Unsupervised Clustering Successfully Predicts Prognosis in NSCLC Brain Metastasis Cohorts
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Unsupervised Cluster Analysis
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NSCLC | Non-small-cell lung cancer |
BM | Brain metastasis |
TSC | Two-step clustering |
HCA | Hierarchical cluster analysis |
DS-GPA | Diagnosis-Specific Graded Prognostic Assessment |
OS | Overall survival |
RPA | Recursive partitioning analysis |
KPS | Karnofsky performance status |
ECM | Extracranial metastasis |
SE | Standard error |
SIR | Score Index for Radiosurgery |
BSBM | Basic Score for Brain Metastases |
PCA | Principal component analysis |
HR | Hazard ratio |
CI | Confidence interval |
AUC | Area under the curve |
MISPRO | Mutual information and rough set of particle swarm optimization |
XGBoost | eXtreme Gradient Boosting |
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Chang, E.L.; Hassenbusch, S.J.; Allen, P.K.; Woo, S.Y.; Mahajan, A.; Komaki, R.; Liao, Z. Nonsmall Cell Lung Cancer Presenting with Synchronous Solitary Brain Metastasis. Cancer 2006, 106, 1998–2004. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, J.S.; Park, H.S.; Cho, M.J.; Kim, J.O.; Kim, J.W.; Song, C.J.; Lim, S.P.; Jung, S.S. Screening of Brain Metastasis with Limited Magnetic Resonance Imaging (MRI): Clinical Implications of Using Limited Brain MRI during Initial Staging for Non-Small Cell Lung Cancer Patients. J. Korean Med. Sci. 2005, 20, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, Q.; Chen, X.; Zheng, L.; Zhang, L.; Yu, Y.; Chen, M.; You, Q.; Sun, J. Clinical Associations and Prognostic Value of Site-Specific Metastases in Non-Small Cell Lung Cancer: A Population-Based Study. Oncol. Lett. 2019, 17, 5590–5600. [Google Scholar] [CrossRef]
- Simoff, M.J.; Lally, B.; Slade, M.G.; Goldberg, W.G.; Lee, P.; Michaud, G.C.; Wahidi, M.M.; Chawla, M. Symptom Management in Patients with Lung Cancer: Diagnosis and Management of Lung Cancer, 3rd Ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2013, 143, e455S–e497S. [Google Scholar] [CrossRef]
- Sánchez de Cos, J.; Sojo González, M.A.; Montero, M.V.; Pérez Calvo, M.C.; Vicente, M.J.M.; Valle, M.H. Non-Small Cell Lung Cancer and Silent Brain Metastasis. Lung Cancer 2009, 63, 140–145. [Google Scholar] [CrossRef]
- Şen, M.; Demiral, A.S.; Çetingöz, R.; Alanyali, H.; Akman, F.; Şentürk, D.; Kinay, M. Prognostic Factors in Lung Cancer with Brain Metastasis. Radiother. Oncol. 1998, 46, 33–38. [Google Scholar] [CrossRef]
- Weltman, E.; Salvajoli, J.V.; Brandt, R.A.; de Morais Hanriot, R.; Prisco, F.E.; Cruz, J.C.; de Oliveira Borges, S.R.; Wajsbrot, D.B. Radiosurgery for Brain Metastases: A Score Index for Predicting Prognosis. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 1155–1161. [Google Scholar] [CrossRef]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive Partitioning Analysis (RPA) of Prognostic Factors in Three Radiation Therapy Oncology Group (RTOG) Brain Metastases Trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Berkey, B.; Gaspar, L.E.; Mehta, M.; Curran, W. A New Prognostic Index and Comparison to Three Other Indices for Patients with Brain Metastases: An Analysis of 1960 Patients in the RTOG Database. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 510–514. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Chao, S.T.; Sneed, P.K.; Luo, X.; Suh, J.; Roberge, D.; Bhatt, A.; Jensen, A.W.; Brown, P.D.; Shih, H.; et al. Diagnosis-Specific Prognostic Factors, Indexes, and Treatment Outcomes for Patients with Newly Diagnosed Brain Metastases: A Multi-Institutional Analysis of 4259 Patients. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Sperduto, P.W.; Kased, N.; Roberge, D.; Xu, Z.; Shanley, R.; Luo, X.; Sneed, P.K.; Chao, S.T.; Weil, R.J.; Suh, J.; et al. Summary Report on the Graded Prognostic Assessment: An Accurate and Facile Diagnosis-Specific Tool to Estimate Survival for Patients with Brain Metastases. J. Clin. Oncol. 2012, 30, 419–425. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Yang, T.J.; Beal, K.; Pan, H.; Brown, P.D.; Bangdiwala, A.; Shanley, R.; Yeh, N.; Gaspar, L.E.; Braunstein, S.; et al. Estimating Survival in Patients with Lung Cancer and Brain Metastases: An Update of the Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-MolGPA). JAMA Oncol. 2017, 3, 827–831. [Google Scholar] [CrossRef]
- Kotek Sedef, A.; Uysal, E.; Berber, T.; Gurdal, N.; Yildirim, B. The Prognostic Values of Graded Prognostic Assessment (GPA) Index In Advanced Stage NSCLC Patients with Brain Metastasis. Turk. J. Clin. Lab. 2023, 14, 137–141. [Google Scholar] [CrossRef]
- Bice, N.; Kirby, N.; Bahr, T.; Rasmussen, K.; Saenz, D.; Wagner, T.; Papanikolaou, N.; Fakhreddine, M. Deep Learning-Based Survival Analysis for Brain Metastasis Patients with the National Cancer Database. J. Appl. Clin. Med. Phys. 2020, 21, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Mining Prognosis Index of Brain Metastases Using Artificial Intelligence. Cancers 2019, 11, 1140. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Chen, R.; Zhu, Y.; Liu, L.; Dong, J.; Zhang, Z.; Sun, X.; Ying, J.; Lin, D.; et al. Histopathology Images-Based Deep Learning Prediction of Prognosis and Therapeutic Response in Small Cell Lung Cancer. NPJ Digit. Med. 2024, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Mohamed, M.; Flannery, M.; Peppone, L.; Ramsdale, E.; Loh, K.P.; Wells, M.; Jamieson, L.; Vogel, V.G.; Hall, B.A.; et al. An Unsupervised Machine Learning Approach to Evaluating the Association of Symptom Clusters with Adverse Outcomes Among Older Adults with Advanced Cancer: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e234198. [Google Scholar] [CrossRef]
- Chen, S.; Zang, Y.; Xu, B.; Lu, B.; Ma, R.; Miao, P.; Chen, B. An Unsupervised Deep Learning-Based Model Using Multiomics Data to Predict Prognosis of Patients with Stomach Adenocarcinoma. Comput. Math. Methods Med. 2022, 2022, 5844846. [Google Scholar] [CrossRef]
- Li, H.; Galperin-Aizenberg, M.; Pryma, D.; Simone, C.B.; Fan, Y. Unsupervised Machine Learning of Radiomic Features for Predicting Treatment Response and Overall Survival of Early Stage Non-Small Cell Lung Cancer Patients Treated with Stereotactic Body Radiation Therapy. Radiother. Oncol. 2018, 129, 218–226. [Google Scholar] [CrossRef]
- Xu, J.; Yao, Y.; Xu, B.; Li, Y.; Su, Z. Unsupervised Learning of Cross-Modal Mappings in Multi-Omics Data for Survival Stratification of Gastric Cancer. Future Oncol. 2022, 18, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cui, Y.; Sun, X.; Cao, G.; Li, B.; Ikeda, D.M.; Kurian, A.W.; Li, R. Unsupervised Clustering of Quantitative Image Phenotypes Reveals Breast Cancer Subtypes with Distinct Prognoses and Molecular Pathways. Clin. Cancer Res. 2017, 23, 3334–3342. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Leijenaar, R.T.H.; Grossmann, P.; Rios Velazquez, E.; Bussink, J.; Rietveld, D.; Rietbergen, M.M.; Haibe-Kains, B.; Lambin, P.; Aerts, H.J.W.L. Radiomic Feature Clusters and Prognostic Signatures Specific for Lung and Head & Neck Cancer. Sci. Rep. 2015, 5, 11044. [Google Scholar] [CrossRef]
- Zhang, Y.; Kiryu, H. MODEC: An Unsupervised Clustering Method Integrating Omics Data for Identifying Cancer Subtypes. Brief. Bioinform. 2022, 23, bbac372. [Google Scholar] [CrossRef]
- Young, J.D.; Cai, C.; Lu, X. Unsupervised Deep Learning Reveals Prognostically Relevant Subtypes of Glioblastoma. BMC Bioinform. 2017, 18, 381. [Google Scholar] [CrossRef]
- Polanski, J. Unsupervised Learning in Drug Design from Self-Organization to Deep Chemistry. Int. J. Mol. Sci. 2022, 23, 2797. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Zindler, J.D.; Jochems, A.; Lagerwaard, F.J.; Beumer, R.; Troost, E.G.C.; Eekers, D.B.P.; Compter, I.; van der Toorn, P.-P.; Essers, M.; Oei, B.; et al. Individualized Early Death and Long-Term Survival Prediction after Stereotactic Radiosurgery for Brain Metastases of Non-Small Cell Lung Cancer: Two Externally Validated Nomograms. Radiother. Oncol. 2017, 123, 189–194. [Google Scholar] [CrossRef]
- Brown, P.D.; Ballman, K.V.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Whitton, A.C.; Greenspoon, J.; Parney, I.F.; Laack, N.N.I.; Ashman, J.B.; et al. Postoperative Stereotactic Radiosurgery Compared with Whole Brain Radiotherapy for Resected Metastatic Brain Disease (NCCTG N107C/CEC·3): A Multicentre, Randomised, Controlled, Phase 3 Trial. Lancet. Oncol. 2017, 18, 1049–1060. [Google Scholar] [CrossRef]
- Brown, P.D.; Jaeckle, K.; Ballman, K.V.; Farace, E.; Cerhan, J.H.; Anderson, S.K.; Carrero, X.W.; Barker, F.G.; Deming, R.; Burri, S.H.; et al. Effect of Radiosurgery Alone vs Radiosurgery with Whole Brain Radiation Therapy on Cognitive Function in Patients with 1 to 3 Brain Metastases: A Randomized Clinical Trial. JAMA 2016, 316, 401–409. [Google Scholar] [CrossRef]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; et al. Neurocognition in Patients with Brain Metastases Treated with Radiosurgery or Radiosurgery plus Whole-Brain Irradiation: A Randomised Controlled Trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Vogelbaum, M.A.; Brown, P.D.; Messersmith, H.; Brastianos, P.K.; Burri, S.; Cahill, D.; Dunn, I.F.; Gaspar, L.E.; Gatson, N.T.N.; Gondi, V.; et al. Treatment for Brain Metastases: ASCO-SNO-ASTRO Guideline. J. Clin. Oncol. 2022, 40, 492–516. [Google Scholar] [CrossRef] [PubMed]
- Lorenzoni, J.; Devriendt, D.; Massager, N.; David, P.; Ruíz, S.; Vanderlinden, B.; Van Houtte, P.; Brotchi, J.; Levivier, M. Radiosurgery for Treatment of Brain Metastases: Estimation of Patient Eligibility Using Three Stratification Systems. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.X.; Huang, S.G.; Du, J.F.; Zhang, X.C.; Jiang, N.; Kang, W.X.; Mao, J.; Zhao, Q. Comparison of Prognostic Indices in NSCLC Patients with Brain Metastases after Radiosurgery. Int. J. Biol. Sci. 2018, 14, 2065–2072. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, M.; Zhang, Y.; Wang, Y.; Li, J.; Sun, S.; Liu, X.; Wu, H.; Feng, C.; Yao, P.; et al. Novel Models by Machine Learning to Predict Prognosis of Breast Cancer Brain Metastases. J. Transl. Med. 2023, 21, 404. [Google Scholar] [CrossRef] [PubMed]
- Katzman, J.L.; Shaham, U.; Cloninger, A.; Bates, J.; Jiang, T.; Kluger, Y. DeepSurv: Personalized Treatment Recommender System Using a Cox Proportional Hazards Deep Neural Network. BMC Med. Res. Methodol. 2018, 18, 24. [Google Scholar] [CrossRef]
- A Miller, D.J.; Wang, Y.; Kesidis, G. Emergent Unsupervised Clustering Paradigms with Potential Application to Bioinformatics. Front. Biosci. 2008, 13, 677–690. [Google Scholar] [CrossRef]
Prognostic Factor | GPA Scoring Criteria | ||
---|---|---|---|
0 | 0.5 | 1.0 | |
Age, years | ≥70 | <70 | NA |
KPS | ≤70 | 80 | 90–100 |
ECM | Present | Absent | |
Brain metastases, No. | >4 | 1–4 | NA |
Gene status | EGFR neg/unk and ALK neg/unk | NA | EGFR pos or ALK pos |
DS−GPA | Two-Step Clustering | Hierarchical Clustering | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–1 n = 24 | 1.5–2 n = 54 | 2.5–3 n = 17 | TSC 1 n = 19 | TSC 2 n = 26 | TSC 3 n = 26 | TSC 4 n = 24 | HC 1 n = 23 | HC 2 n = 21 | HC 3 n = 27 | HC 4 n = 24 | |||
Age | Mean | 60.3 | 62 | 63.4 | 59.1 | 61.4 | 65.1 | 60.8 | 58.3 | 62.8 | 65.0 | 60.8 | |
SE | 2.1 | 1.2 | 1.3 | 2.3 | 1.6 | 1.6 | 1.8 | 2.0 | 1.7 | 1.5 | 1.8 | ||
KPS | 60 | n | 3 | 1 | − | 4 | − | − | − | 3 | − | 1 | − |
% | 75 | 25 | 100 | 75 | 25 | ||||||||
70 | n | 14 | 8 | 1 | 15 | − | 8 | − | 15 | − | 8 | − | |
% | 60.9 | 34.8 | 4.3 | 65.2 | 34.8 | 65.2 | 34.8 | ||||||
80 | n | 7 | 22 | 7 | − | 26 | 10 | − | 5 | 21 | 10 | − | |
% | 19.4 | 61.1 | 19.4 | 72.2 | 27.8 | 13.9 | 58.3 | 27.8 | |||||
90 | n | − | 23 | 9 | − | − | 8 | 24 | − | − | 8 | 24 | |
% | 71.9 | 28.1 | 25.0 | 75.0 | 25.0 | 75.0 | |||||||
ECM | n | 24 | 42 | 2 | 18 | 26 | − | 24 | 23 | 21 | − | 24 | |
% | 35.3 | 61.8 | 2.9 | 26.5 | 38.2 | 35.3 | 33.8 | 30.9 | 35.3 | ||||
No. of BM | Mean | 3.7 | 1.6 | 1.6 | 2.8 | 2.8 | 1.7 | 1.5 | 3.9 | 1.6 | 1.7 | 1.5 | |
SE | 0.6 | 0.1 | 0.2 | 0.5 | 0.5 | 0.2 | 0.2 | 0.6 | 0.2 | 0.2 | 0.2 |
Prognostic Classes | Univariate Regression Analysis | ||
---|---|---|---|
HR | 95% CI | p | |
DS-GPA | |||
0–1 | ref | <0.001 | |
1.5–2 | 0.297 | 0.174–0.508 | <0.001 |
2.5–3 | 0.195 | 0.096–0.396 | <0.001 |
TSC | |||
TSC 1 | ref | <0.001 | |
TSC 2 | 0.434 | 0.235–0.800 | 0.007 |
TSC 3 | 0.214 | 0.110–0.416 | <0.001 |
TSC 4 | 0.130 | 0.065-0.263 | < 0.001 |
HCA | |||
HCA 1 | ref | <0.001 | |
HCA 2 | 0.457 | 0.246–0.848 | 0.013 |
HCA 3 | 0.257 | 0.137–0.482 | <0.001 |
HCA 4 | 0.150 | 0.076–0.295 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uysal, E.; Durak, G.; Kotek Sedef, A.; Bagci, U.; Berber, T.; Gurdal, N.; Akkus Yildirim, B. Unsupervised Clustering Successfully Predicts Prognosis in NSCLC Brain Metastasis Cohorts. Diagnostics 2025, 15, 1747. https://doi.org/10.3390/diagnostics15141747
Uysal E, Durak G, Kotek Sedef A, Bagci U, Berber T, Gurdal N, Akkus Yildirim B. Unsupervised Clustering Successfully Predicts Prognosis in NSCLC Brain Metastasis Cohorts. Diagnostics. 2025; 15(14):1747. https://doi.org/10.3390/diagnostics15141747
Chicago/Turabian StyleUysal, Emre, Gorkem Durak, Ayse Kotek Sedef, Ulas Bagci, Tanju Berber, Necla Gurdal, and Berna Akkus Yildirim. 2025. "Unsupervised Clustering Successfully Predicts Prognosis in NSCLC Brain Metastasis Cohorts" Diagnostics 15, no. 14: 1747. https://doi.org/10.3390/diagnostics15141747
APA StyleUysal, E., Durak, G., Kotek Sedef, A., Bagci, U., Berber, T., Gurdal, N., & Akkus Yildirim, B. (2025). Unsupervised Clustering Successfully Predicts Prognosis in NSCLC Brain Metastasis Cohorts. Diagnostics, 15(14), 1747. https://doi.org/10.3390/diagnostics15141747