benchmarked against regulatory limits from the United States Environmental Protection Agency (EPA), the European Union Landfill Directive, and South Africa’s National Waste Standards. Validation using field data from a foundry in Gauteng Province, South Africa, confirms the framework’s practicality and adaptability. Results indicate that over 80 percent of WFS samples comply with environmental thresholds, and mixes with 10-to-30 percent WFS substitution often outperform control specimens in terms of compressive strength. However, leachate exceedances for cobalt and lead in certain chemically bonded sands highlight the need for batch-specific evaluation and potential treatment. The proposed framework supports data-driven, transparent reuse decisions that enhance environmental compliance and promote circular material flows in the built environment. Future work should focus on digital implementation, life-cycle monitoring, and expanding the framework to other industrial byproducts. Full article
Show Figures

Figure 1

32 pages, 1444 KB  
Article
Enhancing Airport Resource Efficiency Through Statistical Modeling of Heavy-Tailed Service Durations: A Case Study on Potable Water Trucks
by Changcheng Li, Minghua Hu, Yuxin Hu, Zheng Zhao and Yanjun Wang
Aerospace 2025, 12(7), 643; https://doi.org/10.3390/aerospace12070643 - 21 Jul 2025
Viewed by 844
Abstract
In airport operations management, accurately estimating the service durations of ground support equipment such as Potable Water Trucks (PWTs) is essential for improving resource allocation efficiency and ensuring timely aircraft turnaround. Traditional estimation methods often use fixed averages or assume normal distributions, failing [...] Read more.
In airport operations management, accurately estimating the service durations of ground support equipment such as Potable Water Trucks (PWTs) is essential for improving resource allocation efficiency and ensuring timely aircraft turnaround. Traditional estimation methods often use fixed averages or assume normal distributions, failing to capture real-world variability and extreme scenarios effectively. To address these limitations, this study performs a comprehensive statistical analysis of PWT service durations using operational data from Beijing Daxing International Airport (ZBAD) and Shanghai Pudong International Airport (ZSPD). Employing chi-square goodness-of-fit tests, twenty probability distributions—including several heavy-tailed candidates—were rigorously evaluated under segmented scenarios, such as peak versus non-peak periods, varying temperature conditions, and different aircraft sizes. Results reveal that heavy-tailed distributions offer context-dependent advantages: the stable distribution exhibits superior modeling performance during peak operational periods, whereas the Burr distribution excels under non-peak conditions. Interestingly, contrary to existing operational assumptions, service durations at extremely high and low temperatures showed no significant statistical differences, prompting a reconsideration of temperature-dependent planning practices. Additionally, analysis by aircraft category showed that the Burr distribution best described service durations for large aircraft, while stable and log-logistic distributions were optimal for medium-sized aircraft. Numerical simulations confirmed these findings, demonstrating that the proposed heavy-tailed probabilistic models significantly improved resource prediction accuracy, reducing estimation errors by 13% to 25% compared to conventional methods. This research uniquely demonstrates the practical effectiveness of employing context-sensitive heavy-tailed distributions, substantially enhancing resource efficiency and operational reliability in airport ground handling management. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

17 pages, 2951 KB  
Article
Long-Term Rainfall–Runoff Relationships During Fallow Seasons in a Humid Region
by Rui Peng, Gary Feng, Ying Ouyang, Guihong Bi and John Brooks
Climate 2025, 13(7), 149; https://doi.org/10.3390/cli13070149 - 16 Jul 2025
Viewed by 2535
Abstract
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various [...] Read more.
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various rainfall events during fallow seasons in Mississippi by applying the DRAINMOD model. The analysis revealed that the average rainfall during the fallow season was 760 mm over the past 100 years, accounting for 65% of the annual total. In dry, normal, and wet fallow seasons, the average rainfall was 528, 751, and 1010 mm, respectively, corresponding to runoff of 227, 388, and 602 mm. Runoff frequency increased with wetter weather conditions, rising from 16 events in dry seasons to 23 in normal seasons and 30 in wet seasons. Over the past century, runoff dynamics were predominantly regulated by high-intensity rainfall events during the fallow season. Very heavy rainfall events (mean frequency = 11 events) generated 215 mm of runoff and accounted for 53% of the total runoff, while extreme rainfall events (mean frequency = 2 events) contributed 135 mm of runoff, making up 34% of the total runoff. Water table depth played a critical role in shaping spring runoff dynamics. As the water table decreased from 46 mm in March to 80 mm in May, the soil pore space increased from 5 mm in March to 14 mm in May. This increased soil infiltration and water storage capacity, leading to a steady decline in runoff. The study found that the mean daily runoff frequency dropped from 13.5% in March to 7.6% in May, while monthly runoff decreased from 74 to 38 mm. Increased extreme rainfall (R95p) in April contributed over 45% of the total runoff and resulted in the highest daily mean runoff of 20 mm, compared to 18 mm in March and 16 mm in May. The results from this century-long historical weather data could be used to enhance field-scale water resource management, predict potential runoff risks, and optimize planting windows in the humid east-central Mississippi. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

14 pages, 2164 KB  
Article
Research on Operational Risk for Northwest Passage Cruise Ships Using POLARIS
by Long Ma, Jiemin Fan, Xiaoguang Mou, Sihan Qian, Jin Xu, Liang Cao, Bo Xu, Boxi Yao, Xiaowen Li and Yabin Li
J. Mar. Sci. Eng. 2025, 13(7), 1335; https://doi.org/10.3390/jmse13071335 - 12 Jul 2025
Cited by 1 | Viewed by 904
Abstract
In the context of global warming, polar tourism is developing rapidly, and the demand for polar cruise travel in the Northwest Passage continues to increase, while sea ice has long been a key factor limiting the development of polar cruise tourism. This study [...] Read more.
In the context of global warming, polar tourism is developing rapidly, and the demand for polar cruise travel in the Northwest Passage continues to increase, while sea ice has long been a key factor limiting the development of polar cruise tourism. This study focuses on the operational risk of sea ice on cruise ships in the Northwest Passage (NWP), aiming to provide a scientific basis for ensuring the safety of cruise ship navigation and promoting the sustainable development of polar tourism. Based on ice data from 2015 to 2024, this study used the Polar Operational Limit Assessment Risk Indexing System (POLARIS) methodology recommended by the International Maritime Organization (IMO) to establish three scenarios for the route of ice class IC cruise ships: light ice, normal ice, and heavy ice. The navigable windows were systematically analyzed and critical waters along the route were identified. The results indicate that the navigable windows for IC ice-class cruise ships under light ice conditions are from mid-July to early December, while the navigable period under normal ice conditions is only from mid- to late September, and navigation is not possible under heavy ice conditions. The study identified Larsen Sound, Barrow Strait, Bellot Strait and Eastern Beaufort Sea as critical waters on the NWP cruise route. Among them, Larsen Sound and Eastern Beaufort Sea have a more prominent impact on voyage scheduling because their navigation weeks overlap less with other waters. This study provides a new idea for the risk assessment of polar cruise ships in ice regions. The research results can provide an important reference for the safe operation of polar cruise ships in the NWP and the decision-making of relevant parties. Full article
Show Figures

Figure 1

15 pages, 2953 KB  
Article
Water Retention Measures as a Remediation Technique for CSO-Affected Watercourses
by Michaela Červeňanská, Jakub Mydla, Andrej Šoltész, Martin Orfánus, Peter Šulek, Jaroslav Hrudka, Réka Wittmanová and Richard Honti
Sustainability 2025, 17(14), 6280; https://doi.org/10.3390/su17146280 - 9 Jul 2025
Viewed by 648
Abstract
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can [...] Read more.
During heavy rainfalls, overflowing sewage water flows from the Combined Sewer Overflow (CSO) chambers and pollutes the Trnávka River in Trnava, Slovakia. This paper aims to propose water retention measures for the Trnávka River as a remediation technique for CSO-affected watercourses, which can contribute to the ‘flushing’ of the riverbed. During heavy rainfalls, the Trnávka River is polluted by solid, non-soluble materials, which produce unpleasant odors and are the subject of numerous complaints by citizens, particularly during low water levels. Three inflatable rubber weirs were designed, and their design was verified using a 1D numerical model of the Trnávka River. The simulations of the proposed measures performed in the HEC-RAS 5.0 software excluded the adverse effect of the backwater on the functioning of the CSO chambers in the city of Trnava during normal flow rates and confirmed that, even after installation of the weirs, the transition of the flood wave will pass in the riverbed, not causing the flooding of the adjacent area. The chemical–physical study of the Trnávka River confirmed our assumption that higher flow rates, which can be secured by the regulation of the proposed weirs, can contribute to the purity of the watercourse in the city of Trnava. Full article
Show Figures

Figure 1

19 pages, 5609 KB  
Article
Effects of Chronic Low-Salinity Stress on Growth, Survival, Antioxidant Capacity, and Gene Expression in Mizuhopecten yessoensis
by Haoran Xiao, Xin Jin, Zitong Wang, Qi Ye, Weiyan Li, Lingshu Han and Jun Ding
Biology 2025, 14(7), 759; https://doi.org/10.3390/biology14070759 - 25 Jun 2025
Viewed by 985
Abstract
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth [...] Read more.
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth performance, antioxidant capacity, and gene expression profile of M. yessoensis using a 60-day salinity gradient experiment. S33 represents the control treatment with normal seawater salinity (33‰), while S30, S28, and S26 represent experimental groups with progressively lower salinities of 30‰, 28‰, and 26‰, respectively. A decline in salinity was accompanied by an increase in oxygen consumption. The S26 group exhibited a higher ammonia excretion rate (2.73 μg/g·h) than other groups, indicating intensified nitrogen metabolism. Growth was inhibited under low-salinity conditions. The S33 group exhibited greater weight gain (16.7%) and shell growth (8.4%) compared to the S26 group (11.6% and 6%), which also showed a substantially higher mortality rate (46%) compared to the control (13%). At 28‰, antioxidant enzyme activities (T-AOC, SOD, CAT, POD) were elevated, indicating a moderate level of stress. However, at the lowest salinity (26‰), these indicators decreased, reflecting the exhaustion of the antioxidant systems and indicating that the mollusks’ adaptive capacity had been exceeded, leading to a state of stress fatigue. NAD-MDH activity was elevated in the S26 group, reflecting enhanced aerobic metabolism under stress. Transcriptome analysis revealed 564 differentially expressed genes (DEGs) between the S33 and S26 groups. Functional enrichment analysis indicated that these DEGs were mainly associated with immune and stress response pathways, including NF-κB, TNF, apoptosis, and Toll/Imd signaling. These genes are involved in key metabolic processes, such as alanine, aspartate, and glutamate metabolism. Genes such as GADD45, ATF4, TRAF3, and XBP1 were upregulated, contributing to stress repair and antioxidant responses. Conversely, the expressions of CASP3, IKBKA, BIRC2/3, and LBP were downregulated, potentially mitigating apoptosis and inflammatory responses. These findings suggest that M. yessoensis adapts to chronic low-salinity stress through the activation of antioxidant systems, modulation of immune responses, and suppression of excessive apoptosis. This study provides new insights into the molecular mechanisms underlying salinity adaptation in bivalves and offers valuable references for scallop aquaculture and selective breeding programs. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

29 pages, 4151 KB  
Article
Lake Water Composition in Oceanic Islands: Insights from REE Content and 87Sr/86Sr Isotopic Ratio
by José Virgílio Cruz, César Andrade, Letícia Ferreira and Fátima Viveiros
Water 2025, 17(13), 1849; https://doi.org/10.3390/w17131849 - 21 Jun 2025
Viewed by 1043
Abstract
A study was carried out with a representative data set of volcanic lakes from the Azores archipelago. A total of 672 samples were collected during four field surveys conducted over the year and along the depth. Following water sampling, temperature, pH, and EC [...] Read more.
A study was carried out with a representative data set of volcanic lakes from the Azores archipelago. A total of 672 samples were collected during four field surveys conducted over the year and along the depth. Following water sampling, temperature, pH, and EC were measured, the dissolved CO2 and alkalinity were determined by titration, and aliquots were taken to perform analysis of major, minor and trace elements, as well as 18O/16O, 2H/1H and 87Sr/86Sr isotopic ratios. Waters are of meteoric origin and from the Na-HCO3 to Na-Cl types. The 87Sr/86Sr ranges between 0.709194 and 0.704294, and most of the lakes depict less radiogenic values than seawater, suggesting a potential contribution from rock dissolution. Along the reciprocal of the Sr vs. 87Sr/86Sr plot, most samples suggest a linear trend between rock values and rainwater. Samples display considerable variability in the ∑REE, ranging from 0.83 µg L−1 to 13.54 µg L−1, and when chondrite normalized, depict a negative slope, showing an enrichment in light REEs compared to heavy REEs. This pattern is consistent with the one from Azores rocks and bottom sediments from some lakes, and most lakes depict Eu anomalies, resulting from interaction between water and sediments or from incongruent mineral dissolution. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

26 pages, 9203 KB  
Article
Mapping Land Surface Drought in Water-Scarce Arid Environments Using Satellite-Based TVDI Analysis
by A A Alazba, Amr Mossad, Hatim M. E. Geli, Ahmed El-Shafei, Ahmed Elkatoury, Mahmoud Ezzeldin, Nasser Alrdyan and Farid Radwan
Land 2025, 14(6), 1302; https://doi.org/10.3390/land14061302 - 18 Jun 2025
Cited by 1 | Viewed by 1582
Abstract
Drought, a natural phenomenon intricately intertwined with the broader canvas of climate change, exacts a heavy toll by ushering in acute terrestrial water scarcity. Its ramifications reverberate most acutely within the agricultural heartlands, particularly those nestled in arid regions. To address this pressing [...] Read more.
Drought, a natural phenomenon intricately intertwined with the broader canvas of climate change, exacts a heavy toll by ushering in acute terrestrial water scarcity. Its ramifications reverberate most acutely within the agricultural heartlands, particularly those nestled in arid regions. To address this pressing issue, this study harnesses the temperature vegetation dryness index (TVDI) as a robust drought indicator, enabling a granular estimation of land water content trends. This endeavor unfolds through the sophisticated integration of geographic information systems (GISs) and remote sensing technologies (RSTs). The methodology bedrock lies in the judicious utilization of 72 high-resolution satellite images captured by the Landsat 7 and 8 platforms. These images serve as the foundational building blocks for computing TVDI values, a key metric that encapsulates the dynamic interplay between the normalized difference vegetation index (NDVI) and the land surface temperature (LST). The findings resonate with significance, unveiling a conspicuous and statistically significant uptick in the TVDI time series. This shift, observed at a confidence level of 0.05 (ZS = 1.648), raises a crucial alarm. Remarkably, this notable surge in the TVDI exists in tandem with relatively insignificant upticks in short-term precipitation rates and LST, at statistically comparable significance levels. The implications are both pivotal and starkly clear: this profound upswing in the TVDI within agricultural domains harbors tangible environmental threats, particularly to groundwater resources, which form the lifeblood of these regions. The call to action resounds strongly, imploring judicious water management practices and a conscientious reduction in water withdrawal from reservoirs. These measures, embraced in unison, represent the imperative steps needed to defuse the looming crisis. Full article
Show Figures

Figure 1

Back to TopTop