Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (174)

Search Parameters:
Keywords = nonhistone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2229 KiB  
Review
The Roles of Lactate and Lactylation in Diseases Related to Mitochondrial Dysfunction
by Fei Ma and Wei Yu
Int. J. Mol. Sci. 2025, 26(15), 7149; https://doi.org/10.3390/ijms26157149 - 24 Jul 2025
Viewed by 233
Abstract
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, [...] Read more.
Glycolysis and oxidative phosphorylation are the main pathways of cellular energy production. Glucose is metabolized via glycolysis to generate pyruvate, which, under anaerobic conditions, is converted into lactate, while, under aerobic conditions, pyruvate enters mitochondria for oxidative phosphorylation to produce more energy. Accordingly, mitochondrial dysfunction disrupts the energy balance. Lactate, historically perceived as a harmful metabolic byproduct. However, emerging research indicates that lactate has diverse biological functions, encompassing energy regulation, epigenetic remodeling, and signaling activities. Notably, the 2019 study revealed the role of lactate in regulating gene expression through histone and non-histone lactylation, thereby influencing critical biological processes. Metabolic reprogramming is a key adaptive mechanism of cells responding to stresses. The Warburg effect in tumor cells exemplifies this, with glucose preferentially converted to lactate for rapid energy, accompanied by metabolic imbalances, characterized by exacerbated aerobic glycolysis, lactate accumulation, suppressed mitochondrial oxidative phosphorylation, and compromised mitochondrial function, ultimately resulting in a vicious cycle of metabolic dysregulation. As molecular bridges connecting metabolism and epigenetics, lactate and lactylation offer novel therapeutic targets for diseases like cancer and neurodegenerative diseases. This review summarizes the interplay between metabolic reprogramming and mitochondrial dysfunction, while discussing lactate and lactylation’s mechanistic in the pathogenesis of related diseases. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

22 pages, 2985 KiB  
Review
Class IIa HDACs Are Important Signal Transducers with Unclear Enzymatic Activities
by Claudio Brancolini
Biomolecules 2025, 15(8), 1061; https://doi.org/10.3390/biom15081061 - 22 Jul 2025
Viewed by 204
Abstract
Class IIa histone deacetylases (HDACs) are pleiotropic regulators of various differentiation pathways and adaptive responses. They form complexes with other co-repressors and can bind to DNA by interacting with selected transcription factors, with members of the Myocyte Enhancer Factor-2 (MEF2) family being the [...] Read more.
Class IIa histone deacetylases (HDACs) are pleiotropic regulators of various differentiation pathways and adaptive responses. They form complexes with other co-repressors and can bind to DNA by interacting with selected transcription factors, with members of the Myocyte Enhancer Factor-2 (MEF2) family being the best characterized. A notable feature of class IIa HDACs is the substitution of tyrosine for histidine in the catalytic site, which has occurred over the course of evolution and has a profound effect on the efficiency of catalysis against acetyl-lysine. Another distinctive feature of this family of “pseudoenzymes” is the regulated nucleus–cytoplasm shuttling associated with several non-histone proteins that have been identified as potential substrates, including proteins localized in the cytosol. Within the complexity of class IIa HDACs, several aspects deserve further investigation. In the following, I will discuss some of the recent advances in our knowledge of class IIa HDACs. Full article
(This article belongs to the Special Issue Recent Advances in Chromatin and Chromosome Molecular Research)
Show Figures

Figure 1

24 pages, 1610 KiB  
Review
Lactylation: From Molecular Insights to Disease Relevance
by Yao Xu, Lu Zhang, Dong Shang and Hong Xiang
Biomolecules 2025, 15(6), 810; https://doi.org/10.3390/biom15060810 - 3 Jun 2025
Viewed by 1072
Abstract
Lactylation, referring to the covalent coupling of the lactyl group with lysine residues, is a recently defined post-translational modification. It has been demonstrated that lactylation can alter protein transcription, thereby affecting the transmission of genetic information and ultimately exerting diverse effects on health [...] Read more.
Lactylation, referring to the covalent coupling of the lactyl group with lysine residues, is a recently defined post-translational modification. It has been demonstrated that lactylation can alter protein transcription, thereby affecting the transmission of genetic information and ultimately exerting diverse effects on health and diseases. Here, we review the existing literature and summarize the characteristics and mechanisms of lactylation on both histone and non-histone proteins. We hope to explore lactylation targets for different diseases, thus providing potential clues for new therapeutic strategies. Full article
Show Figures

Graphical abstract

20 pages, 1496 KiB  
Review
Lysine Acetyltransferase 8: A Target for Natural Compounds in Cancer Therapy
by Lei Wang, Liting Zhao, Xintian Lan, Ming Zhu, Yiying Tan, Haoming Luo and Donglu Wu
Int. J. Mol. Sci. 2025, 26(11), 5257; https://doi.org/10.3390/ijms26115257 - 29 May 2025
Viewed by 646
Abstract
Lysine acetyltransferase 8 (KAT8) is a member of the MYST family of histone acetyltransferases. It catalyzes the acetylation of histone H4 at lysine 16 (H4K16ac) and non-histone proteins. Abnormal upregulation or downregulation of KAT8 and its associated H4K16ac have been observed in malignant [...] Read more.
Lysine acetyltransferase 8 (KAT8) is a member of the MYST family of histone acetyltransferases. It catalyzes the acetylation of histone H4 at lysine 16 (H4K16ac) and non-histone proteins. Abnormal upregulation or downregulation of KAT8 and its associated H4K16ac have been observed in malignant tumors, suggesting its close association with tumorigenesis and progression. Characterized by structural diversity and multi-target mechanisms, natural agents have been increasingly shown to possess significant antitumor activity. This review focuses on KAT8, summarizing its molecular mechanisms in regulating tumor development by catalyzing substrate protein acetylation, which impacts tumor cell proliferation, cell cycle regulation, apoptosis, DNA damage repair, and autophagy. It also systematically discusses the pharmacological activities and molecular mechanisms of small-molecule agents that target KAT8 to inhibit tumor proliferation, including natural compounds, synthetic drugs, and non-coding RNAs. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation)
Show Figures

Figure 1

11 pages, 2650 KiB  
Brief Report
The TIP60-CD44 Axis Modulates Colorectal Cancer Stemness
by Asad Mohammad and Sudhakar Jha
Cells 2025, 14(10), 686; https://doi.org/10.3390/cells14100686 - 9 May 2025
Viewed by 697
Abstract
HIV-1 Tat-interactive protein of 60 kDa (TIP60) is a lysine acetyltransferase protein that can acetylate histone and non-histone proteins. This study highlights TIP60’s role in regulating colorectal cancer (CRC) stemness. The depletion of TIP60 resulted in a marked decrease in cellular proliferation, highlighting [...] Read more.
HIV-1 Tat-interactive protein of 60 kDa (TIP60) is a lysine acetyltransferase protein that can acetylate histone and non-histone proteins. This study highlights TIP60’s role in regulating colorectal cancer (CRC) stemness. The depletion of TIP60 resulted in a marked decrease in cellular proliferation, highlighting TIP60’s involvement in the progression of CRC. Additionally, the loss of TIP60 impacted colony formation, transitioning from densely packed structures to dispersed spindle networks along with the loss of E-cadherin, indicating its role in the epithelial–mesenchymal transition (EMT). Three-dimensional culture models suggest that TIP60 is vital for spheroid formation, highlighting its importance in maintaining cancer stem cell properties in CRC. TIP60-depleted cells showed increased invasion in a 3D basement membrane extract (BME) invasion matrix, demonstrating its essential role in cellular invasiveness. Mechanistically, the reduction of TIP60 resulted in a decrease in CD44 expression, a critical marker for cancer stem cells (CSCs). Notably, CD44 overexpression restored the efficiency of spheroid formation and cell proliferation while reversing the EMT phenotype. Developing the TIP60-CD44 axis as a therapeutic target to treat CRC stemness and metastasis will help decrease the burden due to the deadly disease. Full article
(This article belongs to the Collection Cancer Stem Cells and Drug Resistance)
Show Figures

Graphical abstract

22 pages, 1184 KiB  
Review
Role of Histone Deacetylases in Drug-Resistant Melanoma: Mechanisms and Therapeutic Implications
by Bhuvanesh Sukhlal Kalal
Kinases Phosphatases 2025, 3(2), 8; https://doi.org/10.3390/kinasesphosphatases3020008 - 21 Apr 2025
Viewed by 1548
Abstract
Melanoma, known for its aggressive nature and propensity for developing drug resistance, remains a significant clinical challenge. The emergence of resistance to both targeted therapies (like BRAF/MEK inhibitors) and immunotherapies is a major obstacle to achieving durable responses and improving patient survival. HDACs, [...] Read more.
Melanoma, known for its aggressive nature and propensity for developing drug resistance, remains a significant clinical challenge. The emergence of resistance to both targeted therapies (like BRAF/MEK inhibitors) and immunotherapies is a major obstacle to achieving durable responses and improving patient survival. HDACs, a class of epigenetic enzymes, modulate gene expression and chromatin structure by removing acetyl groups from histone and non-histone proteins. In melanoma, aberrant HDAC activity contributes to resistance through multiple mechanisms. HDACs influence key oncogenic signaling pathways frequently dysregulated in melanoma, such as the MAPK, PI3K/AKT, and WNT/β-catenin cascades. By altering the activity of these pathways, HDACs promote the survival and proliferation of melanoma cells even in the presence of therapy. Beyond their direct effects on tumor cells, HDACs also play a crucial role in shaping the tumor microenvironment. They can suppress anti-tumor immune responses by reducing immune cell infiltration, modulating cytokine production, and fostering an immunosuppressive milieu. This further contributes to resistance to immunotherapies. Given the central role of HDACs in these resistance mechanisms, HDAC inhibitors (HDACis) have emerged as potential therapeutic agents to restore drug sensitivity. HDACis can induce cell death, inhibit proliferation, and enhance immune responses in melanoma cells. Preclinical and clinical studies have explored the combination of HDACis with existing therapies to overcome resistance. While promising, the clinical application of HDACis is accompanied by challenges, including toxicity, the need for biomarkers to predict response, and the optimization of combination strategies. Ongoing research is dedicated to developing more selective and potent HDACis and to better understand how to effectively incorporate them into melanoma treatment regimens. This review provides a comprehensive overview of the multifaceted ways in which HDACs contribute to melanoma drug resistance and discusses the potential of HDAC-targeted therapies to improve patient outcomes. Full article
Show Figures

Figure 1

16 pages, 3712 KiB  
Article
The Brucella Effector Protein BspF Crotonylates TRIM38 to Inhibit NF-κB and MAPK Signaling Pathway
by Huan Zhang, Yukai Xing, Jinying Zhu, Sijiao Wu, Jingbo Gao, Yuqi Wang, Ze Yu, Ang Li, Yuzhuo Li, Xiaoyue Chen and Zeliang Chen
Int. J. Mol. Sci. 2025, 26(8), 3573; https://doi.org/10.3390/ijms26083573 - 10 Apr 2025
Cited by 1 | Viewed by 604
Abstract
The type IV secretion system (T4SS) is an important virulence factor of Brucella. T4SS secretes 16 effector proteins, which affect the intracellular transport of Brucella-containing vacuoles and regulate the host immune response, helping Brucella survive and replicate in host cells. In [...] Read more.
The type IV secretion system (T4SS) is an important virulence factor of Brucella. T4SS secretes 16 effector proteins, which affect the intracellular transport of Brucella-containing vacuoles and regulate the host immune response, helping Brucella survive and replicate in host cells. In our previous crotonylation proteomics data of HEK-293T cell proteins triggered by BspF, we found BspF crotonylated on TRIM38, which is an important modulator in the pathways of inflammation, and the crotonylation site is K142. Therefore, it is speculated that BspF may be involved in the regulation of host inflammatory response during Brucella infection. In this study, we found that BspF-mediated TRIM38K142 crotonylation promotes the ubiquitination of tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6), leading to the degradation of TRAF6 and thereby inhibiting the transduction of Nuclear factor-kappaB (NF-κB), p38 Mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinases (JNK) MAPK signaling pathways and the secretion of pro-inflammatory factors IL-6 and IL-8, which finally helps Brucella promote intracellular survival. This study provides a new theoretical basis for the intracellular survival of host innate immunity through the T4SS, provides new insights into the pathogenic mechanism and treatment of Brucella, and provides an important reference for the study of non-histone crotonylation function. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

22 pages, 5704 KiB  
Article
HMGA2 Overexpression in Papillary Thyroid Cancer Promotes Thyroid Cell Dedifferentiation and Invasion, and These Effects Are Counteracted by Suramin
by Cindy Van Branteghem, Nicolas Henry, Ligia Craciun and Carine Maenhaut
Int. J. Mol. Sci. 2025, 26(4), 1643; https://doi.org/10.3390/ijms26041643 - 14 Feb 2025
Viewed by 1065
Abstract
Thyroid cancer is the most prevalent endocrine malignancy, and papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy. While PTC generally has a favorable prognosis, a subset dedifferentiates into aggressive forms. However, the molecular mechanisms responsible for aggressiveness and dedifferentiation [...] Read more.
Thyroid cancer is the most prevalent endocrine malignancy, and papillary thyroid carcinoma (PTC) is the most common type of thyroid malignancy. While PTC generally has a favorable prognosis, a subset dedifferentiates into aggressive forms. However, the molecular mechanisms responsible for aggressiveness and dedifferentiation are still poorly understood. We previously showed that HMGA2, a non-histone architectural transcription factor overexpressed in PTC, is involved in cell invasion. This study aimed to further analyze the role of HMGA2 in PTC tumorigenesis by exploring the expression of thyroid-specific and EMT-related genes following HMGA2 knockdown in thyroid cancer cell lines. Then, the clinical relevance of our data was evaluated in vivo. HMGA2 silencing did not modulate the expression of EMT related genes but led to the increased expression of thyroid differentiation genes. Our data also suggest that the MAPK pathway induces thyroid cell dedifferentiation through HMGA2. On the other hand, forskolin, promoting thyroid differentiation, decreased HMGA2 expression. The negative correlations between HMGA2 and thyroid-specific gene expressions were confirmed in a transgenic mouse model of PTC and in human PTC. Finally, we showed that HMGA2 inhibition by suramin reduced cell invasion and induced differentiation expression in vitro, indicating a new therapeutic strategy for treating thyroid cancer. Full article
Show Figures

Figure 1

23 pages, 2645 KiB  
Review
Lactate and Lactylation: Dual Regulators of T-Cell-Mediated Tumor Immunity and Immunotherapy
by Zhi-Nan Hao, Xiao-Ping Tan, Qing Zhang, Jie Li, Ruohan Xia and Zhaowu Ma
Biomolecules 2024, 14(12), 1646; https://doi.org/10.3390/biom14121646 - 21 Dec 2024
Cited by 12 | Viewed by 4562
Abstract
Lactate and its derivative, lactylation, play pivotal roles in modulating immune responses within the tumor microenvironment (TME), particularly in T-cell-mediated cancer immunotherapy. Elevated lactate levels, a hallmark of the Warburg effect, contribute to immune suppression through CD8+ T cell functionality and by [...] Read more.
Lactate and its derivative, lactylation, play pivotal roles in modulating immune responses within the tumor microenvironment (TME), particularly in T-cell-mediated cancer immunotherapy. Elevated lactate levels, a hallmark of the Warburg effect, contribute to immune suppression through CD8+ T cell functionality and by promoting regulatory T cell (Treg) activity. Lactylation, a post-translational modification (PTM), alters histone and non-histone proteins, influencing gene expression and further reinforcing immune suppression. In the complex TME, lactate and its derivative, lactylation, are not only associated with immune suppression but can also, under certain conditions, exert immunostimulatory effects that enhance cytotoxic responses. This review describes the dual roles of lactate and lactylation in T-cell-mediated tumor immunity, analyzing how these factors contribute to immune evasion, therapeutic resistance, and immune activation. Furthermore, the article highlights emerging therapeutic strategies aimed at inhibiting lactate production or disrupting lactylation pathways to achieve a balanced regulation of these dual effects. These strategies offer new insights into overcoming tumor-induced immune suppression and hold the potential to improve the efficacy of cancer immunotherapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3686 KiB  
Article
Transcriptomic and Metabolomic Analysis Reveals Multifaceted Impact of Gcn5 Knockdown in Drosophila Development
by Youfeng Li, Yue Xu, Ruike Li, Sirui Huang, Qiong Wu, Jing Yan, Zhigang Jiang, Xiushan Wu, Fang Li, Yuequn Wang, Yongqing Li, Xiongwei Fan and Wuzhou Yuan
Metabolites 2024, 14(12), 680; https://doi.org/10.3390/metabo14120680 - 4 Dec 2024
Cited by 1 | Viewed by 1241
Abstract
Background: General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in Drosophila. Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, [...] Read more.
Background: General control nonderepressible 5 (Gcn5) is a lysine acetyltransferase (KAT) that is evolutionarily conserved across eukaryotes, with two homologs (Kat2a and Kat2b) identified in humans and one (Gcn5) in Drosophila. Gcn5 contains a P300/CBP-associated factor (PCAF) domain, a Gcn5-N-acetyltransferase (GNAT) domain, and a Bromodomain, allowing it to regulate gene expression through the acetylation of both histone and non-histone proteins. In Drosophila, Gcn5 is crucial for embryonic development, with maternal Gcn5 supporting early development. However, the functional mechanisms of Gcn5 after the depletion of maternal deposits remain unclear. Methods: Our study employed the Gal4/UAS-RNAi system to achieve whole-body or heart-specific Gcn5 knockdown in Drosophila and selected 96-hour-old surviving larvae for transcriptomic and metabolomic analyses. Results: Omics results revealed that Gcn5 knockdown significantly impacts various metabolic pathways, as well as lysosomes, non-homologous end-joining, Toll and Imd signaling pathways, and circadian rhythms, among others. Furthermore, defects in chitin synthesis may be associated with impaired pupation. Additionally, heart-specific Gcn5 knockdown affected cardiac physiology but appeared to have a potential protective effect against age-related cardiac decline. Conclusions: These findings deepen our understanding of Gcn5’s roles in Drosophila development and provide valuable insights for developing Gcn5-targeted therapies, particularly considering its involvement in various human diseases. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

22 pages, 1297 KiB  
Review
Progress in Lactate Metabolism and Its Regulation via Small Molecule Drugs
by Jin Liu, Feng Zhou, Yang Tang, Linghui Li and Ling Li
Molecules 2024, 29(23), 5656; https://doi.org/10.3390/molecules29235656 - 29 Nov 2024
Cited by 3 | Viewed by 5256
Abstract
Lactate, once viewed as a byproduct of glycolysis and a metabolic “waste”, is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent [...] Read more.
Lactate, once viewed as a byproduct of glycolysis and a metabolic “waste”, is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes. Targeting lactate production, transport, and lactylation may offer therapeutic potential for multiple diseases, yet a systematic summary of the small molecules modulating lactate and its metabolism in various diseases is lacking. This review outlines the sources and clearance of lactate, as well as its roles in cancer, liver fibrosis, sepsis, ischemic stroke, myocardial infarction, and acute kidney injury, and summarizes the effects of small molecules on lactate regulation. It aims to provide a reference and direction for future research. Full article
Show Figures

Figure 1

30 pages, 16811 KiB  
Article
Unveiling Smyd-2’s Role in Cytoplasmic Nrf-2 Sequestration and Ferroptosis Induction in Hippocampal Neurons After Cerebral Ischemia/Reperfusion
by Daohang Liu and Yizhun Zhu
Cells 2024, 13(23), 1969; https://doi.org/10.3390/cells13231969 - 28 Nov 2024
Cited by 2 | Viewed by 1632
Abstract
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis—a regulated form of cell death driven by lipid peroxidation—remains poorly understood. This study identifies the expression of [...] Read more.
SET and MYND Domain-Containing 2 (Smyd-2), a specific protein lysine methyltransferase (PKMT), influences both histones and non-histones. Its role in cerebral ischemia/reperfusion (CIR), particularly in ferroptosis—a regulated form of cell death driven by lipid peroxidation—remains poorly understood. This study identifies the expression of Smyd-2 in the brain and investigates its relationship with neuronal programmed cell death (PCD). We specifically investigated how Smyd-2 regulates ferroptosis in CIR through its interaction with the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway. Smyd-2 knockout protects HT-22 cells from Erastin-induced ferroptosis but not TNF-α + Smac-mimetic-induced apoptosis/necroptosis. This neuroprotective effect of Smyd-2 knockout in HT-22 cells after Oxygen–Glucose Deprivation/Reperfusion (OGD/R) was reversed by Erastin. Smyd-2 knockout in HT-22 cells shows neuroprotection primarily via the Nuclear Factor Erythroid-2-related Factor-2 (Nrf-2)/Kelch-like ECH-associated protein (Keap-1) pathway, despite the concurrent upregulation of Smyd-2 and Nrf-2 observed in both the middle cerebral artery occlusion (MCAO) and OGD/R models. Interestingly, vivo experiments demonstrated that Smyd-2 knockout significantly reduced ferroptosis and lipid peroxidation in hippocampal neurons following CIR. Moreover, the Nrf-2 inhibitor ML-385 abolished the neuroprotective effects of Smyd-2 knockout, confirming the pivotal role of Nrf-2 in ferroptosis regulation. Cycloheximide (CHX) fails to reduce Nrf-2 expression in Smyd-2 knockout HT-22 cells. Smyd-2 knockout suppresses Nrf-2 lysine methylation, thereby promoting the Nrf-2/Keap-1 pathway without affecting the PKC-δ/Nrf-2 pathway. Conversely, Smyd-2 overexpression disrupts Nrf-2 nuclear translocation, exacerbating ferroptosis and oxidative stress, highlighting its dual regulatory role. This study underscores Smyd-2’s potential for ischemic stroke treatment by disrupting the Smyd-2/Nrf-2-driven antioxidant capacity, leading to hippocampal neuronal ferroptosis. By clarifying the intricate interplay between ferroptosis and oxidative stress via the Nrf-2/Keap-1 pathway, our findings provide new insights into the molecular mechanisms of CIR and identify Smyd-2 as a promising therapeutic target. Full article
Show Figures

Figure 1

27 pages, 2401 KiB  
Review
High Mobility Group Box 1 (HMGB1): Molecular Signaling and Potential Therapeutic Strategies
by Sayantap Datta, Mohammad Atiqur Rahman, Saisudha Koka and Krishna M. Boini
Cells 2024, 13(23), 1946; https://doi.org/10.3390/cells13231946 - 23 Nov 2024
Cited by 13 | Viewed by 3083
Abstract
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone [...] Read more.
High Mobility Group Box 1 (HMGB1) is a highly conserved non-histone chromatin-associated protein across species, primarily recognized for its regulatory impact on vital cellular processes, like autophagy, cell survival, and apoptosis. HMGB1 exhibits dual functionality based on its localization: both as a non-histone protein in the nucleus and as an inducer of inflammatory cytokines upon extracellular release. Pathophysiological insights reveal that HMGB1 plays a significant role in the onset and progression of a vast array of diseases, viz., atherosclerosis, kidney damage, cancer, and neurodegeneration. However, a clear mechanistic understanding of HMGB1 release, translocation, and associated signaling cascades in mediating such physiological dysfunctions remains obscure. This review presents a detailed outline of HMGB1 structure–function relationship and its regulatory role in disease onset and progression from a signaling perspective. This review also presents an insight into the status of HMGB1 druggability, potential limitations in understanding HMGB1 pathophysiology, and future perspective of studies that can be undertaken to address the existing scientific gap. Based on existing paradigm of various studies, HMGB1 is a critical regulator of inflammatory cascades and drives the onset and progression of a broad spectrum of dysfunctions. Studies focusing on HMGB1 druggability have enabled the development of biologics with potential clinical benefits. However, deeper understanding of post-translational modifications, redox states, translocation mechanisms, and mitochondrial interactions can potentially enable the development of better courses of therapy against HMGB1-mediated physiological dysfunctions. Full article
Show Figures

Figure 1

21 pages, 3910 KiB  
Article
Hit Identification and Functional Validation of Novel Dual Inhibitors of HDAC8 and Tubulin Identified by Combining Docking and Molecular Dynamics Simulations
by Antonio Curcio, Roberta Rocca, Federica Chiera, Maria Eugenia Gallo Cantafio, Ilenia Valentino, Ludovica Ganino, Pierpaolo Murfone, Angela De Simone, Giulia Di Napoli, Stefano Alcaro, Nicola Amodio and Anna Artese
Antioxidants 2024, 13(11), 1427; https://doi.org/10.3390/antiox13111427 - 20 Nov 2024
Cited by 1 | Viewed by 1958
Abstract
Chromatin organization, which is under the control of histone deacetylases (HDACs), is frequently deregulated in cancer cells. Amongst HDACs, HDAC8 plays an oncogenic role in different neoplasias by acting on both histone and non-histone substrates. Promising anti-cancer strategies have exploited dual-targeting drugs that [...] Read more.
Chromatin organization, which is under the control of histone deacetylases (HDACs), is frequently deregulated in cancer cells. Amongst HDACs, HDAC8 plays an oncogenic role in different neoplasias by acting on both histone and non-histone substrates. Promising anti-cancer strategies have exploited dual-targeting drugs that inhibit both HDAC8 and tubulin. These drugs have shown the potential to enhance the outcome of anti-cancer treatments by simultaneously targeting multiple pathways critical to disease onset and progression. In this study, a structure-based virtual screening (SBVS) of 96403 natural compounds was performed towards the four Class I HDAC isoforms and tubulin. Using molecular docking and molecular dynamics simulations (MDs), we identified two molecules that could selectively interact with HDAC8 and tubulin. CNP0112925 (arundinin), bearing a polyphenolic structure, was confirmed to inhibit HDAC8 activity and tubulin organization, affecting breast cancer cell viability and triggering mitochondrial superoxide production and apoptosis. Full article
Show Figures

Figure 1

20 pages, 7178 KiB  
Article
Regulation of Fumonisin B1 Production and Pathogenicity in Fusarium verticillioides by Histone Deacetylases
by Wenying Yu, Jiajia Wang, Meiduo Wang, Gaolong Wen, Jiayan Liang, Xiaoting Chen, Guodong Lu, Zonghua Wang and Jun Huang
Agronomy 2024, 14(10), 2196; https://doi.org/10.3390/agronomy14102196 - 24 Sep 2024
Cited by 1 | Viewed by 1210
Abstract
Transcriptional regulation mediated by the balance of histone acetylation and deacetylation is fundamental in responding to environmental cues by impacting chromatin remodeling. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone and non-histone proteins, thus restoring a tight chromatin structure. In [...] Read more.
Transcriptional regulation mediated by the balance of histone acetylation and deacetylation is fundamental in responding to environmental cues by impacting chromatin remodeling. Histone deacetylases (HDACs) are enzymes that remove acetyl groups from histone and non-histone proteins, thus restoring a tight chromatin structure. In pathogenic fungi, HDACs have been implicated in growth, secondary metabolite biosynthesis, and virulence. However, the role of HDACs in the mycotoxin fumonisin B1 (FB1)-producing fungus Fusarium verticillioides is poorly understood. In this study, we systematically characterized six F. verticillioides HDACs. An increased level of H4K16ac was observed in the deletion mutant of FvHOS2, which was associated with vegetative growth, conidiation, and virulence when infecting sugarcane and maize. FvRpd3 appeared to be essential for vegetative growth, while FvHda1 promoted growth, and both contributed to conidiation and pathogenicity. In contrast, FvSirt4 displayed a negative correlation with these processes. Additionally, the FB1 production was positively affected by FvHos2 and FvRpd3, but negatively impacted by Fvhda1, FvSir2, FvHst2, and FvSirt4 through the regulation of different key fumonisin biosynthetic (FUM) genes. Further findings indicate an association between FvSirt4 and FvSkb1, which is a histone methylase that positively regulates FB1 and pathogenicity. Moreover, as a global transcriptional regulator, over 2365 genes (~15% of the genome) enriched in multiple metabolic pathways were significantly downregulated in the ΔFvhos2 mutants relative to the wild type. Overall, our results suggest distinct roles of HDACs in regulating the growth, virulence, mycotoxin FB1 production, and gene expression in F. verticillioides. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

Back to TopTop