Safety and Efficacy of Immune Checkpoint Inhibitors in Human Immunodeficiency Virus-Associated Cancer: A Systematic Scoping Review
Abstract
1. Introduction
2. Methods
2.1. Information Sources and Search Strategy
2.2. Eligibility Criteria
2.3. Research Questions
2.4. Trials Selection
2.5. Data Extraction
2.6. Outcome Measures
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Patients’ Outcomes
3.4. Efficacy Outcomes
Study ID | Study Design | Number of Included Cases | Age ** | Sex (Number of Cases/Total) | Diagnosis (Cancer Type, Histology/Stage) (Number of Cases/Total) | Genotype (Number of Cases/Total) | ART at Enrolment (Number of Cases/Total) | Baseline CD4 T Cell Count (Cells/μL) ** | Plasma HIV Viral Load (Copies/mL) at Baseline * (Number of Cases/Total) |
---|---|---|---|---|---|---|---|---|---|
Yazji et al., 2024 [28] | Retrospective case series | 5 | 66 (41–70) | M (4/5) F (1/5) | NSCLC (III) (2/5) SCLC (IB) (1/5) Anal squamous cell cancer (IIA) (1/5) HCC (locally advanced) (1/5) | ND (5/5) | On ART (5/5) | 301 (69–469) | Undetectable (4/5) NA (1/5) |
Wu et al., 2023 [29] | Retrospective case series | 15 | 44 (29–69) | M (15/15) | Large cell lung cancer (IV) (1/15) SCLC (IV) (4/15) Diffuse large B-cell lymphoma (II) (2/15) Diffuse large B-cell lymphoma (IV) (2/15) Burkitt’s lymphoma (IV) (2/15) Non-Hodgkin lymphoma (IV) (1/15) Hodgkin lymphoma (II) (1/15) Hodgkin lymphoma (IV) (1/15) Nasopharyngeal carcinoma (II) (1/15) | ND (15/15) | TDF + LAM + EFV (6/15) TDF + LAM + DTG (3/15) FTC + TAF + RAL (1/15) Not mentioned (3/15) TDF + DTG + FTC (1/15) BIC + FTC + TAF (1/15) | 156 (55–375) | <40 (2/15) 198 (1/15) 2.18 × 105 (1/19) Undetectable (1/15) NA (9/15) |
Xiong et al., 2023 [30] | Retrospective case series | 16 *** | 29 | M | Diffuse large B-cell lymphoma (Stage IIEa) | ND | On combination antiretroviral therapy | 182 | NA |
Azizi et al., 2022 [31] | Case report | 1 | 70 | M | High-grade urothelial carcinoma of the left ureter metastatic to lymph nodes and lungs stage IV (T4 N2 M1) | ND | Darunavir, ritonavir, and raltegravir initially; later changed to dolutegravir, doravirine, and valacyclovir | NA | Undetectable |
Idossa et al., 2022 [32] | Case report | 2 | (52–63) | M (2/2) | Metastatic castrate-resistant prostate cancer (2/2) | Mutation in AR T878A (allele frequency 1.3%) (1/2) BRCA2 mutation (T3310fs * 17, allele frequency 2.2%), TP53 R248W, TMPRSS2-ERG fusion (1/2) | on HAART (2/2) | 261 | Undetectable (2/2) |
Alloghbi et al., 2021 [33] | Case report | 1 | 60 | M | Advanced cutaneous squamous cell carcinoma with metastasis. | ND | On HAART | NA | NA |
Bertin et al., 2021 [34] | Reterospective case series | 5 | 57.4 | M (5/5) | NSCLC (adenocarcinoma, stage IV) (1/5) NSCLC (undifferentiated carcinoma, IV) (2/5) NSCLC (squamous carcinoma, IV) (2/5) | No EGFR/ALK (5/5) | On ART (4/5) Not yet (started later) (1/5) | NA | <30 (3/5) <31 (1/5) 44,500 (1/5) |
Cesmeci et al.2021 [35] | Case report | 1 | 50 | M | Metastatic advanced-stage Kaposi Sarcoma | ND | On ART | 450 | Undetectable |
Lau et al., 2021 [36] | Retrospective case series | 3 | 56 (68–76) | M (3/3) | Merkel cell carcinoma (1/3) Metastatic melanoma (2/3) | ND (3/3) | TDF/3TC/EFV (2/3) EVG/COBI/TAF/FTC (1/3) | 265 (323–468) | <20 (3/3) |
Lurain et al., 2020 [47] | Retrospective case series | 10 | 46 (34–67) | M (7/10) F (3/10) | Peritoneal primary effusion lymphoma (2/10) Germinal center B-cell-like diffuse large B-cell lymphoma (MYC-rearranged) (1/10) Extra cavity peritoneal primary effusion lymphoma (2/10) Aggressive B cell lymphoma (1/10) Non-germinal center B-cell-like diffuse large B-cell lymphoma (2/10) Pleural/pericardial/peritoneal primary effusion lymphoma (1/10) Plasmablastic lymphoma (1/10) | ND (10/10) | Not mentioned (10/10) | 226 (107–557) | NA (10/10) |
Bari et al., 2019 [38] | Retrospective case series | 17 | 54 (40–62) | M (14/17) F (3/17) | Lung squamous cell carcinoma (II) (1/17) Lung squamous cell carcinoma (IV) (2/17) Lung adenocarcinoma (IV) (6/17) Mixed lung cancer (IV) (1/17) Anal squamous cell carcinoma (IV) (2/17) HCC (III) (1/17) HCC (IV) (1/17) Renal cell carcinoma (III) (1/17) Diffuse large B-cell lymphoma (IV) (1/17) Advanced basal cell carcinoma (1/17) | ND (17/17) | FTC/TDF + DTG (6/17) EVG/c/FTC/TDF (1/17) DTG, DRV/r (1/17) ABC/DTG/3TC (2/17) FTC/TDF + DRV (1/17) ETR, DTG, DRV/r (1/17) EFV/FTC/TDF (1/17) Not mentioned (1/17) RPV/FTC/TDF (1/17) TDF/RAL (1/17) DRV/c + DTG (1/17) | 425.5 (150–795) NA (1/17) | <20 (5/17) <400 (3/17) 89 (1/17) 500 (1/17) NA (7/17) |
Blanch-Lombarte et al., 2019 [39] | Case report | 1 | 46 | M | Metastatic melanoma amelanotic with axillary/pleural/vertebral metastases (IV) | BRAF V600 wild-type, NRAS/KIT wild-type | raltegravir + tenofovir/emtricitabine | <40 | NA |
Al Homsi et al., 2018 [40] | Case report | 1 | 39 | M | Merkel cell carcinoma, neuroendocrine tumor (IV) | ND | (standard HIV antiviral medications) | NA | 110.672 |
Chang et al., 2018 [41] | Retrospective case series | 16 | 65 (47–85) | M (16/16) | Anal squamous cell carcinoma (1/16) Combined HCC and pancreatic cancer (1/16) HCC (1/16) Hodgkin lymphoma (2/16) NSCLC (specific subtype not detailed) (2/16) NSCLC adenocarcinoma (4/16) NSCLC squamous cell carcinoma (2/16) Renal cell carcinoma (1/16) SCLC (1/16) | ND (16/16) | INSTI-based therapy (9/16) (PI-based therapy) (5/16) NNRTI-based therapy (1/16) No (elite controller) (1/16) | (164–304) NA (14/16) | NA (2/16) Undetectable (9/16) 1 log copies/Ml (2/16) 1.5 log copies/mL (2/16) 2 log copies/mL (1/16) |
Galanina et al., 2018 [42] | Retrospective case series | 9 | 44 (33–63) | M (9/9) | Kaposi’s sarcoma (cutaneous and LN) (T0I0S1) (4/9) Kaposi’s sarcoma (cutaneous w/lymphedema) (T1I0S1) (1/9) Kaposi’s sarcoma (GI involvement) (T1IS1) (1/9) Kaposi’s sarcoma (cutaneous, LN, lung) (T1I1S1) (1/9) Kaposi’s sarcoma (cutaneous, LN, bowel) (T1I1S1) (2/9) | KRAS Q61H, TP53 R273C (tissue), TP53 (ctDNA) (1/9) NF1 (ctDNA) (1/9) No alterations (1/9) None detected (4/9) PTPN6 M1 (1/9) TLL2 G465E (1/9) | On ART (9/9) | NA (9/9) | <20(1/9) <21 (1/9) 22 (1/9) 24 (1/9) 116,706 (1/9) 549,704 (1/9) ND (3/9) |
Ostios-Garcia et al., 2018 [43] | Retrospective case series | 7 | 52 (43–59) | M (6/7) F (1/7) | NSCLC, adenocarcinoma (7/7) | KRAS G12C (2/7) ND (4/7) KRAS G12V (1/7) | Started ART 3 weeks after PD-1 initiation (1/7), On ART before PD-1 therapy (6/7) | 360 (57–1147) | 12,589 copies/mL Undetectable (6/7) |
Heppt et al., 2017 [44] | Retrospective case series | 10 | 54.5 (30–74) | M (8/10) F (2/10) | Metastatic melanoma (9/10), Merkel cell carcinoma (1/10) | NRVX50/K (1/10) BRVK100E (4/10) Wildtype (4/10) CR (1/10) | On ART therapy (9/10) Not on ART therapy (1/10) | 450 (76–870) Unknown (4/10) | 20 (1/10) 3960 (1/10) Unknown (2/10) Undetectable (6/10) |
Davar et al., 2015 [45] | Case report | 1 | 47 | M | Advanced melanoma, metastatic | IL28B polymorphism CT genotype; HCV genotype 1C | ART regimen included 2 nucleoside reverse transcriptase inhibitors and 1 non-nucleoside reverse transcriptase inhibitor | NA | NA |
Burke et al., 2011 [46] | Case report | 1 | 50 | M | Metastatic melanoma | ND | On ART | 320 | Undetectable |
3.5. Duration of Therapy and Treatment Patterns
3.6. Survival Outcomes (PFS and OS)
3.7. Immune-Related Adverse Events (irAEs)
3.8. HIV-Related Parameters
4. Discussion
4.1. Strength Points
4.2. Limitations and Recommendations
4.3. Clinical Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robert, C.; Long, G.V.; Brady, B.; Dutriaux, C.; Maio, M.; Mortier, L.; Hassel, J.C.; Rutkowski, P.; McNeil, C.; Kalinka-Warzocha, E.; et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 2015, 372, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Borghaei, H.; Paz-Ares, L.; Horn, L.; Spigel, D.R.; Steins, M.; Ready, N.E.; Chow, L.Q.; Vokes, E.E.; Felip, E.; Holgado, E.; et al. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N. Engl. J. Med. 2015, 373, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of non–small-cell lung cancer. N. Engl. J. Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Balar, A.V.; Galsky, M.D.; Rosenberg, J.E.; Powles, T.; Petrylak, D.P.; Bellmunt, J.; Loriot, Y.; Necchi, A.; Hoffman-Censits, J.; Perez-Gracia, J.L.; et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017, 389, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Ansell, S.M.; Lesokhin, A.M.; Borrello, I.; Halwani, A.; Scott, E.C.; Gutierrez, M.; Schuster, S.J.; Millenson, M.M.; Cattry, D.; Freeman, G.J.; et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015, 372, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; Von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after chemoradiotherapy in stage III non–small-cell lung cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 2016, 16, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Allison, J.P. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015, 161, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef] [PubMed]
- Michot, J.; Bigenwald, C.; Champiat, S.; Collins, M.; Carbonnel, F.; Postel-Vinay, S.; Berdelou, A.; Varga, A.; Bahleda, R.; Hollebecque, A.; et al. Immune-related adverse events with immune checkpoint blockade: A comprehensive review. Eur. J. Cancer 2016, 54, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 2016, 13, 473–486. [Google Scholar] [CrossRef] [PubMed]
- June, C.H.; Warshauer, J.T.; Bluestone, J.A. Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 2017, 23, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Le Burel, S.; Champiat, S.; Routier, E.; Aspeslagh, S.; Albiges, L.; Szwebel, T.-A.; Michot, J.-M.; Chretien, P.; Mariette, X.; Voisin, A.-L.; et al. Onset of connective tissue disease following anti-PD1/PD-L1 cancer immunotherapy. Ann. Rheum. Dis. 2017, 77, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Freeman-Keller, M.; Kim, Y.; Cronin, H.; Richards, A.; Gibney, G.; Weber, J.S. Nivolumab in resected and unresectable metastatic melanoma: Characteristics of immune-related adverse events and association with outcomes. Clin. Cancer Res. 2016, 22, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S.; Hodi, F.S.; Wolchok, J.D.; Topalian, S.L.; Schadendorf, D.; Larkin, J.; Sznol, M.; Long, G.V.; Li, H.; Waxman, I.M.; et al. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 2017, 35, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Haratani, K.; Hayashi, H.; Chiba, Y.; Kudo, K.; Yonesaka, K.; Kato, R.; Kaneda, H.; Hasegawa, Y.; Tanaka, K.; Takeda, M.; et al. Association of immune-related adverse events with nivolumab efficacy in non–small-cell lung cancer. JAMA Oncol. 2018, 4, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Sullivan, R.J.; Ott, P.A.; Carlino, M.S.; Khushalani, N.I.; Ye, F.; Guminski, A.; Puzanov, I.; Lawrence, D.P.; Buchbinder, E.I.; et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2016, 2, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Johnson, D.; Ramanujam, S.; Atkinson, V.; Wong, A.; Park, J.; McQuade, J.; Shoushtari, A.; Tsai, K.; Eroglu, Z.; et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 2017, 28, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Gutzmer, R.; Koop, A.; Meier, F.; Hassel, J.C.; Terheyden, P.; Zimmer, L.; Heinzerling, L.; Ugurel, S.; Pföhler, C.; Gesierich, A.; et al. Programmed cell death protein-1 (PD-1) inhibitor therapy in patients with advanced melanoma and preexisting autoimmunity or ipilimumab-triggered autoimmunity. Eur. J. Cancer 2017, 75, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Nishino, M.; Giobbie-Hurder, A.; Hatabu, H.; Ramaiya, N.H.; Hodi, F.S. Incidence of programmed cell death 1 inhibitor–related pneumonitis in patients with advanced cancer: A systematic review and meta-analysis. JAMA Oncol. 2016, 2, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Yazji, A.; Brown, E.N.; De La Torre, R.; Umoru, G.O. Immune checkpoint blockade effect on immunologic and virologic profile of five cancer patients living with human immunodeficiency virus (HIV) infection. J. Oncol. Pharm. Pract. 2024, 30, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Su, J.; Yang, J.; Gu, L.; Zhang, R.; Liu, L.; Lu, H.; Chen, J. Use of programmed cell death protein 1 (PD-1) inhibitor therapy in HIV-infected patients with advanced cancer: A single-center study from China. Infect. Agents Cancer 2023, 18, 35. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Mo, P.; Yan, Y.; Wang, S.; Zhuang, K.; Ma, Z.; Chen, X.; Deng, L.; Xiong, Y.; Deng, D.; et al. The safety and efficacy of PD-1 inhibitors in patients with advanced cancers and HIV/AIDS in China. Front. Oncol. 2023, 13, 1248790. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Houshyar, R.; Mar, N. Use of enfortumab vedotin in an HIV-positive patient with urothelial carcinoma. J. Oncol. Pharm. Pract. 2022, 28, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Idossa, D.; Friedlander, T.; Paller, C.J.; Ryan, C.J.; Borno, H.T. Case Report: Clinical Characteristics and Outcomes of HIV Positive Patients With Metastatic Prostate Cancer Treated With Immunotherapy: A Case Series and Literature Review. Front. Oncol. 2022, 12, 910115. [Google Scholar] [CrossRef] [PubMed]
- Alloghbi, A.; Ninia, J.; Alshare, B.; Hotaling, J.; Raza, S.; Sukari, A. Anti-PD-1 therapy using cemiplimab for advanced cutaneous squamous cell carcinoma in HIV patient: A case report. Clin. Case Rep. 2021, 9, e05228. [Google Scholar] [CrossRef] [PubMed]
- Bertin, L.; Canellas, A.; Abbar, B.; Veyri, M.; Spano, J.-P.; Cadranel, J.; Lavolé, A. Brief Report of Anti-Programmed Cell Death Protein-1 in Human Immunodeficiency Virus Setting: Relevant and Breaking Results in First-Line NSCLC Therapy. JTO Clin. Res. Rep. 2021, 2, 100247. [Google Scholar] [CrossRef] [PubMed]
- Cesmeci, E.; Guven, D.; Aktas, B.Y.; Aksoy, S. Case of metastatic kaposi sarcoma successfully treated with anti-PD-1 immunotherapy. J. Oncol. Pharm. Pract. 2021, 27, 1766–1769. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.S.; McMahon, J.H.; Gubser, C.; Solomon, A.; Chiu, C.Y.; Dantanarayana, A.; Chea, S.; Tennakoon, S.; Zerbato, J.M.; Garlick, J.; et al. The impact of immune checkpoint therapy on the latent reservoir in HIV-infected individuals with cancer on antiretroviral therapy. AIDS 2021, 35, 1631–1636. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.; Fabiani, B.; Do, C.; Tchernonog, E.; Cartron, G.; Gravelle, P.; Amara, N.; Malot, S.; Palisoc, M.; Copie-Bergman, C.; et al. Immune-checkpoint expression in epstein-barr virus positive and negative plasmablastic lymphoma: A clinical and pathological study in 82 patients. Haematologica 2016, 101, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Bari, S.; Muzaffar, J.; Chan, A.; Jain, S.R.; Haider, A.M.; Curry, M.A.; Hostler, C.J. Outcomes of programmed cell death protein 1 (PD-1) and programmed death-ligand 1(PD-L1) inhibitor therapy in HIV patients with advanced cancer. J. Oncol. 2019, 2019, 2989048. [Google Scholar] [CrossRef] [PubMed]
- Blanch-Lombarte, O.; Gálvez, C.; Revollo, B.; Jiménez-Moyano, E.; Llibre, J.M.; Manzano, J.L.; Boada, A.; Dalmau, J.; Speiser, D.E.; Clotet, B.; et al. Enhancement of antiviral CD8+ t-cell responses and complete remission of metastatic melanoma in an HIV-1-infected subject treated with pembrolizumab. J. Clin. Med. 2019, 8, 2089. [Google Scholar] [CrossRef] [PubMed]
- Al Homsi, M.U.; Mostafa, M.; Fahim, K. Favorable Response to Treatment with Avelumab in an HIV-Positive Patient with Advanced Merkel Cell Carcinoma Previously Refractory to Chemotherapy. Case Rep. Oncol. 2018, 11, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Sabichi, A.L.; Kramer, J.R.; Hartman, C.; Royse, K.E.; White, D.L.; Patel, N.R.; Richardson, P.; Yellapragada, S.V.; Garcia, J.M.; et al. Nivolumab Treatment for Cancers in the HIV-infected Population. J. Immunother. 2018, 41, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Galanina, N.; Goodman, A.M.; Cohen, P.R.; Frampton, G.M.; Kurzrock, R. Successful treatment of HIV-associated kaposi sarcoma with immune checkpoint blockade. Cancer Immunol. Res. 2018, 6, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- Ostios-Garcia, L.; Faig, J.; Leonardi, G.C.; Adeni, A.E.; Subegdjo, S.J.; Lydon, C.A.; Rangachari, D.; Huberman, M.S.; Sehgal, K.; Shea, M.; et al. Safety and Efficacy of PD-1 Inhibitors Among HIV-Positive Patients with Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.; Schlaak, M.; Eigentler, T.; Kähler, K.; Kiecker, F.; Loquai, C.; Meier, F.; Tomsitz, D.; Brenner, N.; Niesert, A.; et al. Checkpoint blockade for metastatic melanoma and Merkel cell carcinoma in HIV-positive patients. Ann. Oncol. 2017, 28, 3104–3106. [Google Scholar] [CrossRef] [PubMed]
- Davar, D.; Wilson, M.; Pruckner, C.; Kirkwood, J.M. PD-1 Blockade in Advanced Melanoma in Patients with Hepatitis C and/or HIV. Case Rep. Oncol. Med. 2015, 2015, 737389. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.M.; Kluger, H.M.; Golden, M.; Heller, K.N.; Hoos, A.; Sznol, M. Case Report: Response to ipilimumab in a patient with HIV with metastatic melanoma. J. Clin. Oncol. 2011, 29, e792–e794. [Google Scholar] [CrossRef] [PubMed]
- Lurain, K.; Ramaswami, R.; Yarchoan, R.; Uldrick, T.S. Anti-PD-1 and Anti-PD-L1 Monoclonal Antibodies in People Living with HIV and Cancer. Curr. HIV/AIDS Rep. 2020, 17, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Naif, H.M. Pathogenesis of HIV infection. Infect. Dis. Rep. 2013, 5, e6. [Google Scholar] [CrossRef] [PubMed]
- Velu, V.; Shetty, R.D.; Larsson, M.; Shankar, E.M. Role of PD-1 co-inhibitory pathway in HIV infection and potential therapeutic options. Retrovirology 2015, 12, 14. [Google Scholar] [CrossRef] [PubMed]
- Osarogiagbon, R.U.; Vega, D.M.; Fashoyin-Aje, L.; Wedam, S.; Ison, G.; Atienza, S.; De Porre, P.; Biswas, T.; Holloway, J.N.; Hong, D.S.; et al. Modernizing clinical trial eligibility criteria: Recommendations of the ASCO–friends of cancer research prior therapies work group. Clin. Cancer Res. 2021, 27, 2408–2415. [Google Scholar] [CrossRef] [PubMed]
- Puronen, C.E.; Ford, E.S.; Uldrick, T.S. Immunotherapy in people with HIV and cancer. Front. Immunol. 2019, 10, 2060. [Google Scholar] [CrossRef] [PubMed]
- Cook, M.R.; Kim, C. Safety and efficacy of immune checkpoint inhibitor therapy in patients with HIV infection and advanced-stage cancer: A systematic review. JAMA Oncol. 2019, 5, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Potter, A.L.; Bajaj, S.S.; Yang, C.-F.J. The 2021 USPSTF lung cancer screening guidelines: A new frontier. Lancet Respir. Med. 2021, 9, 689–691. [Google Scholar] [CrossRef] [PubMed]
- Cali Daylan, A.E.; Maia, C.M.; Attarian, S.; Guo, X.; Ginsberg, M.; Castellucci, E.; Gucalp, R.; Haigentz, M.; Halmos, B.; Cheng, H. HIV Associated Lung Cancer: Unique Clinicopathologic Features and Immune Biomarkers Impacting Lung Cancer Screening and Management. Clin. Lung Cancer 2024, 25, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Cancer Clinical Trial Eligibility Criteria: Patients with HIV, Hepatitis B Virus, or Hepatitis C Virus Infections. 2019. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cancer-clinical-trial-eligibility-criteria-patients-hiv-hepatitis-b-virus-or-hepatitis-c-virus (accessed on 1 May 2025).
- Engels, E.A.; Brock, M.V.; Chen, J.; Hooker, C.M.; Gillison, M.; Moore, R.D. Elevated incidence of lung cancer among HIV-infected individuals. J. Clin. Oncol. 2006, 24, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Marcus, J.L.; Chao, C.; Leyden, W.A.; Xu, L.; Yu, J.; Horberg, M.A.; Klein, D.; Towner, W.J.; Quesenberry, C.P., Jr.; Abrams, D.I.; et al. Survival among HIV-infected and HIV-uninfected individuals with common non–AIDS-defining cancers. Cancer Epidemiol. Biomark. Prev. 2015, 24, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- Le Garff, G.; Samri, A.; Lambert-Niclot, S.; Even, S.; Lavolé, A.; Cadranel, J.; Spano, J.-P.; Autran, B.; Marcelin, A.-G.; Guihot, A. Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. AIDS 2017, 31, 1048–1051. [Google Scholar] [CrossRef] [PubMed]
- Gay, C.L.; Bosch, R.J.; Ritz, J.; Hataye, J.M.; Aga, E.; Tressler, R.L.; Mason, S.W.; Hwang, C.K.; Grasela, D.M.; Ray, N.; et al. Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. J. Infect. Dis. 2017, 215, 1725–1733. [Google Scholar] [CrossRef] [PubMed]
- Reschke, R.; Enk, A.H.; Hassel, J.C. Prognostic Biomarkers in Evolving Melanoma Immunotherapy. Am. J. Clin. Dermatol. 2025, 26, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, V.; Pizzimenti, C.; Franchina, M.; Pepe, L.; Russotto, F.; Tralongo, P.; Micali, M.G.; Militi, G.B.; Lentini, M. Programmed cell death ligand 1 immunohistochemical expression and cutaneous melanoma: A controversial relationship. Int. J. Mol. Sci. 2024, 25, 676. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.-H.; Chan, L.-C.; Li, C.-W.; Hsu, J.L.; Hung, M.-C. Mechanisms controlling PD-L1 expression in cancer. Mol. Cell 2019, 76, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Pizzimenti, C.; Fiorentino, V.; Ieni, A.; Rossi, E.D.; Germanà, E.; Giovanella, L.; Lentini, M.; Alessi, Y.; Tuccari, G.; Campennì, A.; et al. Braf-axl-pd-l1 signaling axis as a possible biological marker for rai treatment in the thyroid cancer ata intermediate risk category. Int. J. Mol. Sci. 2023, 24, 10024. [Google Scholar] [CrossRef] [PubMed]
- Baum, P.D.; Young, J.J.; Schmidt, D.; Zhang, Q.; Hoh, R.; Busch, M.; Martin, J.; Deeks, S.; McCune, J.M. Blood T-cell receptor diversity decreases during the course of HIV infection, but the potential for a diverse repertoire persists. Blood J. Am. Soc. Hematol. 2012, 119, 3469–3477. [Google Scholar] [CrossRef] [PubMed]
- Giovannetti, A.; Pierdominici, M.; Marziali, M.; Mazzetta, F.; Caprini, E.; Russo, G.; Bugarini, R.; Bernardi, M.L.; Mezzaroma, I.; Aiuti, F. Persistently biased T-cell receptor repertoires in HIV-1-infected combination antiretroviral therapy-treated patients despite sustained suppression of viral replication. JAIDS J. Acquir. Immune Defic. Syndr. 2003, 34, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Thirwell, C.; Newsom-Davis, T.; Nelson, M.; Shah, P.; Cox, S.; Gazzard, B.; Bower, M. Does HIV adversely influence the outcome in advanced non-small-cell lung cancer in the era of HAART? Br. J. Cancer 2003, 89, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Xu, S. Discovery of Novel Small Molecules for Ovarian Cancer Treatment. Ph.D. Thesis, University of Southern California, Los Angeles, CA, USA, 2013. [Google Scholar]
- Pajonk, F.; Himmelsbach, J.; Riess, K.; Sommer, A.; McBride, W.H. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res. 2002, 62, 5230–5235. [Google Scholar] [PubMed]
- Gonzalez-Cao, M.; Morán, T.; Dalmau, J.; Garcia-Corbacho, J.; Bracht, J.W.; Bernabe, R.; Juan, O.; De Castro, J.; Blanco, R.; Drozdowskyj, A.; et al. Assessment of the feasibility and safety of durvalumab for treatment of solid tumors in patients with HIV-1 infection: The phase 2 DURVAST study. JAMA Oncol. 2020, 6, 1063–1067. [Google Scholar] [CrossRef] [PubMed]
- El Zarif, T.; Nassar, A.H.; Adib, E.; Fitzgerald, B.G.; Huang, J.; Mouhieddine, T.H.; Rubinstein, P.G.; Nonato, T.; McKay, R.R.; Li, M.; et al. Safety and activity of immune checkpoint inhibitors in people living with HIV and cancer: A real-world report from the cancer therapy using checkpoint inhibitors in people living with HIV-international (CATCH-IT) consortium. J. Clin. Oncol. 2023, 41, 3712–3723. [Google Scholar] [CrossRef] [PubMed]
- Okuma, Y.; Hishima, T.; Kashima, J.; Homma, S. High PD-L1 expression indicates poor prognosis of HIV-infected patients with non-small cell lung cancer. Cancer Immunol. Immunother. 2018, 67, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Domblides, C.; Antoine, M.; Hamard, C.; Rabbe, N.; Rodenas, A.; Vieira, T.; Crequit, P.; Cadranel, J.; Lavolé, A.; Wislez, M. Nonsmall cell lung cancer from HIV-infected patients expressed programmed cell death-ligand 1 with marked inflammatory infiltrates. AIDS 2018, 32, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, Z.; Gao, C.; Huang, Y.; Wu, C.; Zhang, L.; Hou, L. High concordance of programmed death-ligand 1 expression with immunohistochemistry detection between antibody clones 22C3 and E1L3N in non-small cell lung cancer biopsy samples. Transl. Cancer Res. 2020, 9, 5819–5828. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Zeng, L.; Yan, H.; Xu, Q.; Xia, Q.; Lei, J.; Chen, X.; Hu, X.; Wang, Z.; Liu, H.; et al. Validation of E1L3N antibody for PD-L1 detection and prediction of pembrolizumab response in non-small-cell lung cancer. Commun. Med. 2022, 2, 137. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sofiya, L.; Sykiotis, G.P.; Lamine, F.; Maillard, M.; Fraga, M.; Shabafrouz, K.; Ribi, C.; Cairoli, A.; Guex-Crosier, Y.; et al. Adverse effects of immune-checkpoint inhibitors: Epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 2019, 16, 563–580. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Chen, Y.-P.; Du, X.-J.; Liu, J.-Q.; Huang, C.-L.; Chen, L.; Zhou, G.-Q.; Li, W.-F.; Mao, Y.-P.; Hsu, C.; et al. Comparative safety of immune checkpoint inhibitors in cancer: Systematic review and network meta-analysis. BMJ 2018, 363, k4226. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Salem, J.-E.; Cohen, J.V.; Chandra, S.; Menzer, C.; Ye, F.; Zhao, S.; Das, S.; Beckermann, K.E.; Ha, L. Fatal toxic effects associated with immune checkpoint inhibitors: A systematic review and meta-analysis. JAMA Oncol. 2018, 4, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.-F.; Chen, Y.; Song, S.-Y.; Wang, T.-J.; Ji, W.-J.; Li, S.-W.; Liu, N.; Yan, C.-X. Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: A meta-analysis. Front. Pharmacol. 2017, 8, 730. [Google Scholar] [CrossRef] [PubMed]
- Naigeon, M.; Roulleaux Dugage, M.; Danlos, F.-X.; Boselli, L.; Jouniaux, J.-M.; de Oliveira, C.; Ferrara, R.; Duchemann, B.; Berthot, C.; Girard, L.; et al. Human virome profiling identified CMV as the major viral driver of a high accumulation of senescent CD8+ T cells in patients with advanced NSCLC. Sci. Adv. 2023, 9, eadh0708. [Google Scholar] [CrossRef] [PubMed]
- Myint, P.T.; Ali, F.S.; Verghese, D.; Alrifai, T.; Thet, A.M.; Kozma, K.E. The safety and efficacy of immune-checkpoint inhibitor therapy in HIV infected cancer patients. J. Clin. Oncol. 2020, 38, e15141. [Google Scholar] [CrossRef]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Andrews, S.; Armand, P.; Bhatia, S.; Budde, L.E.; Costa, L.; Davies, M.; Dunnington, D.; et al. Management of immunotherapy-related toxicities, version 1.2019, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2019, 17, 255–289. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.A.; Schneider, B.J.; Brahmer, J.; Andrews, S.; Armand, P.; Bhatia, S.; Budde, L.E.; Costa, L.; Davies, M.; Dunnington, D.; et al. NCCN guidelines insights: Management of immunotherapy-related toxicities, version 1.2020: Featured updates to the NCCN guidelines. J. Natl. Compr. Cancer Netw. 2020, 18, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Berglund, E.; Maaskola, J.; Schultz, N.; Friedrich, S.; Marklund, M.; Bergenstråhle, J.; Tarish, F.; Tanoglidi, A.; Vickovic, S.; Larsson, L.; et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 2018, 9, 2419. [Google Scholar] [CrossRef] [PubMed]
- Moncada, R.; Barkley, D.; Wagner, F.; Chiodin, M.; Devlin, J.C.; Baron, M.; Hajdu, C.H.; Simeone, D.M.; Yanai, I. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 2020, 38, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Yost, K.E.; Satpathy, A.T.; Wells, D.K.; Qi, Y.; Wang, C.; Kageyama, R.; McNamara, K.L.; Granja, J.M.; Sarin, K.Y.; Brown, R.A.; et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 2019, 25, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Kazer, S.W.; Aicher, T.P.; Muema, D.M.; Carroll, S.L.; Ordovas-Montanes, J.; Miao, V.N.; Tu, A.A.; Ziegler, C.G.; Nyquist, S.K.; Wong, E.B.; et al. Integrated single-cell analysis of multicellular immune dynamics during hyperacute HIV-1 infection. Nat. Med. 2020, 26, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, S.; Chan, A.-W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 statement: Updated guideline for reporting randomised trials. Lancet 2025, 405, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatawi, A.D.; Alaqyl, A.B.; Alalawi, R.J.; Alqarni, R.S.; Sufyani, R.A.; Alqarni, G.S.; Alqarni, R.S.; Albalawi, J.H.; Alsharif, R.A.; Alatawi, G.I.; et al. Safety and Efficacy of Immune Checkpoint Inhibitors in Human Immunodeficiency Virus-Associated Cancer: A Systematic Scoping Review. Diseases 2025, 13, 230. https://doi.org/10.3390/diseases13080230
Alatawi AD, Alaqyl AB, Alalawi RJ, Alqarni RS, Sufyani RA, Alqarni GS, Alqarni RS, Albalawi JH, Alsharif RA, Alatawi GI, et al. Safety and Efficacy of Immune Checkpoint Inhibitors in Human Immunodeficiency Virus-Associated Cancer: A Systematic Scoping Review. Diseases. 2025; 13(8):230. https://doi.org/10.3390/diseases13080230
Chicago/Turabian StyleAlatawi, Ahmed D., Amirah B. Alaqyl, Reema J. Alalawi, Rahaf S. Alqarni, Razan A. Sufyani, Ghadi S. Alqarni, Raghad S. Alqarni, Jumana H. Albalawi, Raghad A. Alsharif, Ghada I. Alatawi, and et al. 2025. "Safety and Efficacy of Immune Checkpoint Inhibitors in Human Immunodeficiency Virus-Associated Cancer: A Systematic Scoping Review" Diseases 13, no. 8: 230. https://doi.org/10.3390/diseases13080230
APA StyleAlatawi, A. D., Alaqyl, A. B., Alalawi, R. J., Alqarni, R. S., Sufyani, R. A., Alqarni, G. S., Alqarni, R. S., Albalawi, J. H., Alsharif, R. A., Alatawi, G. I., Albalawi, E. N., Alanazi, D. A., Naitah, S. A., Sayad, R., & Hetta, H. F. (2025). Safety and Efficacy of Immune Checkpoint Inhibitors in Human Immunodeficiency Virus-Associated Cancer: A Systematic Scoping Review. Diseases, 13(8), 230. https://doi.org/10.3390/diseases13080230