Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,187)

Search Parameters:
Keywords = non-smallcell lung cancer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1570 KiB  
Article
Real-World Outcomes of Chemoradiotherapy in Patients with Stage II/III Non-Small-Cell Lung Cancer in the Durvalumab Era: An Observational Study
by Jörg Andreas Müller, Jonas Buchberger, Elias Schmidt-Riese, Clara Pitzschel, Miriam Möller, Wolfgang Schütte, Daniel Medenwald and Dirk Vordermark
Cancers 2025, 17(15), 2498; https://doi.org/10.3390/cancers17152498 - 29 Jul 2025
Viewed by 406
Abstract
Background: Consolidation therapy with durvalumab after definitive chemoradiotherapy (CRT) has become the standard care for patients with stage III non-small-cell lung cancer (NSCLC) following the PACIFIC trial. However, real-world data evaluating outcomes under routine clinical conditions remain limited, particularly in European cohorts. Methods: [...] Read more.
Background: Consolidation therapy with durvalumab after definitive chemoradiotherapy (CRT) has become the standard care for patients with stage III non-small-cell lung cancer (NSCLC) following the PACIFIC trial. However, real-world data evaluating outcomes under routine clinical conditions remain limited, particularly in European cohorts. Methods: In this retrospective single-center study, we analyzed clinical data from 72 patients with stage III NSCLC treated with definitive CRT between 2017 and 2022. The patients were stratified by receipt of durvalumab consolidation. Univariable and multivariable Cox regression models were used to assess overall survival (OS) and progression-free survival (PFS). Stepwise variable selection based on the Akaike Information Criterion (AIC) was used to construct an optimized multivariable model. A sensitivity analysis with adjustment for treatment period (2017–2018 vs. 2019–2022) was conducted to account for the introduction of durvalumab into routine clinical practice. Results: Among 72 patients, 35 received durvalumab and 37 did not. The median OS was 2.08 years; the 3- and 5-year OS rates were 38.6% and 30.3%, respectively. Multivariable regression revealed significantly improved OS associated with Karnofsky performance status (KPS) > 80% (HR 0.29, p = 0.003), Charlson Comorbidity Index (CCI) ≤ 2 (HR 0.39, p = 0.009), and durvalumab treatment (HR 3.99, p = 0.008). PD-L1 expression ≥ 1% showed a trend toward improved OS (HR 3.72, p = 0.063). The median progression-free survival (PFS) for the total cohort was 1.17 years. The estimated 3- and 5-year PFS rates were 31.1% and 26.3%, respectively. Patients treated with durvalumab had a longer median PFS (20.5 months) compared to those without durvalumab (12.0 months). In the multivariable analysis, KPS > 80% (HR 0.29, p < 0.001), CCI ≤ 2 (HR 0.53, p = 0.048), and durvalumab treatment (HR 2.81, p = 0.023) were significantly associated with improved PFS. A sensitivity analysis adjusting for treatment period—reflecting the introduction of durvalumab into routine clinical practice from 2019—confirmed the robustness of these findings. Conclusions: Our findings support the clinical benefit of durvalumab consolidation following CRT in a real-world population, especially in patients with good performance status and low comorbidity burden. These results confirm and extend the PACIFIC trial findings into routine clinical practice, highlighting the prognostic value of functional status and comorbidity alongside PD-L1 expression. Full article
Show Figures

Figure 1

22 pages, 4856 KiB  
Article
In Vitro and In Vivo Evaluation of Alectinib-Loaded Dendrimer Nanoparticles as a Drug Delivery System for Non-Small Cell Lung Carcinoma
by Mahmood R. Atta, Israa Al-Ani, Ibrahim Aldeeb, Khaldun M. AlAzzam, Tha’er Ata, Mohammad A. Almullah, Enas Daoud and Feras Al-Hajji
Pharmaceutics 2025, 17(8), 974; https://doi.org/10.3390/pharmaceutics17080974 - 28 Jul 2025
Viewed by 834
Abstract
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy [...] Read more.
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy by formulating a G4-NH2-PAMAM dendrimer complex. Methods: The complex was prepared using the organic solvent evaporation method and characterized by DSC, FTIR, dynamic light scattering (DLS), and zeta potential measurements. A validated high-performance liquid chromatography (HPLC) method quantified the Alectinib. In vitro drug release studies compared free Alectinib with the G4-NH2-PAMAM dendrimer complex. Cytotoxicity against NSCLC cell line A549 was assessed using MTT assays, clonogenic assay, and scratch-wound assay. Xenograft effect was investigated in the H460 lung cell line. Pharmacokinetic parameters were evaluated in rats using LC–MS/MS. Results: Alectinib exhibited an encapsulation efficiency of 59 ± 5%. In vitro release studies demonstrated sustained drug release at pH 6.8 and faster degradation at pH 2.5. Anticancer activity in vitro showed comparable efficacy to free Alectinib, with 98% migration inhibition. In vivo tumor suppression studies revealed near-complete tumor regression (~100%) after 17 days of treatment, compared to 75% with free Alectinib. Pharmacokinetic analysis indicated enhanced absorption (shorter Tmax), prolonged systemic circulation (longer half-life), and higher bioavailability (increased AUC) for the dendrimer-complexed drug. Conclusions: These findings suggest that the G4-NH2-PAMAM dendrimer system significantly improves Alectinib’s pharmacokinetics and therapeutic potential, making it a promising approach for NSCLC treatment. Full article
Show Figures

Graphical abstract

19 pages, 1198 KiB  
Article
Immune Cell–Cytokine Interplay in NSCLC and Melanoma: A Pilot Longitudinal Study of Dynamic Biomarker Interactions
by Alina Miruna Grecea-Balaj, Olga Soritau, Ioana Brie, Maria Perde-Schrepler, Piroska Virág, Nicolae Todor, Tudor Eliade Ciuleanu and Cosmin Andrei Cismaru
Immuno 2025, 5(3), 29; https://doi.org/10.3390/immuno5030029 - 24 Jul 2025
Viewed by 334
Abstract
The tumor microenvironment (TME) in advanced solid tumors is determined by immune checkpoints (PD-1, CTLA-4, and CD95) and cytokine networks (IL-2, IL-10, and TNF-α) that drive CD8+ T cell exhaustion, metabolic reprogramming, and apoptosis resistance, enabling immune evasion. Some studies revealed PD-1/CD95 co-expression [...] Read more.
The tumor microenvironment (TME) in advanced solid tumors is determined by immune checkpoints (PD-1, CTLA-4, and CD95) and cytokine networks (IL-2, IL-10, and TNF-α) that drive CD8+ T cell exhaustion, metabolic reprogramming, and apoptosis resistance, enabling immune evasion. Some studies revealed PD-1/CD95 co-expression is a marker of T cell dysfunction, while CTLA-4 upregulation correlates with suppressed early T cell activation. IL-10 has emerged as a potential biomarker for chemoresistance and tumor aggressivity, consistent with its role in promoting anti-apoptotic signaling in cancer stem cells (CSCs). Engineered IL-2 variants and TNF-α modulation are highlighted as promising strategies to revitalize exhausted CD8+ T cells and disrupt CSC niches. This prospective single-center study investigated the dynamic TME alterations in 16 patients with immunotherapy-naïve stage IV non-small-cell lung cancer (NSCLC) and metastatic melanoma treated with anti-PD-1 nivolumab. The longitudinal immunophenotyping of peripheral blood lymphocytes (via flow cytometry) and serum cytokine analysis (via ELISA) were performed at the baseline, >3, and >6 months post-treatment to evaluate immune checkpoint co-expression (PD-1/CD95 and CTLA-4/CD8+) and the cytokine profiles (IL-2, IL-10, and TNF-α). Full article
Show Figures

Figure 1

20 pages, 328 KiB  
Review
Insights on Oligometastatic Non-Small-Cell Lung Cancer
by Augusto Valdivia, Pau Mascaro-Baselga, Clara Salva-de Torres, Abraham Geng-Cahuayme, Sara Torresan, Jesus Yaringaño, Ilaria Priano, Patricia Iranzo, Nuria Pardo, Laura Masfarre, Oriol Mirallas, Karen Farfan, Susana Cedres, Pedro Rocha, Alex Martinez-Marti and Enriqueta Felip
Cancers 2025, 17(15), 2451; https://doi.org/10.3390/cancers17152451 - 24 Jul 2025
Viewed by 429
Abstract
Oligometastatic non-small-cell lung cancer (OMD-NSCLC) has emerged as a biologically and clinically distinct subtype of advanced disease, characterized by limited metastatic burden and a more indolent course. In this narrative review, we examine the current definition of OMD-NSCLC, diagnostic tests, possible biomarkers, and [...] Read more.
Oligometastatic non-small-cell lung cancer (OMD-NSCLC) has emerged as a biologically and clinically distinct subtype of advanced disease, characterized by limited metastatic burden and a more indolent course. In this narrative review, we examine the current definition of OMD-NSCLC, diagnostic tests, possible biomarkers, and current therapeutic strategies. Biological insights highlight the role of microRNAs in differentiating true oligometastatic state from polymetastatic disease. The main local ablative therapies (LAT) include surgery and radiotherapy. The integration of LAT with systemic therapies has been explored in clinical trials, yielding promising but occasionally inconsistent results. As the therapeutic landscape of OMD-NSCLC patients continues to evolve, refining definitions, identifying predictive biomarkers, and individualizing care are essential steps toward achieving the potential of radical-intent therapy. Full article
(This article belongs to the Special Issue State of the Art: Cardiothoracic Tumors)
20 pages, 2340 KiB  
Article
Characterization of the Population, Treatment Patterns, and Outcomes of Patients with Advanced or Metastatic Non-Small-Cell Lung Cancer (NSCLC) with Epidermal Growth Factor Receptor Mutation (EGFRm): A Retrospective Cohort Study from IPO Porto
by Ana Rodrigues, Marta Pina, Rita Calisto, Pedro Leite-Silva, Pedro Medeiros, Catarina Silva, Ana Sofia Silva, Patrícia Redondo, João Ramalho-Carvalho, Susana Ferreira Santos and Maria José Bento
Curr. Oncol. 2025, 32(8), 414; https://doi.org/10.3390/curroncol32080414 - 24 Jul 2025
Viewed by 310
Abstract
Most patients with non-small-cell lung cancer (NSCLC) present with advanced/metastatic disease at diagnosis, and molecular profiling is critical in guiding treatment decisions. This retrospective cohort study aimed to characterize EGFR mutations (EGFRm) in advanced/metastatic NSCLC patients, treatment patterns, and real-world outcomes. Adults diagnosed [...] Read more.
Most patients with non-small-cell lung cancer (NSCLC) present with advanced/metastatic disease at diagnosis, and molecular profiling is critical in guiding treatment decisions. This retrospective cohort study aimed to characterize EGFR mutations (EGFRm) in advanced/metastatic NSCLC patients, treatment patterns, and real-world outcomes. Adults diagnosed between 2018 and 2021 and treated at a Comprehensive Care Center were included. Time-to-event outcomes were analyzed using the Kaplan–Meier method. A total of 110 patients were included, with a median age of 69.0 years (range, 37–93), 76.4% female, and 83.2% non-smokers. About 97.3% had adenocarcinomas, with 93.6% at stage IV, 40.9% with ≥ three metastatic sites (brain metastases in 24.5%), 33.6% ECOG 2–4, and 58.2% with an EGFR exon-19 deletion. A minority started supportive care or curative-intent treatment, and 81.8% underwent first-line palliative systemic therapy (TKIs, 91.1%; chemotherapy, 8.9%). Median real-world overall survival (rwOS) was 18.9 months (95% CI, 13.8–28.1). Worse rwOS was observed in patients with ECOG 2–4 versus ECOG 0–1 (10.3 vs. 22.8 months; HR 1.82, 95% CI 1.17–2.85; p = 0.008) and in patients with exon-21 L858R versus exon 19 deletions (15.8 vs. 24.2 months; HR 1.59, 95% CI 1.00–2.54; p = 0.048). In patients treated with palliative systemic treatment, median progression-free survival was 10.9 months (95% CI, 8.8–13.6). This study provides important insights regarding real-world characteristics, treatment patterns, and outcomes from a cohort of EGFRm advanced/metastatic NSCLC patients. Full article
(This article belongs to the Special Issue The Role of Real-World Evidence (RWE) in Thoracic Malignancies)
Show Figures

Graphical abstract

21 pages, 2774 KiB  
Article
Design, Synthesis, and Anticancer Evaluation of New Small-Molecule EGFR Inhibitors Targeting NSCLC and Breast Cancer
by Belgin Sever, Masami Otsuka, Mikako Fujita and Halilibrahim Ciftci
Int. J. Mol. Sci. 2025, 26(15), 7065; https://doi.org/10.3390/ijms26157065 - 22 Jul 2025
Viewed by 276
Abstract
EGFR is the most frequently altered driver gene in non-small-cell lung cancer (NSCLC), and its overexpression is also associated with breast cancer. In the present study, we synthesized 18 new compounds (B-1, B-2, B-6, B-7, and BP-1 [...] Read more.
EGFR is the most frequently altered driver gene in non-small-cell lung cancer (NSCLC), and its overexpression is also associated with breast cancer. In the present study, we synthesized 18 new compounds (B-1, B-2, B-6, B-7, and BP-114). The cytotoxicity of these compounds was evaluated in A549 NSCLC and MCF-7 breast cancer cells, as well as in Jurkat cells and PBMCs (healthy). The most potent compounds were further examined for their ability to induce apoptosis in A549 and MCF-7 cells, as well as their EGFR inhibitory activity. Molecular docking was conducted at the ATP-binding site of EGFR, and key pharmacokinetic and toxicity parameters were predicted in silico. B-2 demonstrated the strongest cytotoxicity against A549 and MCF-7 cells (IC50 = 2.14 ± 0.83 μM and 8.91 ± 1.38 μM, respectively), displaying selective cytotoxicity between Jurkat cells and PBMCs (SI = 23.2). B-2 induced apoptosis in A549 and MCF-7 cells at rates of 16.8% and 4.3%, respectively. B-2 inhibited EGFR by 66% at a 10 μM concentration and showed a strong binding affinity to the ATP-binding site of EGFR. Furthermore, B-2 exhibited drug-like characteristics and was not identified as carcinogenic, genotoxic, or mutagenic. B-2 shows promise as an apoptosis inducer and EGFR inhibitor for future anti-NSCLC and anti-breast cancer research. Full article
(This article belongs to the Special Issue Design of Bioactive Agents and Interaction with Biological Systems)
Show Figures

Figure 1

22 pages, 1241 KiB  
Systematic Review
Safety and Efficacy of Immune Checkpoint Inhibitors in Human Immunodeficiency Virus-Associated Cancer: A Systematic Scoping Review
by Ahmed D. Alatawi, Amirah B. Alaqyl, Reema J. Alalawi, Rahaf S. Alqarni, Razan A. Sufyani, Ghadi S. Alqarni, Raghad S. Alqarni, Jumana H. Albalawi, Raghad A. Alsharif, Ghada I. Alatawi, Elaf N. Albalawi, Danah A. Alanazi, Sultanah A. Naitah, Reem Sayad and Helal F. Hetta
Diseases 2025, 13(8), 230; https://doi.org/10.3390/diseases13080230 - 22 Jul 2025
Viewed by 377
Abstract
Background/Objective: People living with human immunodeficiency virus (PHIV) are at increased risk for malignancies, yet their access to immunotherapy remains limited due to concerns about safety and efficacy. This systematic scoping review evaluates the use of immune checkpoint inhibitors (ICIs) in HIV-associated cancers, [...] Read more.
Background/Objective: People living with human immunodeficiency virus (PHIV) are at increased risk for malignancies, yet their access to immunotherapy remains limited due to concerns about safety and efficacy. This systematic scoping review evaluates the use of immune checkpoint inhibitors (ICIs) in HIV-associated cancers, analyzing patient outcomes, safety profiles, and the impact on HIV status. Methods: A comprehensive literature search was conducted in databases including PubMed, Scopus, Web of Science (WoS), and Medline, up to January 2025. Studies included assessing the efficacy of ICIs in cancer patients with HIV. The primary outcomes were (a) the efficacy of immune ICIs on prognosis, progression-free survival (PFS), and overall survival (OS). Secondary outcomes were the immune-related adverse events (irAEs) and the survival rate of cancer patients receiving ICIs. Results: A total of 107 cases from 19 studies published between 2011 and 2024 were reviewed. Responses to programmed death 1 (PD-1) inhibitors varied, with 27.1% achieving partial response, 23.36% experiencing stable disease, and 6.54% achieving complete response, while 34.57% had disease progression. Adverse events, including hematologic and endocrine toxicities, were common but mostly manageable. HIV viral loads remained stable in most cases. Conclusions: PD-1 inhibitors demonstrated potential efficacy in HIV-associated malignancies with a safety profile comparable to the general population. However, disease progression remained a concern, highlighting the need for optimized patient selection. Further well-controlled trials are essential to establish treatment guidelines and ensure equitable access to immunotherapy for PHIV. Full article
(This article belongs to the Special Issue Cancer Inhibitory Receptors and Related Cancer Immunotherapy)
Show Figures

Graphical abstract

20 pages, 15716 KiB  
Article
Dual-Action Tocilizumab-Conjugated Cisplatin Nanoparticles Overcome Chemoresistance and Metastasis in Non-Small-Cell Lung Cancer
by Yin Wang, Fanyu Wu, Tan Yang, Bin Li, Han Wang, Peng Ye and Weijie Li
Pharmaceutics 2025, 17(7), 945; https://doi.org/10.3390/pharmaceutics17070945 - 21 Jul 2025
Viewed by 441
Abstract
Background/Objectives: Cisplatin remains a cornerstone chemotherapeutic agent for non-small-cell lung cancer (NSCLC) treatment, yet its clinical utility is substantially limited by acquired resistance and the inadequate suppression of tumor metastasis. Emerging evidence implicates interleukin 6 (IL-6) as a critical mediator of chemoresistance through [...] Read more.
Background/Objectives: Cisplatin remains a cornerstone chemotherapeutic agent for non-small-cell lung cancer (NSCLC) treatment, yet its clinical utility is substantially limited by acquired resistance and the inadequate suppression of tumor metastasis. Emerging evidence implicates interleukin 6 (IL-6) as a critical mediator of chemoresistance through cancer stem cell (CSC) enrichment and metastasis promotion via epithelial–mesenchymal transition (EMT) induction, ultimately contributing to cisplatin therapy failure. This study sought to address these challenges by designing a nanoplatform with two innovative aims: (1) to achieve active tumor targeting through binding to the IL-6 receptor (IL-6R), and (2) to concurrently inhibit IL-6-mediated chemoresistance signaling pathways. Methods: A lipid–polymer hybrid nanoparticle (LPC) encapsulating cisplatin was synthesized and subsequently surface-functionalized with tocilizumab (TCZ), a monoclonal antibody that targets IL-6R. The therapeutic efficacy of this TCZ-modified nanoparticle (LPC-TCZ) was assessed through a series of in vitro and in vivo experiments, focusing on the inhibition of EMT, expression of CSC markers, tumor growth, and metastasis. Results: Systematic in vitro and in vivo evaluations revealed that LPC-TCZ synergistically attenuated both EMT progression and CSC marker expression through the targeted blockade of IL-6/STAT3 signaling. This multimodal therapeutic strategy demonstrated superior tumor growth inhibition and metastatic suppression compared to conventional cisplatin monotherapy. Conclusions: Our findings establish a nanotechnology-enabled approach to potentiate cisplatin efficacy by simultaneously countering chemoresistance mechanisms and metastatic pathways in NSCLC management. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Graphical abstract

18 pages, 2859 KiB  
Article
Effect of IL-1β on NSCLC-Derived Small Extracellular Vesicles as Actors in Mediating Cancer Progression and Evading Immune System
by Hamid Heydari Sheikhhossein, Luisa Amato, Viviana De Rosa, Caterina De Rosa, Annalisa Ariano, Sabrina Critelli, Daniela Omodei, Valeria Nele, Concetta Tuccillo, Paola Franco, Giovanni N. Roviello, Rosa Camerlingo, Adriano Piattelli, Giovanni Vicidomini, Floriana Morgillo, Giuseppe De Rosa, Maria Patrizia Stoppelli, Carminia Maria Della Corte, Natalia Di Pietro and Francesca Iommelli
Int. J. Mol. Sci. 2025, 26(14), 6825; https://doi.org/10.3390/ijms26146825 - 16 Jul 2025
Viewed by 341
Abstract
Background: Increased IL-1β levels may promote carcinogenesis and metastasis by affecting tumor biology and the tumor microenvironment (TME). In this context, extracellular vesicles (EVs) play a key role in cell-to-cell communication, thus modulating the TME and immune response. Here, we aimed to test [...] Read more.
Background: Increased IL-1β levels may promote carcinogenesis and metastasis by affecting tumor biology and the tumor microenvironment (TME). In this context, extracellular vesicles (EVs) play a key role in cell-to-cell communication, thus modulating the TME and immune response. Here, we aimed to test whether tumor-derived small EVs (TEVs) isolated from sensitive and osimertinib-resistant (OR) non-small-cell lung cancer (NSCLC) cells may promote EMT via fibronectin binding to α5β1 integrin as well as suppress the immune system and if these effects may be favored by IL-1β. Methods: TEVs were isolated from control, OR, and IL-1β-stimulated NSCLC cells. Expressions of fibronectin and PD-L1 were screened in TEVs and the mRNA levels of vimentin and SMAD3 were also assessed in cancer cells after TEV co-culturing. Furthermore, to detect the effect on immune cells, we co-cultured TEVs with lung cancer patients’ peripheral blood mononuclear cells (PBMCs). Results: TEVs were positive for fibronectin and the highest protein levels were found in TEVs obtained from the OR and IL-1β-stimulated cells. TEV-mediated activation of α5β1 signaling led to the upregulation of vimentin and SMAD3 mRNA in NSCLC cells and stimulated cell migration. EVs also increased PD-1, CTLA-4, FOXP3, TNF-α, IL-12, and INF-γ mRNA in lung cancer patients’ immune cells. Conclusions: Our findings indicate that TEVs promote EMT in NSCLC cells by the activation of the fibronectin–α5β1 axis. Finally, IL-1β stimulation induces TEV release with biological properties similar to OR TEVs, thus leading to cancer invasion and immune suppression and suggesting that inflammation can promote tumor spreading. Full article
Show Figures

Graphical abstract

15 pages, 4143 KiB  
Article
MET Exon 14 Skipping Mutations in Lung Cancer: Clinical–Pathological Characteristics and Immune Microenvironment
by Qianqian Xue, Yue Wang, Qiang Zheng, Ziling Huang, Yicong Lin, Yan Jin and Yuan Li
Curr. Oncol. 2025, 32(7), 403; https://doi.org/10.3390/curroncol32070403 - 14 Jul 2025
Viewed by 512
Abstract
MET exon 14 skipping mutations have emerged as significant driver alterations in non-small-cell lung cancer (NSCLC), contributing to tumor progression. This study examines the immune microenvironment in NSCLC patients with these mutations and its prognostic implications. We performed multiplex immunofluorescence (mIF) staining on [...] Read more.
MET exon 14 skipping mutations have emerged as significant driver alterations in non-small-cell lung cancer (NSCLC), contributing to tumor progression. This study examines the immune microenvironment in NSCLC patients with these mutations and its prognostic implications. We performed multiplex immunofluorescence (mIF) staining on formalin-fixed paraffin-embedded (FFPE) tissue samples from nine NSCLC patients, including four recurrent/metastatic and five non-recurrent/non-metastatic patients. Two panels assessed immune cell markers (CD8, CD4, CD20, CD68, and FoxP3) and immune checkpoints (PD-L1, LAG3, and TIM3). Immune cell infiltration and checkpoint expression were analyzed using HALOTM software (version 3.6.4134.464). Nearest neighbor analysis was conducted to assess the proximity of immune cells to tumor cells. Univariate Cox regression analysis assessed factors associated with disease-free survival (DFS). CD8+TIM3+ and CD8+LAG3+ cells were predominantly located in the tumor parenchyma of recurrent/metastatic patients but localized to the stroma in non-recurrent/non-metastatic patients. Non-recurrent/non-metastatic patients exhibited a higher density of tertiary lymphoid structures and closer proximity of CD20+ B cells, CD8+TIM3+, and CD8+LAG3+ cells to tumor cells compared to recurrent/metastatic patients, though the differences were not statistically significant. Cox regression analysis suggested a potential association between higher densities of CD8+TIM3+ cells and improved DFS (HR = 0.89), though these findings did not reach statistical significance. Our findings suggest that differences in immune microenvironmental factors, particularly those related to immune checkpoint expression (TIM3 and LAG3), may influence clinical outcomes in NSCLC patients with MET exon 14 skipping mutations. Further studies are needed to validate these observations and explore potential therapeutic implications. Full article
Show Figures

Figure 1

13 pages, 4295 KiB  
Article
Chelerythrine Inhibits TGF-β-Induced Epithelial–Mesenchymal Transition in A549 Cells via RRM2
by Jinlong Liu, Mengran Xu, Liu Han, Yuxuan Rao, Haoming Han, Haoran Zheng, Jinying Wu and Xin Sun
Pharmaceuticals 2025, 18(7), 1036; https://doi.org/10.3390/ph18071036 - 12 Jul 2025
Viewed by 390
Abstract
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The [...] Read more.
Background: The mechanisms underlying the metastasis of non-small-cell lung cancer (NSCLC) have long been a focal point of medical research. The anti-tumor effects of chelerythrine (CHE) have been confirmed; however, its ability to inhibit tumor metastasis and the underlying mechanisms remain unknown. The aim of this study was to investigate the inhibitory effects and molecular mechanisms of CHE on transforming growth factor-beta (TGF-β)-induced epithelial–mesenchymal transition (EMT). Methods: Wound healing and Transwell assays were employed to evaluate TGF-β-induced migration in A549 cells and the inhibitory effects of CHE. Ribonucleotide reductase subunit M2 (RRM2) expression levels were detected via Western blot and immunofluorescence staining. Western blot and RT-qPCR were used to examine the expression levels of EMT-related markers. Animal experiments were conducted to analyze the role of RRM2 in the CHE inhibition of TGF-β-induced lung cancer metastasis. Results: This study found that TGF-β treatment enhanced the metastasis of A549 cells, while CHE inhibited the expression of TGF-β-induced EMT-related transcription factors by RRM2, thereby suppressing tumor cell migration (p < 0.05). Furthermore, the oral administration of CHE inhibited the metastasis of A549 cells to the lungs from the tail vein in mice, consistent with in vitro findings. Despite the high doses of CHE used, there was no evidence of toxicity. Conclusions: Our data reveal the mechanism of the anti-metastatic effects of CHE on TGF-β-induced EMT and indicate that CHE can be used as an effective anti-tumor treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

12 pages, 2431 KiB  
Article
Unsupervised Clustering Successfully Predicts Prognosis in NSCLC Brain Metastasis Cohorts
by Emre Uysal, Gorkem Durak, Ayse Kotek Sedef, Ulas Bagci, Tanju Berber, Necla Gurdal and Berna Akkus Yildirim
Diagnostics 2025, 15(14), 1747; https://doi.org/10.3390/diagnostics15141747 - 10 Jul 2025
Viewed by 411
Abstract
Background/Objectives: Current developments in computer-aided systems rely heavily on complex and computationally intensive algorithms. However, even a simple approach can offer a promising solution to reduce the burden on clinicians. Addressing this, we aim to employ unsupervised cluster analysis to identify prognostic [...] Read more.
Background/Objectives: Current developments in computer-aided systems rely heavily on complex and computationally intensive algorithms. However, even a simple approach can offer a promising solution to reduce the burden on clinicians. Addressing this, we aim to employ unsupervised cluster analysis to identify prognostic subgroups of non-small-cell lung cancer (NSCLC) patients with brain metastasis (BM). Simple-yet-effective algorithms designed to identify similar group characteristics will assist clinicians in categorizing patients effectively. Methods: We retrospectively collected data from 95 NSCLC patients with BM treated at two oncology centers. To identify clinically distinct subgroups, two types of unsupervised clustering methods—two-step clustering (TSC) and hierarchical cluster analysis (HCA)—were applied to the baseline clinical data. Patients were categorized into prognostic classes according to the Diagnosis-Specific Graded Prognostic Assessment (DS-GPA). Survival curves for the clusters and DS-GPA classes were generated using Kaplan–Meier analysis, and the differences were assessed with the log-rank test. The discriminative ability of three categorical variables on survival was compared using the concordance index (C-index). Results: The mean age of the patients was 61.8 ± 0.9 years, and the majority (77.9%) were men. Extracranial metastasis was present in 71.6% of the patients, with most (63.2%) having a single BM. The DS-GPA classification significantly divided the patients into prognostic classes (p < 0.001). Furthermore, statistical significance was observed between clusters created by TSC (p < 0.001) and HCA (p < 0.001). HCA showed the highest discriminatory power (C-index = 0.721), followed by the DS-GPA (C-index = 0.709) and TSC (C-index = 0.650). Conclusions: Our findings demonstrated that the TSC and HCA models were comparable in prognostic performance to the DS-GPA index in NSCLC patients with BM. These results suggest that unsupervised clustering may offer a data-driven perspective on patient stratification, though further validation is needed to clarify its role in prognostic modeling. Full article
(This article belongs to the Special Issue Artificial Intelligence Approaches for Medical Diagnostics in the USA)
Show Figures

Figure 1

22 pages, 881 KiB  
Review
The Regulatory Role of LncRNAs in Modulating Autophagy and Drug Resistance in Non-Small-Cell Lung Cancer: Focus on Targeted Therapeutic Approaches
by Shuncai Dai, Yuxin Zhong, Jianfu Lu and Linjiang Song
Biomolecules 2025, 15(7), 968; https://doi.org/10.3390/biom15070968 - 5 Jul 2025
Viewed by 556
Abstract
Lung cancer remains one of the leading causes of death associated with cancer globally, with non-small cell lung cancer (NSCLC) accounting for 80–85% of all lung cancer cases. Despite its high prevalence, the underlying mechanisms of NSCLC have not been completely clarified, and [...] Read more.
Lung cancer remains one of the leading causes of death associated with cancer globally, with non-small cell lung cancer (NSCLC) accounting for 80–85% of all lung cancer cases. Despite its high prevalence, the underlying mechanisms of NSCLC have not been completely clarified, and current therapeutic strategies face significant limitations. Recent research has revealed the important role of long non-coding RNAs (lncRNAs) in NSCLC, particularly in regulating processes such as autophagy and drug resistance. LncRNAs are a class of non-coding RNA molecules, typically with transcript lengths exceeding 200 nucleotides, and have been the subject of extensive investigation in recent years. Their involvement in critical cellular processes has opened up new research avenues for precision medicine in NSCLC. This review aims to offer a comprehensive analysis of the mechanisms by which lncRNAs regulate autophagy and drug resistance in NSCLC, explore their potential clinical applications as diagnostic biomarkers and therapeutic targets, and provide both theoretical foundations and practical guidance to advance precision medicine in this area. By deepening our understanding of the role of lncRNAs in NSCLC, this article also highlights the promising potential of lncRNA-based approaches for the diagnosis and treatment of this disease. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

47 pages, 3514 KiB  
Review
Deep Learning Approaches for Automated Prediction of Treatment Response in Non-Small-Cell Lung Cancer Patients Based on CT and PET Imaging
by Randy Guzmán Gómez, Guadalupe Lopez Lopez, Victor M. Alvarado, Froylan Lopez Lopez, Eréndira Esqueda Cisneros and Hazel López Moreno
Tomography 2025, 11(7), 78; https://doi.org/10.3390/tomography11070078 - 30 Jun 2025
Viewed by 692
Abstract
The rapid growth of artificial intelligence, particularly in the field of deep learning, has opened up new advances in analyzing and processing large and complex datasets. Prospects and emerging trends in this area engage the development of methods, techniques, and algorithms to build [...] Read more.
The rapid growth of artificial intelligence, particularly in the field of deep learning, has opened up new advances in analyzing and processing large and complex datasets. Prospects and emerging trends in this area engage the development of methods, techniques, and algorithms to build autonomous systems that perform tasks with minimal human action. In medical practice, radiological imaging technologies systematically boost progress in the clinical monitoring of cancer through the information that can be analyzed in these images. This review gives insight into deep learning-based approaches that strengthen the assessment of the response to the treatment of non-small-cell lung cancer. This systematic survey delves into the various approaches to morphological and metabolic changes observed in computerized tomography (CT) and positron emission tomography (PET) imaging. We highlight the challenges and opportunities for feasible integration of deep learning computer-based tools in evaluating treatments in lung cancer patients, after which CT and PET-based strategies are contrasted. The investigated deep learning methods are organized and described as instruments for classification, clustering, and prediction, which can contribute to the design of automated and objective assessment of lung tumor responses to treatments. Full article
Show Figures

Figure 1

19 pages, 1798 KiB  
Review
Current Status of Multimodal Therapy for Oligometastatic Disease, Induced Oligometastatic Disease, and Oligo-Progressive Disease in EGFR-Mutated Non-Small-Cell Lung Cancer
by Taichi Miyawaki, Hirotsugu Kenmotsu, Ryo Ko, Masaki Oshima, Takehito Shukuya, Naoto Shikama and Kazuhisa Takahashi
Cancers 2025, 17(13), 2202; https://doi.org/10.3390/cancers17132202 - 30 Jun 2025
Viewed by 473
Abstract
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have shown clinical activity for patients with EGFR-mutated non-small-cell lung cancer (NSCLC). However, the development of resistance to EGFR-TKIs is almost inevitable, posing a significant barrier to long-term survival. Local ablative therapy (LAT) may [...] Read more.
Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have shown clinical activity for patients with EGFR-mutated non-small-cell lung cancer (NSCLC). However, the development of resistance to EGFR-TKIs is almost inevitable, posing a significant barrier to long-term survival. Local ablative therapy (LAT) may facilitate the prolonged survival of patients with oligometastatic NSCLC. Therapeutic combinations of EGFR-TKIs and LAT for residual disease have been suggested to be potentially effective in EGFR-mutated NSCLC with induced oligometastatic disease, wherein a few lesions remain following initial EGFR-TKI treatment. Various resistance pathways for third-generation EGFR-TKIs including osimertinib, current standard of care for patients with EGFR-mutated NSCLC, have also been identified. In addition to resistance mechanisms, the disease-progression pattern may be an essential element for achieving long-term response and survival. Oligo-progressive disease is a state in which only a few lesions become resistant, whereas many lesions remain controlled with effective systemic therapy. Previous studies have shown that LAT for all oligo-progressive lesions could provide survival benefits. This review discusses the current treatment options and potential future therapeutic developments for patients with EGFR-mutated NSCLC who have synchronous oligometastatic disease, oligo-residual disease during treatment with EGFR-TKIs, and oligo-progressive disease following resistance to EGFR-TKIs. Full article
(This article belongs to the Special Issue The Current Status of Treatment for Oligometastatic Lung Cancer)
Show Figures

Graphical abstract

Back to TopTop