Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,106)

Search Parameters:
Keywords = non-oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1724 KiB  
Article
Effects of Eriobotrya japonica (Thunb.) Lindl. Leaf Extract on Zebrafish Embryogenesis, Behavior, and Biochemical Pathways
by Jorge Barros, Irene Gouvinhas, Carlos Venâncio, Daniel Granato, Ana Novo Barros and Luís Félix
Molecules 2025, 30(15), 3252; https://doi.org/10.3390/molecules30153252 (registering DOI) - 3 Aug 2025
Abstract
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical [...] Read more.
Eriobotrya japonica (Thunb.) Lindl. leaves are rich in polyphenolic compounds, yet their toxicological effects in aquatic models remain poorly understood. This study evaluated the impact of a hydroethanolic E. japonica leaf extract on zebrafish embryos through the use of morphological, behavioral, and biochemical parameters. The 96 h LC50 was determined as 189.8 ± 4.5 mg/L, classifying the extract as practically non-toxic, according to OECD guidelines. Thereby, embryos were exposed for 90 h to 75 and 150 mg/L concentrations of the E. japonica leaf extract. While no significant effects were noted at the lowest concentration of 150 mg/L, significant developmental effects were observed, including reduced survival, delayed hatching, underdevelopment of the swim bladder, and retention of the yolk sac. These malformations were accompanied by marked behavioral impairments. Biochemical analysis revealed a concentration-dependent increase in superoxide dismutase (SOD) and catalase (CAT) activity, suggesting the activation of antioxidant defenses, despite no significant change in reactive oxygen species (ROS) levels. This indicates a potential compensatory redox response to a pro-oxidant signal. Additionally, the acetylcholinesterase (AChE) activity was significantly reduced at the highest concentration, which may have contributed to the observed neurobehavioral changes. While AChE inhibition is commonly associated with neurotoxicity, it is also a known therapeutic target in neurodegenerative diseases, suggesting concentration-dependent dual effects. In summary, the E. japonica leaf extract induced concentration-dependent developmental and behavioral effects in zebrafish embryos, while activating antioxidant responses without triggering oxidative damage. These findings highlight the extract’s potential bioactivity and underscore the need for further studies to explore its safety and therapeutic relevance. Full article
(This article belongs to the Special Issue Biological Activities of Traditional Medicinal Plants, 2nd Edition)
16 pages, 1961 KiB  
Article
A Novel Glycosylated Ferulic Acid Conjugate: Synthesis, Antioxidative Neuroprotection Activities In Vitro, and Alleviation of Cerebral Ischemia–Reperfusion Injury (CIRI) In Vivo
by Jian Chen, Yongjun Yuan, Litao Tong, Manyou Yu, Yongqing Zhu, Qingqing Liu, Junling Deng, Fengzhang Wang, Zhuoya Xiang and Chen Xia
Antioxidants 2025, 14(8), 953; https://doi.org/10.3390/antiox14080953 (registering DOI) - 3 Aug 2025
Abstract
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between [...] Read more.
Antioxidative neuroprotection is effective at preventing ischemic stroke (IS). Ferulic acid (FA) offers benefits in the treatment of many diseases, mostly due to its antioxidant activities. In this study, a glycosylated ferulic acid conjugate (FA-Glu), with 1,2,3-triazole as a linker and bioisostere between glucose at the C6 position and FA at the C4 position, was designed and synthesized. The hydrophilicity and chemical stability of FA-Glu were tested. FA-Glu’s protection against DNA oxidative cleavage was tested using pBR322 plasmid DNA under the Fenton reaction. The cytotoxicity of FA-Glu was examined via the PC12 cell and bEnd.3 cell tests. Antioxidative neuroprotection was evaluated, in vitro, via a H2O2-induced PC12 cell test, measuring cell viability and ROS levels. Antioxidative alleviation of cerebral ischemia–reperfusion injury (CIRI), in vivo, was evaluated using a rat middle cerebral artery occlusion (MCAO) model. The results indicated that FA-Glu was water-soluble (LogP −1.16 ± 0.01) and chemically stable. FA-Glu prevented pBR322 plasmid DNA cleavage induced via •OH radicals (SC% 88.00%). It was a non-toxic agent based on PC12 cell and bEnd.3 cell tests results. FA-Glu significantly protected against H2O2-induced oxidative damage in the PC12 cell (cell viability 88.12%, 100 μM) and inhibited excessive cell ROS generation (45.67% at 100 μM). FA-Glu significantly reduced the infarcted brain areas measured using TTC stain observation, quantification (FA-Glu 21.79%, FA 28.49%, I/R model 43.42%), and H&E stain histological observation. It sharply reduced the MDA level (3.26 nmol/mg protein) and significantly increased the GSH level (139.6 nmol/mg protein) and SOD level (265.19 U/mg protein). With superior performance to FA, FA-Glu is a safe agent with effective antioxidative DNA and neuronal protective actions and an ability to alleviate CIRI, which should help in the prevention of IS. Full article
Show Figures

Figure 1

16 pages, 1976 KiB  
Article
Anatase-Free Nanosized Hierarchical Titanosilicate TS-1 Synthesis via Nitric Acid-Catalyzed Gel Preparation
by Vera R. Bikbaeva, Sergey V. Bubennov, Dmitry V. Serebrennikov, Daria A. Ogurechnikova, Evgenii V. Vakulin, Boris I. Kutepov, Nellia G. Grigoreva and Anton L. Maximov
Gels 2025, 11(8), 605; https://doi.org/10.3390/gels11080605 (registering DOI) - 2 Aug 2025
Abstract
A new approach to the synthesis of a nanosized and hierarchical titanosilicate, TS-1, is presented. Instead of using specific solid or additional mesoporous templates or individual additives to slow down the hydrolysis of titanium alkoxides, it is proposed that the titanosilicate TS-1 can [...] Read more.
A new approach to the synthesis of a nanosized and hierarchical titanosilicate, TS-1, is presented. Instead of using specific solid or additional mesoporous templates or individual additives to slow down the hydrolysis of titanium alkoxides, it is proposed that the titanosilicate TS-1 can be obtained from gels synthesized with hydrolysis catalysts (HNO3 and tetrapropylammonium hydroxide). When nitric acid catalyzes tetraethyl orthosilicate (TEOS) hydrolysis, the resulting crystalline TS-1 that can be obtained has uniform particle sizes (150–180 nm), is anatase-free, and contains up to 46–67% of mesopores. When a base catalyst is applied, the obtained material’s features are opposite. Moreover, acid-promoted TS-1 samples catalyze cyclohexene H2O2-oxidation via a heterolytic route to the cyclohexane epoxide with 67% selectivity, which is non-typical. Full article
(This article belongs to the Special Issue Advances in Functional Gel (2nd Edition))
Show Figures

Figure 1

18 pages, 8702 KiB  
Article
Oxidation Process and Morphological Degradation of Drilling Chips from Carbon Fiber-Reinforced Polymers
by Dora Kroisová, Stepanka Dvorackova, Martin Bilek, Josef Skrivanek, Anita Białkowska and Mohamed Bakar
J. Compos. Sci. 2025, 9(8), 410; https://doi.org/10.3390/jcs9080410 (registering DOI) - 2 Aug 2025
Abstract
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods [...] Read more.
Carbon fiber (CF) and carbon fiber-reinforced polymers (CFRPs) are widely used in the aerospace, automotive, and energy sectors due to their high strength, stiffness, and low density. However, significant waste is generated during manufacturing and after the use of CFRPs. Traditional disposal methods like landfilling and incineration are unsustainable. CFRP machining processes, such as drilling and milling, produce fine chips and dust that are difficult to recycle due to their heterogeneity and contamination. This study investigates the oxidation behavior of CFRP drilling waste from two types of materials (tube and plate) under oxidative (non-inert) conditions. Thermogravimetric analysis (TGA) was performed from 200 °C to 800 °C to assess weight loss related to polymer degradation and carbon fiber integrity. Scanning electron microscopy (SEM) was used to analyze morphological changes and fiber damage. The optimal range for removing the polymer matrix without significant fiber degradation has been identified as 500–600 °C. At temperatures above 700 °C, notable surface and internal fiber damage occurred, along with nanostructure formation, which may pose health and environmental risks. The results show that partial fiber recovery is possible under ambient conditions, and this must be considered regarding the harmful risks to the human body if submicron particles are inhaled. This research supports sustainable CFRP recycling and fire hazard mitigation. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 487 KiB  
Review
Recent Trends in the Management of Varicocele
by Tamás Takács, Anett Szabó and Zsolt Kopa
J. Clin. Med. 2025, 14(15), 5445; https://doi.org/10.3390/jcm14155445 (registering DOI) - 2 Aug 2025
Abstract
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the [...] Read more.
Varicocele is a common, potentially correctable condition associated with impaired male fertility. Despite being frequently encountered in clinical andrology, its pathophysiological mechanisms, diagnostic criteria, and therapeutic approaches remain areas of active investigation and debate. The authors conducted a comprehensive literature search, using the PubMed database, covering clinical studies, systematic reviews, meta-analyses, and current international guidelines from the past ten years. Emphasis was placed on studies investigating novel diagnostic modalities, therapeutic innovations, and prognostic markers. Emerging evidence supports the multifactorial pathophysiology of varicocele, involving oxidative stress, hypoxia, inflammatory pathways, and potential genetic predisposition. Biomarkers, including microRNAs, antisperm antibodies, and sperm DNA fragmentation, offer diagnostic and prognostic utility, though their routine clinical implementation requires further validation. Advances in imaging, such as shear wave elastography, may improve diagnostic accuracy. While microsurgical subinguinal varicocelectomy remains the gold standard, technological refinements and non-surgical alternatives are being explored. Indications for treatment have expanded to include selected cases of non-obstructive azoospermia, hypogonadism, and optimization for assisted reproduction, though high-level evidence is limited. Full article
Show Figures

Figure 1

16 pages, 1141 KiB  
Article
Coordinated Roles of Osmotic Adjustment, Antioxidant Defense, and Ion Homeostasis in the Salt Tolerance of Mulberry (Morus alba L. ‘Tailai Sang’) Seedlings
by Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Yu Shaopeng
Forests 2025, 16(8), 1258; https://doi.org/10.3390/f16081258 (registering DOI) - 1 Aug 2025
Abstract
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old [...] Read more.
Soil salinization severely limits plant growth and productivity. Mulberry (Morus alba L.), an economically and ecologically important tree, is widely cultivated, yet its salt-tolerance mechanisms at the seedling stage remain insufficiently understood. This study investigated the physiological and biochemical responses of two-year-old mulberry (‘Tailai Sang’) seedlings subjected to six NaCl treatments (0, 50, 100, 150, 200, and 300 mmol L−1) for 28 days. Results showed that growth parameters and photosynthetic gas exchange exhibited dose-dependent declines. The reduction in net photosynthetic rate (Pn) was attributed to both stomatal limitations (decreased stomatal conductance) and non-stomatal limitations, as evidenced by a significant decrease in the maximum quantum efficiency of photosystem II (Fv/Fm) under high salinity. To cope with osmotic stress, seedlings accumulated compatible solutes, including soluble sugars, proteins, and proline. Critically, mulberry seedlings demonstrated effective ion homeostasis by sequestering Na+ in the roots to maintain a high K+/Na+ ratio in leaves, a mechanism that was compromised above 150 mmol L−1. Concurrently, indicators of oxidative stress—malondialdehyde (MDA) and H2O2—rose significantly with salinity, inducing the activities of antioxidant enzymes (SOD, CAT, APX, and GR), which peaked at 150 mmol L−1 before declining under extreme stress. A biomass-based LC50 of 179 mmol L−1 NaCl was determined. These findings elucidate that mulberry salt tolerance is a coordinated process involving three key mechanisms: osmotic adjustment, selective ion distribution, and a robust antioxidant defense system. This study establishes an indicative tolerance threshold under controlled conditions and provides a physiological basis for further field-based evaluations of ‘Tailai Sang’ mulberry for cultivation on saline soils. Full article
Show Figures

Figure 1

15 pages, 3882 KiB  
Article
Performance of Low-Cost Energy Dense Mixed Material MnO2-Cu2O Cathodes for Commercially Scalable Aqueous Zinc Batteries
by Gautam G. Yadav, Malesa Sammy, Jungsang Cho, Megan N. Booth, Michael Nyce, Jinchao Huang, Timothy N. Lambert, Damon E. Turney, Xia Wei and Sanjoy Banerjee
Batteries 2025, 11(8), 291; https://doi.org/10.3390/batteries11080291 (registering DOI) - 1 Aug 2025
Abstract
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making [...] Read more.
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making it a promising anode material for the development of highly energy dense batteries. However, the advancement of Zn-based battery systems is hindered by the limited availability of cathode materials that simultaneously offer high theoretical capacity, long-term cycling stability, and affordability. In this work, we present a new mixed material cathode system, comprising of a mixture of manganese dioxide (MnO2) and copper oxide (Cu2O) as active materials, that delivers a high theoretical capacity of ~280 mAh/g (MnO2 + Cu2O active material) (based on the combined mass of MnO2 and Cu2O) and supports stable cycling for >200 cycles at 1C. We further demonstrate the scalability of this novel cathode system by increasing the electrode size and capacity, highlighting its potential for practical and commercial applications. Full article
Show Figures

Figure 1

33 pages, 2639 KiB  
Article
Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation
by Barbara Giordani, Federica Monti, Elisa Corazza, Sofia Gasperini, Carola Parolin, Angela Abruzzo, Claudio Foschi, Antonella Marangoni, Monia Lenzi, Barbara Luppi and Beatrice Vitali
Pharmaceutics 2025, 17(8), 1011; https://doi.org/10.3390/pharmaceutics17081011 (registering DOI) - 1 Aug 2025
Viewed by 24
Abstract
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics [...] Read more.
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics (i.e., cell-free supernatant and heat-killed cells), with the purpose of developing oral formulations to support intestinal health. Methods: The safety, effects on the adhesion of bifidobacteria and enteropathogens to intestinal cells, and anti-inflammatory properties of L. vaginalis BC17 viable cells and postbiotics were evaluated. Fast-disintegrating tablets were formulated by freeze-drying cell-free supernatant in combination with heat-killed or viable cells alongside maltodextrins. Results: The formulations were shown to be non-genotoxic and compatible with intestinal cell lines (Caco-2 and HT-29). BC17 viable cells survived in co-culture with intestinal cells up to 48 h and exhibited moderate adhesion to the cell lines. Notably, both BC17 viable cells and postbiotics enhanced the adhesion of beneficial bifidobacteria to Caco-2 cells by up to 250%, while reducing enteropathogens adhesion by 40–70%. Moreover, they exerted significant anti-inflammatory effects, reducing nitric oxide production in macrophages by 40–50% and protecting intestinal cells from SDS-induced damage. The formulations allowed administration of at least 109 BC17 cells in infants and adults through easy and rapid dispersion in milk or water, or directly in the oral cavity without chewing, and preserved their functional properties for up to 3 months of storage. Conclusions: L. vaginalis BC17 viable cells and postbiotics, as well as fast-disintegrating tablets, showed promising functional and safety profiles. Although further in vivo validation is needed, this approach represents a compelling strategy for promoting gut health. Full article
Show Figures

Graphical abstract

25 pages, 5020 KiB  
Review
Research Progress on Tribological Properties of High-Entropy Alloys
by Shuai Zhang, Zhaofeng Wang, Wenqing Lin and Haoyu Guo
Lubricants 2025, 13(8), 342; https://doi.org/10.3390/lubricants13080342 (registering DOI) - 1 Aug 2025
Viewed by 41
Abstract
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail [...] Read more.
As a new type of alloy system composed of five or more principal components, high-entropy alloys demonstrate outstanding comprehensive performance in the field of friction and wear through the synergistic effects of the high-entropy effect, lattice distortion effect, hysteresis diffusion effect and cocktail effect. This paper systematically reviews the research progress on the friction and wear properties of high-entropy alloys. The mechanisms of metal elements such as Al, Ti, Cu and Nb through solid solution strengthening, second-phase precipitation and oxide film formation were analyzed emphatically. And non-metallic elements such as C, Si, and B form and strengthen the regulation laws of their tribological properties. The influence of working conditions, such as high temperature, ocean, and hydrogen peroxide on the friction and wear behavior of high-entropy alloys by altering the wear mechanism, was discussed. The influence of test conditions such as load, sliding velocity and friction pair matching on its friction coefficient and wear rate was expounded. It is pointed out that high-entropy alloys have significant application potential in key friction components, providing reference and guidance for the further development and application of high-entropy alloys. Full article
(This article belongs to the Special Issue Tribological Performance of High-Entropy Alloys)
Show Figures

Figure 1

20 pages, 6929 KiB  
Article
Protective Effects of Sodium Copper Chlorophyllin and/or Ascorbic Acid Against Barium Chloride-Induced Oxidative Stress in Mouse Brain and Liver
by Salma Benayad, Basma Es-Sai, Yassir Laaziouez, Soufiane Rabbaa, Hicham Wahnou, Habiba Bouchab, Hicham El Attar, Bouchra Benabdelkhalek, Loubna Amahdar, Oualid Abboussi, Raphaël Emmanuel Duval, Riad El Kebbaj and Youness Limami
Molecules 2025, 30(15), 3231; https://doi.org/10.3390/molecules30153231 (registering DOI) - 1 Aug 2025
Viewed by 45
Abstract
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in [...] Read more.
Barium chloride (BaCl2), a known environmental pollutant, induces organ-specific oxidative stress through disruption of redox homeostasis. This study evaluated the protective effects and safety profile of sodium copper chlorophyllin (SCC) and ascorbic acid (ASC) against BaCl2-induced oxidative damage in the liver and brain of mice using a two-phase experimental protocol. Animals received either SCC (40 mg/kg), ASC (160 mg/kg), or their combination for 14 days prior to BaCl2 exposure (150 mg/L in drinking water for 7 days), allowing evaluation of both preventive and therapeutic effects. Toxicological and behavioral assessments confirmed the absence of systemic toxicity or neurobehavioral alterations following supplementation. Body weight, liver and kidney indices, and biochemical markers (Aspartate Aminotransferase (ASAT), Alanine Aminotransferase (ALAT), creatinine) remained within physiological ranges, and no anxiogenic or locomotor effects were observed. In the brain, BaCl2 exposure significantly increased SOD (+49%), CAT (+66%), GPx (+24%), and GSH (+26%) compared to controls, reflecting a robust compensatory antioxidant response. Although lipid peroxidation (MDA) showed a non-significant increase, SCC, ASC, and their combination reduced MDA levels by 42%, 37%, and 55%, respectively. These treatments normalized antioxidant enzyme activities and GSH, indicating an effective neuroprotective effect. In contrast, the liver exhibited a different oxidative profile. BaCl2 exposure increased MDA levels by 80% and GSH by 34%, with no activation of SOD, CAT, or GPx. Histological analysis revealed extensive hepatocellular necrosis, vacuolization, and inflammatory infiltration. SCC significantly reduced hepatic MDA by 39% and preserved tissue architecture, while ASC alone or combined with SCC exacerbated inflammation and depleted hepatic GSH by 71% and 78%, respectively, relative to BaCl2-exposed controls. Collectively, these results highlight a differential, organ-specific response to BaCl2-induced oxidative stress and the therapeutic potential of SCC and ASC. SCC emerged as a safer and more effective agent, particularly in hepatic protection, while both antioxidants demonstrated neuroprotective effects when used individually or in combination. Full article
Show Figures

Figure 1

14 pages, 454 KiB  
Article
The Evaluation of Blood Prooxidant–Antioxidant Balance Indicators and Cortisol Pre- and Post-Surgery in Patients with Benign Parotid Gland Tumors: A Preliminary Study
by Sebastian Bańkowski, Jan Pilch, Bartosz Witek, Jarosław Markowski, Wirginia Likus, Michał Rozpara and Ewa Sadowska-Krępa
J. Clin. Med. 2025, 14(15), 5425; https://doi.org/10.3390/jcm14155425 (registering DOI) - 1 Aug 2025
Viewed by 117
Abstract
Background: The majority of parotid gland tumors are benign, e.g., pleomorphic adenoma (PA) and Warthin’s tumor (WT). From a biomedical point of view, oxidative stress is of significant importance due to its established association with the initiation and progression of various types of [...] Read more.
Background: The majority of parotid gland tumors are benign, e.g., pleomorphic adenoma (PA) and Warthin’s tumor (WT). From a biomedical point of view, oxidative stress is of significant importance due to its established association with the initiation and progression of various types of cancer, including parotid gland cancers. This study aimed to assess whether blood prooxidant–antioxidant markers could aid in diagnosing and guiding surgery for recurrent malignancies after parotid tumor treatment. Methods: We examined patients (n = 20) diagnosed with WT (n = 14) and PA (n = 6) using histopathological verification and computed tomography (CT) who qualified for surgical treatment. Blood samples were taken before the surgery and again 10 days later for biochemical analysis. The activities of the antioxidant enzymes (SOD, CAT and GPx), the non-enzymatic antioxidants (GSH and UA) and oxidative stress markers (MDA and TOS) were determined in the blood. The activities of CK and LDH and the concentrations of Cor and TAS were measured in the serum. Hb and Ht were determined in whole blood. Results: The patients’ SOD, CAT, and GPx activities after surgery did not differ significantly from their preoperative levels. However, following surgery, their serum TOS levels were significantly elevated in all the patients compared to baseline. In contrast, the plasma MDA concentrations were markedly reduced after surgery. Similarly, the GSH concentrations showed a significant decrease postoperatively. No significant changes were observed in the CK and LDH activities, TAS concentrations, or levels of Hb, Ht and Cor following surgery. Conclusions: The surgical removal of salivary gland tumors did not result in a reduction in oxidative stress at 10 days after surgery. Therefore, further studies are needed to determine the effectiveness of endogenous defense mechanisms in counteracting the oxidative stress induced by salivary gland tumors. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Reducing Energy Penalty in Wastewater Treatment: Fe-Cu-Modified MWCNT Electrodes for Low-Voltage Electrofiltration of OMC
by Lu Yu, Jun Zeng, Xiu Fan, Fengxiang Li and Tao Hua
Energies 2025, 18(15), 4077; https://doi.org/10.3390/en18154077 (registering DOI) - 1 Aug 2025
Viewed by 121
Abstract
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable [...] Read more.
Pseudo-persistent organic pollutants, such as pharmaceuticals, personal care products (PPCPs), and organic dyes, are a major issue in current environmental engineering. Considering the limitations of traditional wastewater treatment plant methods and degradation technologies for organic pollutants, the search for new technologies more suitable for treating these new types of pollutants has become a research hotspot in recent years. Membrane filtration, adsorption, advanced oxidation, and electrochemical advanced oxidation technologies can effectively treat new organic pollutants. The electro-advanced oxidation process based on sulfate radicals is renowned for its non-selectivity, high efficiency, and environmental friendliness, and it can improve the dewatering performance of sludge after wastewater treatment. Therefore, in this study, octyl methoxycinnamate (OMC) was selected as the target pollutant. A new type of electrochemical filtration device based on the advanced oxidation process of sulfate radicals was designed, and a new type of modified carbon nanotube material electrode was synthesized to enhance its degradation effect. In a mixed system of water and acetonitrile, the efficiency of the electrochemical filtration device loaded with the modified electrode for degrading OMC is 1.54 times that at room temperature. The experimental results confirmed the superiority and application prospects of the self-designed treatment scheme for organic pollutants, providing experience and a reference for the future treatment of PPCP pollution. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

28 pages, 4980 KiB  
Review
Intelligent Gas Sensors for Food Safety and Quality Monitoring: Advances, Applications, and Future Directions
by Heera Jayan, Ruiyun Zhou, Chanjun Sun, Chen Wang, Limei Yin, Xiaobo Zou and Zhiming Guo
Foods 2025, 14(15), 2706; https://doi.org/10.3390/foods14152706 (registering DOI) - 1 Aug 2025
Viewed by 75
Abstract
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered [...] Read more.
Gas sensors are considered a highly effective non-destructive technique for monitoring the quality and safety of food materials. These intelligent sensors can detect volatile profiles emitted by food products, providing valuable information on the changes occurring within the food. Gas sensors have garnered significant interest for their numerous advantages in the development of food safety monitoring systems. The adaptable characteristics of gas sensors make them ideal for integration into production lines, while the flexibility of certain sensor types allows for incorporation into packaging materials. Various types of gas sensors have been developed for their distinct properties and are utilized in a wide range of applications. Metal-oxide semiconductors and optical sensors are widely studied for their potential use as gas sensors in food quality assessments due to their ability to provide visual indicators to consumers. The advancement of new nanomaterials and their integration with advanced data acquisition techniques is expected to enhance the performance and utility of sensors in sustainable practices within the food supply chain. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 (registering DOI) - 1 Aug 2025
Viewed by 54
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

19 pages, 523 KiB  
Review
Whey Proteins and Metabolic Dysfunction-Associated Steatotic Liver Disease Features: Evolving the Current Knowledge and Future Trends
by Maja Milanović, Nataša Milošević, Maja Ružić, Ludovico Abenavoli and Nataša Milić
Metabolites 2025, 15(8), 516; https://doi.org/10.3390/metabo15080516 (registering DOI) - 1 Aug 2025
Viewed by 183
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is a prevalent, multisystem disease affecting approximately 30% of adults worldwide. Obesity, along with dyslipidemia, type 2 diabetes mellitus, and hypertension, are closely intertwined with MASLD. In people with obesity, MASLD prevalence is estimated to be about 75%. Despite various approaches to MASLD treatment, dietary changes remain the most accessible and safe interventions in MASLD, especially in obese and overweight patients. Whey proteins are rich in bioactive compounds, essential amino acids with antioxidant properties, offering potential benefits for MASLD prevention and management. This state-of-the-art review summarizes whey protein impacts on a spectrum of MASLD-related manifestations, such as obesity, impaired glucose and lipid metabolism, hypertension, liver injury, oxidative stress, and inflammation. The results obtained in clinical environments, with a focus on meta-analysis, propose whey protein supplementation as a promising strategy aimed at managing multifaced MASLD disorders. Well-designed cohort studies are needed for validation of the efficacy and long-term safety of whey proteins in MASLD patients. Full article
(This article belongs to the Special Issue Effects of Diet on Metabolic Health of Obese People)
Show Figures

Figure 1

Back to TopTop